organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Adamantan-1-yl)-3-[(4-fluoro­anilino)meth­yl]-2,3-di­hydro-1,3,4-oxa­diazole-2-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, Salman bin Abdulaziz University, Alkharj 11942, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 April 2013; accepted 10 April 2013; online 13 April 2013)

In the title compound, C19H22FN3OS, the dihedral angle between the inclined oxa­diazole and benzene rings is 52.7 (3)°. In the crystal, helical supra­molecular chains along [100] are sustained by N—H⋯S hydrogen bonds supported by methyl­ene–benzene C—H⋯π inter­actions. The crystal studied was an inversion twin with the fractional contribution of the minor component being 0.33 (14).

Related literature

For biological background to adamantyl-1,3,4-oxa­diazole derivatives and for the structure of the phenyl derivative, see: Al-Tamimi et al. (2013[Al-Tamimi, A.-M. S., Al-Deeb, O. A., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o729.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22FN3OS

  • Mr = 359.47

  • Orthorhombic, P 21 21 21

  • a = 7.1683 (8) Å

  • b = 10.6621 (11) Å

  • c = 23.592 (3) Å

  • V = 1803.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 295 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.698, Tmax = 1.000

  • 7867 measured reflections

  • 3902 independent reflections

  • 2177 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.158

  • S = 0.98

  • 3902 reflections

  • 231 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1501 Friedel pairs

  • Flack parameter: 0.67 (14)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S1i 0.87 (2) 2.61 (2) 3.475 (4) 172 (4)
C9—H9ACg1ii 0.97 2.90 3.800 (5) 154
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The biological background to adamantyl-1,3,4-oxadiazole derivatives and the crystal structure of the phenyl derivative is described in an accompanying paper (Al-Tamimi et al., 2013). Herein, the crystal structure determination of the 4-fluoro derivative, (I), is described.

The 1,3,4-oxadiazole ring in (I), Fig. 1, is planar (r.m.s. deviation = 0.010 Å) and the thione-S1 atom lies 0.036 (1) Å out of this plane. The fluorobenzene ring lies to one side of this plane and forms a dihedral angle of 52.7 (3)°, resembling the situation in the parent compound (Al-Tamimi et al., 2013). As for the parent compound, the thione-S1 and amine-N3—H atoms are syn, with the S1—C1···N3—H torsion angle being -5 (3)°.

In the crystal, helical supramolecular chains along [100] are formed through the agency of N—H···S hydrogen bonding, Fig. 2 and Table 1. Chains are consolidated methylene-C—H···π(benzene) interactions, Table 1, there being no specific interactions between the chains, Fig. 3.

Related literature top

For biological background to adamantyl-1,3,4-oxadiazole derivatives and for the structure of the phenyl derivative, see: Al-Tamimi et al. (2013).

Experimental top

A mixture of 5-(adamantane-1-yl)-1,3,4-oxadiazole-2-thiol (2.36 g, 0.01 mol), 4-fluoroaniline (1.11 g, 0.01 mol) and 37% formaldehyde solution (1.5 ml), in ethanol (15 ml), was stirred at room temperature for 2 h and allowed to stand overnight. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 3.31 g (92%) of the title compound (I) as fine colourless crystals. M.pt: 453–455 K. Colourless prisms were obtained by slow evaporation of its solution in CHCl3-ethanol (1:1; 10 ml) held at room temperature.

Refinement top

The H-atoms were placed in calculated positions [C—H = 0.93 to 0.98 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atom was refined with the distance restraint N—H = 0.88±0.01 Å. The crystal is an inversion twin with the fractional contribution of the minor component being 0.33 (14).

Structure description top

The biological background to adamantyl-1,3,4-oxadiazole derivatives and the crystal structure of the phenyl derivative is described in an accompanying paper (Al-Tamimi et al., 2013). Herein, the crystal structure determination of the 4-fluoro derivative, (I), is described.

