organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

14-Bromo-12-chloro-2,16-dioxa­penta­cyclo­[7.7.5.01,21.03,8.010,15]henicosa-3(8),10,12,14-tetra­ene-7,20-dione

aDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, and ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com, akkurt@erciyes.edu.tr

(Received 15 April 2013; accepted 16 April 2013; online 20 April 2013)

In the title compound, C19H16BrClO4, both the fused xanthene rings and one of the cyclo­hexane rings adopt envelope conformations, while the other cyclo­hexane ring is in a chair conformation. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming infinite chains running along [10-1] incorporating R22(16) ring motifs. In addition, C—H⋯π inter­actions and weak ππ stacking inter­actions [centroid–centroid distance = 3.768 (3) Å] help to consolidate the packing.

Related literature

For similar structures, see: Mohamed et al. (2012b[Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012b). Acta Cryst. E68, o2315-o2316.]); Lu et al. (2011[Lu, W., Lian, C., Yang, Y. & Zhu, Y. (2011). Acta Cryst. E67, o2108.]); Abdelhamid et al. (2011[Abdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o785.]). For the bioactiviy of xanthenones, see: Mohamed et al. (2012a[Mohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012a). J. Chem. Pharm. Res. 4, 955-965.]); Gobbi et al. (2006[Gobbi, S., Belluti, F., Bisi, A., Piazzi, L., Rampa, A., Zampiron, A., Barbera, M., Caputo, A. & Carrara, M. (2006). Bioorg. Med. Chem. 14, 4101-4109.]); Na (2009[Na, Y. (2009). J. Pharm. Pharmacol. 61, 707-12.]). For ring conformations, see: Cremer and Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16BrClO4

  • Mr = 423.67

  • Monoclinic, P 21 /n

  • a = 10.2741 (6) Å

  • b = 10.2800 (6) Å

  • c = 15.8581 (8) Å

  • β = 102.073 (5)°

  • V = 1637.85 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.70 mm−1

  • T = 123 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.529, Tmax = 0.616

  • 7243 measured reflections

  • 3516 independent reflections

  • 2547 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.134

  • S = 1.04

  • 3516 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O3i 0.99 2.53 3.407 (6) 147
C9—H9BCg3ii 0.99 2.89 3.731 (5) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Xanthenones have very diverse biological profiles, including antihypertensive, anti-oxidative, antithrombotic and anticancer activity, depending on their diverse structures, which are modified by substituents on the ring system (Gobbi et al., 2006; Na, 2009). Following to our earlier study on synthesis of series of the bioactive oxanthenediones (Abdelhamid et al., 2011), acridinediones (Mohamed et al., 2012a) and benzopyranes (Mohamed et al., 2012b) we became interested in synthesizing the title compound to investigate the relationship between antibacterial activity and structure.

In the title compound, (Fig. 1), the two fused xanthene rings (O2/C7/C12–C14/C19 and O4/C5–C7/C12/C13) adopt envelope conformations [the puckering parameters (Cremer & Pople, 1975) are QT = 0.522 (5) Å, θ = 127.4 (5) °, φ = 299.1 (6) ° and QT = 0.539 (5) Å, θ = 125.9 (5) °, φ = 51.2 (6) °, respectively], one (C14–C19) of the cyclohexane rings is also in an envelope conformation with puckering parameters of QT = 0.440 (5) Å, θ = 129.9 (7) °, φ = 344.4 (9) °, and the other (C7–C12) is in a chair conformation with puckering parameters of QT = 0.518 (5) Å, θ = 8.0 (6) °, φ = 84 (4). All the bond lengths and bond angles of the title compound are within the expected values and are comparable with those reported for similar structures (Mohamed et al., 2012b; Lu et al., 2011; Abdelhamid et al., 2011).

In the crystal structure, long-range C—H···O hydrogen bonds (Table 1, Fig. 2) connect the adjacent molecules into infinite chains running along [101] with R22(16) ring motifs. C–H···π interactions and weak π-π stacking interactions [Cg3···Cg3i= 3.768 (3) Å; Cg3 is a centroid of the C1–C6 benzene ring and symmetry code: (i) = 1 - x, 1 - y, 1 - z] also contribute to the consolidation of the crystal packing.

Related literature top

For similar structures, see: Mohamed et al. (2012b); Lu et al. (2011); Abdelhamid et al. (2011). For the bioactiviy of xanthenones, see: Mohamed et al. (2012a); Gobbi et al. (2006); Na (2009). For ring conformations, see: Cremer and Pople (1975).

Experimental top

A mixture of 1 mmol (236 mg) 3-bromo-5-chloro-2-hydroxybenzaldehyde, 1 mmol (112 mg) cyclohexane-1,3-dione and 1 mmol (123 mg) (4-aminophenyl)methanol in 50 ml e thanol was refluxed at 350 K. The reaction progress was monitored by TLC till completion after 5 h. Excess solvent was evaporated under vacuum and the resulted solid was filtered, washed with cold ethanol and recrystallized from ethanol to afford 61% of the title compound. Colourless blocks were obtained by slow evaporation of ethanol solution of (I) at room temperature for two days. M.P. 504 K.

Refinement top

H atoms bound to C atoms were placed at calculated positions [0.95 (aromatic CH), 0.99 (methylene CH2) and 1.00 Å (methine CH)] and refined in riding modes with Uiso(H) = 1.2Ueq(C).

Structure description top

Xanthenones have very diverse biological profiles, including antihypertensive, anti-oxidative, antithrombotic and anticancer activity, depending on their diverse structures, which are modified by substituents on the ring system (Gobbi et al., 2006; Na, 2009). Following to our earlier study on synthesis of series of the bioactive oxanthenediones (Abdelhamid et al., 2011), acridinediones (Mohamed et al., 2012a) and benzopyranes (Mohamed et al., 2012b) we became interested in synthesizing the title compound to investigate the relationship between antibacterial activity and structure.

In the title compound, (Fig. 1), the two fused xanthene rings (O2/C7/C12–C14/C19 and O4/C5–C7/C12/C13) adopt envelope conformations [the puckering parameters (Cremer & Pople, 1975) are QT = 0.522 (5) Å, θ = 127.4 (5) °, φ = 299.1 (6) ° and QT = 0.539 (5) Å, θ = 125.9 (5) °, φ = 51.2 (6) °, respectively], one (C14–C19) of the cyclohexane rings is also in an envelope conformation with puckering parameters of QT = 0.440 (5) Å, θ = 129.9 (7) °, φ = 344.4 (9) °, and the other (C7–C12) is in a chair conformation with puckering parameters of QT = 0.518 (5) Å, θ = 8.0 (6) °, φ = 84 (4). All the bond lengths and bond angles of the title compound are within the expected values and are comparable with those reported for similar structures (Mohamed et al., 2012b; Lu et al., 2011; Abdelhamid et al., 2011).

In the crystal structure, long-range C—H···O hydrogen bonds (Table 1, Fig. 2) connect the adjacent molecules into infinite chains running along [101] with R22(16) ring motifs. C–H···π interactions and weak π-π stacking interactions [Cg3···Cg3i= 3.768 (3) Å; Cg3 is a centroid of the C1–C6 benzene ring and symmetry code: (i) = 1 - x, 1 - y, 1 - z] also contribute to the consolidation of the crystal packing.