The 1,3,4-oxadiazole ring in (I), Fig. 1, is planar (r.m.s. deviation = 0.010 Å) and the thione-S1 atom lies 0.036 (1) Å out of this plane. The fluorobenzene ring lies to one side of this plane and forms a dihedral angle of 52.7 (3)°, resembling the situation in the parent compound (Al-Tamimi et al., 2013). As for the parent compound, the thione-S1 and amine-N3—H atoms are syn, with the S1—C1···N3—H torsion angle being -5 (3)°.

In the crystal, helical supramolecular chains along [100] are formed through the agency of N—H···S hydrogen bonding, Fig. 2 and Table 1. Chains are consolidated methylene-C—H···π(benzene) interactions, Table 1, there being no specific interactions between the chains, Fig. 3.

For biological background to adamantyl-1,3,4-oxadiazole derivatives and for the structure of the phenyl derivative, see: Al-Tamimi et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain along the a axis in (I), which is sustained by N—H···S hydrogen bonds shown as orange dashed lines.
[Figure 3] Fig. 3. View of the unit-cell contents in projection down the a axis of (I). The N—H···S and C—H···π interactions are shown as orange and purple dashed lines, respectively.
5-(Adamantan-1-yl)-3-[(4-fluoroanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione top
Crystal data top
C19H22FN3OSF(000) = 760
Mr = 359.47Dx = 1.324 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1361 reflections
a = 7.1683 (8) Åθ = 2.8–27.5°
b = 10.6621 (11) ŵ = 0.20 mm1
c = 23.592 (3) ÅT = 295 K
V = 1803.1 (3) Å3Prism, colourless
Z = 40.30 × 0.10 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3902 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2177 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.043
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.0°
ω scanh = 98
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1213
Tmin = 0.698, Tmax = 1.000l = 3030
7867 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0632P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3902 reflectionsΔρmax = 0.26 e Å3
231 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), 1501 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.67 (14)
Crystal data top
C19H22FN3OSV = 1803.1 (3) Å3
Mr = 359.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1683 (8) ŵ = 0.20 mm1
b = 10.6621 (11) ÅT = 295 K
c = 23.592 (3) Å0.30 × 0.10 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3902 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2177 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 1.000Rint = 0.043
7867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158Δρmax = 0.26 e Å3
S = 0.98Δρmin = 0.18 e Å3
3902 reflectionsAbsolute structure: Flack (1983), 1501 Friedel pairs