For similar structures, see: Mohamed et al. (2012b); Lu et al. (2011); Abdelhamid et al. (2011). For the bioactiviy of xanthenones, see: Mohamed et al. (2012a); Gobbi et al. (2006); Na (2009). For ring conformations, see: Cremer and Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding diagram of the title compound along the b axis.
14-Bromo-12-chloro-2,16-dioxapentacyclo[7.7.5.01,21.03,8.010,15]henicosa-3(8),10,12,14-tetraene-7,20-dione top
Crystal data top
C19H16BrClO4F(000) = 856
Mr = 423.67Dx = 1.718 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2011 reflections
a = 10.2741 (6) Åθ = 3.0–28.8°
b = 10.2800 (6) ŵ = 2.70 mm1
c = 15.8581 (8) ÅT = 123 K
β = 102.073 (5)°Block, colourless
V = 1637.85 (16) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3516 independent reflections
Radiation source: Enhance (Mo) X-ray Source2547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.0727 pixels mm-1θmax = 27.0°, θmin = 3.3°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1112
Tmin = 0.529, Tmax = 0.616l = 1920
7243 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0456P)2 + 3.8105P]
where P = (Fo2 + 2Fc2)/3
3516 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C19H16BrClO4V = 1637.85 (16) Å3
Mr = 423.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2741 (6) ŵ = 2.70 mm1
b = 10.2800 (6) ÅT = 123 K
c = 15.8581 (8) Å0.25 × 0.20 × 0.18 mm
β = 102.073 (5)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3516 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2547 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 0.616Rint = 0.042
7243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.79 e Å3
3516 reflectionsΔρmin = 0.73 e Å3
226 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.83070 (5)0.65176 (6)0.51190 (3)0.0317 (2)
Cl10.48771 (12)0.24296 (11)0.40547 (8)0.0239 (4)
O10.5310 (3)0.6514 (3)0.1626 (2)0.0248 (11)
O20.4643 (3)0.9536 (3)0.37446 (19)0.0204 (10)
O30.1281 (3)0.6340 (4)0.3173 (2)0.0309 (12)
O40.6260 (3)0.7948 (3)0.3862 (2)0.0222 (10)
C10.6710 (4)0.5856 (5)0.4453 (3)0.0192 (14)
C20.6398 (5)0.4564 (5)0.4527 (3)0.0209 (16)
C30.5230 (5)0.4094 (4)0.4018 (3)0.0180 (14)
C40.4377 (5)0.4900 (5)0.3470 (3)0.0199 (16)
C50.4683 (5)0.6205 (4)0.3418 (3)0.0174 (14)
C60.5875 (4)0.6689 (4)0.3903 (3)0.0165 (14)
C70.5465 (4)0.8852 (5)0.3268 (3)0.0186 (14)
C80.6430 (5)0.9822 (5)0.3029 (3)0.0224 (16)
C90.7320 (5)0.9167 (5)0.2502 (3)0.0258 (17)
C100.6512 (5)0.8501 (5)0.1700 (3)0.0273 (17)
C110.5501 (5)0.7597 (5)0.1918 (3)0.0188 (14)
C120.4649 (4)0.8147 (4)0.2507 (3)0.0173 (12)
C130.3782 (4)0.7170 (5)0.2854 (3)0.0189 (14)
C140.2961 (4)0.7914 (5)0.3381 (3)0.0185 (14)
C150.1663 (5)0.7408 (5)0.3456 (3)0.0218 (14)
C160.0825 (5)0.8278 (5)0.3889 (3)0.0297 (17)
C170.1648 (5)0.9056 (5)0.4622 (3)0.0293 (17)
C180.2719 (5)0.9826 (5)0.4319 (3)0.0226 (16)
C190.3432 (5)0.9016 (5)0.3786 (3)0.0185 (14)
H20.697000.400900.491800.0250*
H40.357800.456100.312800.0240*
H8A0.698401.019700.355900.0270*
H8B0.593101.053900.269000.0270*