231 parametersAbsolute structure parameter: 0.67 (14)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06569 (15)0.33471 (10)0.03304 (5)0.0836 (4)
F10.2851 (7)0.4312 (3)0.12970 (14)0.1582 (16)
O10.3173 (4)0.2563 (2)0.10859 (11)0.0620 (6)
N10.3424 (4)0.0519 (3)0.09315 (12)0.0587 (8)
N20.2100 (4)0.1064 (3)0.05696 (13)0.0611 (8)
N30.0577 (5)0.0053 (3)0.01856 (17)0.0778 (10)
H30.147 (5)0.037 (4)0.0020 (17)0.098 (15)*
C10.1962 (5)0.2294 (3)0.06489 (17)0.0612 (9)
C20.4025 (5)0.1442 (3)0.12294 (15)0.0541 (8)
C30.5497 (5)0.1445 (3)0.16727 (14)0.0511 (8)
C40.7151 (6)0.2249 (4)0.14706 (16)0.0696 (11)
H4A0.76430.19110.11190.083*
H4B0.67360.31000.14000.083*
C50.8671 (6)0.2249 (4)0.19230 (18)0.0777 (13)
H50.97290.27560.17930.093*
C60.7903 (7)0.2793 (4)0.24685 (19)0.0832 (13)
H6A0.74760.36440.24030.100*
H6B0.88790.28190.27530.100*
C70.6290 (6)0.1993 (3)0.26791 (17)0.0675 (11)
H70.58080.23390.30350.081*
C80.4746 (5)0.1993 (3)0.22315 (15)0.0623 (10)
H8A0.43110.28430.21690.075*
H8B0.37010.14940.23630.075*
C90.6160 (5)0.0102 (3)0.17771 (15)0.0592 (9)
H9A0.51220.04090.19050.071*
H9B0.66330.02550.14270.071*
C100.7691 (6)0.0105 (4)0.22242 (17)0.0670 (11)
H100.81140.07570.22900.080*
C110.6935 (7)0.0645 (4)0.27741 (17)0.0738 (11)
H11A0.79000.06270.30620.089*
H11B0.58960.01400.29060.089*
C120.9315 (6)0.0890 (5)0.2021 (2)0.0875 (13)
H12A0.98010.05450.16700.105*
H12B1.03040.08750.23010.105*
C130.1279 (6)0.0329 (4)0.01020 (16)0.0736 (11)
H13A0.13370.08270.02420.088*
H13B0.20400.04120.00420.088*
C140.1079 (6)0.1144 (3)0.04713 (15)0.0643 (10)
C150.2947 (6)0.1525 (4)0.04433 (18)0.0758 (11)
H150.38040.10570.02360.091*
C160.3509 (9)0.2588 (5)0.0722 (2)0.0968 (16)
H160.47480.28430.07040.116*
C170.2266 (12)0.3262 (5)0.1021 (2)0.1003 (18)
C180.0461 (10)0.2929 (5)0.1046 (2)0.1024 (17)
H180.03780.34290.12450.123*
C190.0173 (7)0.1844 (4)0.07792 (17)0.0835 (13)
H190.14140.15980.08090.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0517 (6)0.0873 (7)0.1118 (8)0.0022 (6)0.0058 (6)0.0342 (7)
F10.245 (5)0.104 (2)0.126 (2)0.040 (3)0.038 (3)0.021 (2)
O10.0485 (14)0.0574 (14)0.0800 (16)0.0034 (13)0.0044 (14)0.0029 (13)
N10.0481 (18)0.0599 (18)0.0681 (18)0.0007 (16)0.0024 (15)0.0012 (16)
N20.0510 (19)0.0658 (19)0.0666 (19)0.0018 (16)0.0026 (15)0.0062 (16)
N30.050 (2)0.075 (2)0.108 (3)0.003 (2)0.021 (2)0.013 (2)
C10.042 (2)0.069 (2)0.073 (2)0.006 (2)0.0028 (19)0.012 (2)
C20.0405 (19)0.0489 (19)0.073 (2)0.0026 (17)0.0036 (17)0.0031 (18)
C30.0438 (19)0.0481 (18)0.0613 (19)0.0078 (17)0.0004 (16)0.0019 (16)
C40.052 (2)0.079 (2)0.077 (2)0.019 (2)0.002 (2)0.007 (2)
C50.052 (2)0.098 (3)0.084 (3)0.029 (2)0.002 (2)0.010 (2)
C60.083 (3)0.070 (2)0.097 (3)0.023 (3)0.026 (3)0.001 (2)
C70.070 (3)0.064 (2)0.068 (2)0.015 (2)0.001 (2)0.014 (2)
C80.053 (2)0.057 (2)0.077 (2)0.0014 (19)0.0070 (19)0.006 (2)
C90.052 (2)0.056 (2)0.070 (2)0.0021 (18)0.0048 (18)0.0083 (17)
C100.057 (3)0.059 (2)0.086 (3)0.004 (2)0.012 (2)0.002 (2)
C110.073 (3)0.074 (3)0.075 (3)0.010 (2)0.007 (2)0.004 (2)
C120.048 (2)0.120 (4)0.095 (3)0.008 (3)0.001 (2)0.003 (3)
C130.076 (3)0.079 (3)0.067 (2)0.013 (2)0.011 (2)0.005 (2)
C140.067 (3)0.061 (2)0.065 (2)0.002 (2)0.004 (2)0.009 (2)
C150.070 (3)0.071 (2)0.086 (3)0.006 (2)0.001 (2)0.019 (2)
C160.105 (4)0.086 (3)0.099 (4)0.024 (3)0.021 (3)0.024 (3)
C170.158 (6)0.072 (3)0.071 (3)0.020 (4)0.014 (4)0.001 (3)
C180.138 (5)0.086 (3)0.083 (3)0.003 (4)0.027 (3)0.012 (3)
C190.086 (3)0.084 (3)0.080 (3)0.000 (3)0.025 (2)0.007 (3)
Geometric parameters (Å, º) top
S1—C11.643 (4)C7—H70.9800
F1—C171.361 (5)C8—H8A0.9700
O1—C11.378 (5)C8—H8B0.9700
O1—C21.385 (4)C9—C101.522 (5)
N1—C21.283 (4)C9—H9A0.9700
N1—N21.402 (4)C9—H9B0.9700
N2—C11.328 (5)C10—C121.512 (6)
N2—C131.476 (5)C10—C111.519 (5)
N3—C141.392 (5)C10—H100.9800
N3—C131.406 (5)C11—H11A0.9700
N3—H30.874 (19)C11—H11B0.9700
C2—C31.486 (5)C12—H12A0.9700
C3—C91.529 (5)C12—H12B0.9700
C3—C41.538 (5)C13—H13A0.9700
C3—C81.539 (5)C13—H13B0.9700
C4—C51.526 (6)C14—C191.374 (5)
C4—H4A0.9700C14—C151.401 (6)
C4—H4B0.9700C15—C161.371 (6)
C5—C61.515 (6)C15—H150.9300
C5—C121.538 (6)C16—C171.345 (8)
C5—H50.9800C16—H160.9300
C6—C71.521 (6)C17—C181.343 (8)
C6—H6A0.9700C18—C191.394 (6)
C6—H6B0.9700C18—H180.9300
C7—C111.526 (5)C19—H190.9300
C7—C81.530 (5)
C1—O1—C2106.3 (3)H8A—C8—H8B108.2
C2—N1—N2104.1 (3)C10—C9—C3109.5 (3)
C1—N2—N1112.0 (3)C10—C9—H9A109.8
C1—N2—C13126.8 (3)C3—C9—H9A109.8
N1—N2—C13120.3 (3)C10—C9—H9B109.8
C14—N3—C13123.7 (4)C3—C9—H9B109.8
C14—N3—H3117 (3)H9A—C9—H9B108.2
C13—N3—H3119 (3)C12—C10—C9109.7 (3)
N2—C1—O1105.3 (3)C12—C10—C11109.6 (3)
N2—C1—S1130.8 (3)C9—C10—C11109.6 (3)
O1—C1—S1123.9 (3)C12—C10—H10109.3
N1—C2—O1112.3 (3)C9—C10—H10109.3
N1—C2—C3128.7 (3)C11—C10—H10109.3
O1—C2—C3118.9 (3)C10—C11—C7109.8 (3)
C2—C3—C9109.4 (3)C10—C11—H11A109.7
C2—C3—C4109.3 (3)C7—C11—H11A109.7
C9—C3—C4109.4 (3)C10—C11—H11B109.7
C2—C3—C8110.8 (3)C7—C11—H11B109.7
C9—C3—C8109.0 (3)H11A—C11—H11B108.2
C4—C3—C8108.9 (3)C10—C12—C5109.8 (3)
C5—C4—C3109.5 (3)C10—C12—H12A109.7
C5—C4—H4A109.8C5—C12—H12A109.7
C3—C4—H4A109.8C10—C12—H12B109.7
C5—C4—H4B109.8C5—C12—H12B109.7
C3—C4—H4B109.8H12A—C12—H12B108.2
H4A—C4—H4B108.2N3—C13—N2115.2 (3)
C6—C5—C4109.6 (4)N3—C13—H13A108.5
C6—C5—C12110.0 (4)N2—C13—H13A108.5
C4—C5—C12108.6 (4)N3—C13—H13B108.5
C6—C5—H5109.6N2—C13—H13B108.5
C4—C5—H5109.6H13A—C13—H13B107.5
C12—C5—H5109.6C19—C14—N3122.8 (4)
C5—C6—C7109.8 (3)C19—C14—C15119.5 (4)
C5—C6—H6A109.7N3—C14—C15117.8 (4)
C7—C6—H6A109.7C16—C15—C14119.8 (5)
C5—C6—H6B109.7C16—C15—H15120.1
C7—C6—H6B109.7C14—C15—H15120.1
H6A—C6—H6B108.2C17—C16—C15119.9 (5)