H9A0.788600.851300.286400.0310*
H9B0.791200.982600.232500.0310*
H10A0.606000.917000.129300.0320*
H10B0.712200.801000.140900.0320*
H120.403800.880200.216400.0210*
H130.318600.670800.236600.0220*
H16A0.017600.773900.411600.0360*
H16B0.031700.888400.345700.0360*
H17A0.106100.965800.485700.0350*
H17B0.206600.845800.509000.0350*
H18A0.231001.058200.397600.0270*
H18B0.336401.016000.482600.0270*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0228 (3)0.0413 (4)0.0276 (3)0.0031 (2)0.0026 (2)0.0050 (3)
Cl10.0344 (7)0.0103 (6)0.0300 (6)0.0019 (5)0.0134 (5)0.0010 (5)
O10.0262 (19)0.026 (2)0.0228 (17)0.0010 (16)0.0067 (14)0.0059 (16)
O20.0222 (18)0.0182 (18)0.0219 (17)0.0016 (14)0.0075 (14)0.0044 (14)
O30.024 (2)0.034 (2)0.036 (2)0.0078 (17)0.0092 (16)0.0022 (18)
O40.0228 (18)0.0182 (18)0.0230 (17)0.0041 (14)0.0012 (14)0.0016 (14)
C10.014 (2)0.025 (3)0.020 (2)0.002 (2)0.0066 (19)0.001 (2)
C20.024 (3)0.024 (3)0.018 (2)0.009 (2)0.012 (2)0.004 (2)
C30.026 (3)0.008 (2)0.023 (2)0.0001 (19)0.012 (2)0.0006 (19)
C40.020 (3)0.020 (3)0.023 (2)0.005 (2)0.012 (2)0.005 (2)
C50.020 (2)0.019 (3)0.016 (2)0.0013 (19)0.0102 (19)0.0002 (19)
C60.016 (2)0.018 (3)0.018 (2)0.0022 (19)0.0096 (18)0.003 (2)
C70.017 (2)0.016 (3)0.023 (2)0.0007 (19)0.005 (2)0.001 (2)
C80.020 (3)0.022 (3)0.024 (2)0.006 (2)0.002 (2)0.004 (2)
C90.019 (3)0.031 (3)0.029 (3)0.005 (2)0.009 (2)0.002 (2)
C100.028 (3)0.028 (3)0.026 (3)0.004 (2)0.006 (2)0.002 (2)
C110.018 (2)0.023 (3)0.014 (2)0.004 (2)0.0001 (18)0.000 (2)
C120.019 (2)0.016 (2)0.017 (2)0.0011 (19)0.0037 (18)0.0021 (19)
C130.020 (2)0.017 (3)0.019 (2)0.002 (2)0.0026 (19)0.0011 (19)
C140.020 (2)0.023 (3)0.013 (2)0.005 (2)0.0043 (18)0.003 (2)
C150.017 (2)0.027 (3)0.020 (2)0.002 (2)0.0009 (19)0.007 (2)
C160.015 (3)0.039 (3)0.037 (3)0.000 (2)0.010 (2)0.008 (3)
C170.031 (3)0.032 (3)0.028 (3)0.007 (2)0.013 (2)0.006 (2)
C180.024 (3)0.024 (3)0.022 (2)0.004 (2)0.010 (2)0.000 (2)
C190.018 (2)0.021 (3)0.017 (2)0.003 (2)0.0045 (19)0.005 (2)
Geometric parameters (Å, º) top
Br1—C11.883 (5)C14—C151.459 (7)
Cl1—C31.753 (4)C14—C191.342 (7)
O1—C111.206 (6)C15—C161.503 (7)
O2—C71.430 (6)C16—C171.515 (7)
O2—C191.368 (6)C17—C181.513 (7)
O3—C151.220 (6)C18—C191.484 (7)
O4—C61.359 (5)C2—H20.9500
O4—C71.448 (6)C4—H40.9500
C1—C21.377 (7)C8—H8A0.9900
C1—C61.385 (6)C8—H8B0.9900
C2—C31.386 (7)C9—H9A0.9900
C3—C41.375 (7)C9—H9B0.9900
C4—C51.384 (7)C10—H10A0.9900
C5—C61.395 (7)C10—H10B0.9900
C5—C131.515 (7)C12—H121.0000
C7—C81.509 (7)C13—H131.0000
C7—C121.504 (6)C16—H16A0.9900
C8—C91.519 (7)C16—H16B0.9900
C9—C101.528 (7)C17—H17A0.9900
C10—C111.487 (7)C17—H17B0.9900
C11—C121.517 (7)C18—H18A0.9900
C12—C131.520 (6)C18—H18B0.9900
C13—C141.513 (7)
C7—O2—C19118.5 (4)O2—C19—C14123.2 (4)
C6—O4—C7120.8 (3)O2—C19—C18111.7 (4)
Br1—C1—C2119.5 (4)C14—C19—C18125.1 (5)
Br1—C1—C6118.8 (4)C1—C2—H2121.00
C2—C1—C6121.7 (4)C3—C2—H2121.00
C1—C2—C3118.4 (4)C3—C4—H4120.00
Cl1—C3—C2118.8 (4)C5—C4—H4120.00
Cl1—C3—C4120.0 (4)C7—C8—H8A110.00
C2—C3—C4121.2 (4)C7—C8—H8B