C6—C7—C11110.3 (4)C17—C16—H16120.0
C6—C7—C8108.9 (3)C15—C16—H16120.0
C11—C7—C8108.7 (3)C18—C17—C16121.3 (5)
C6—C7—H7109.6C18—C17—F1119.6 (7)
C11—C7—H7109.6C16—C17—F1119.1 (7)
C8—C7—H7109.6C17—C18—C19120.9 (5)
C7—C8—C3109.7 (3)C17—C18—H18119.6
C7—C8—H8A109.7C19—C18—H18119.6
C3—C8—H8A109.7C14—C19—C18118.5 (5)
C7—C8—H8B109.7C14—C19—H19120.8
C3—C8—H8B109.7C18—C19—H19120.8
C2—N1—N2—C11.2 (4)C9—C3—C8—C759.9 (4)
C2—N1—N2—C13171.3 (3)C4—C3—C8—C759.4 (4)
N1—N2—C1—O12.0 (4)C2—C3—C9—C10179.1 (3)
C13—N2—C1—O1171.3 (3)C4—C3—C9—C1059.4 (4)
N1—N2—C1—S1179.0 (3)C8—C3—C9—C1059.6 (4)
C13—N2—C1—S19.8 (6)C3—C9—C10—C1260.1 (4)
C2—O1—C1—N22.0 (4)C3—C9—C10—C1160.3 (4)
C2—O1—C1—S1179.0 (3)C12—C10—C11—C759.6 (4)
N2—N1—C2—O10.1 (4)C9—C10—C11—C760.8 (4)
N2—N1—C2—C3177.7 (3)C6—C7—C11—C1059.0 (4)
C1—O1—C2—N11.3 (4)C8—C7—C11—C1060.4 (4)
C1—O1—C2—C3176.7 (3)C9—C10—C12—C560.8 (4)
N1—C2—C3—C95.0 (5)C11—C10—C12—C559.5 (5)
O1—C2—C3—C9177.4 (3)C6—C5—C12—C1059.2 (5)
N1—C2—C3—C4114.8 (4)C4—C5—C12—C1060.7 (5)
O1—C2—C3—C462.9 (4)C14—N3—C13—N286.1 (5)
N1—C2—C3—C8125.2 (4)C1—N2—C13—N385.2 (5)
O1—C2—C3—C857.1 (4)N1—N2—C13—N3106.3 (4)
C2—C3—C4—C5179.7 (3)C13—N3—C14—C1911.1 (6)
C9—C3—C4—C559.9 (4)C13—N3—C14—C15169.5 (4)
C8—C3—C4—C559.1 (4)C19—C14—C15—C160.1 (6)
C3—C4—C5—C660.2 (4)N3—C14—C15—C16179.5 (4)
C3—C4—C5—C1260.0 (4)C14—C15—C16—C170.0 (6)
C4—C5—C6—C761.1 (5)C15—C16—C17—C181.2 (7)
C12—C5—C6—C758.2 (5)C15—C16—C17—F1179.7 (4)
C5—C6—C7—C1158.3 (5)C16—C17—C18—C192.4 (8)
C5—C6—C7—C860.9 (4)F1—C17—C18—C19178.5 (4)
C6—C7—C8—C360.2 (4)N3—C14—C19—C18179.4 (4)
C11—C7—C8—C360.0 (4)C15—C14—C19—C181.2 (6)
C2—C3—C8—C7179.7 (3)C17—C18—C19—C142.4 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.87 (2)2.61 (2)3.475 (4)172 (4)
C9—H9A···Cg1ii0.972.903.800 (5)154
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H22FN3OS
Mr359.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)7.1683 (8), 10.6621 (11), 23.592 (3)
V3)1803.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.698, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7867, 3902, 2177
Rint0.043
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.158, 0.98
No. of reflections3902
No. of parameters231
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.18
Absolute structureFlack (1983), 1501 Friedel pairs
Absolute structure parameter0.67 (14)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.874 (19)2.61 (2)3.475 (4)172 (4)
C9—H9A···Cg1ii0.972.903.800 (5)154
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research, Salman bin Abdulaziz University, Alkharj, Saudi Arabia, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Tamimi, A.-M. S., Al-Deeb, O. A., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o729.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds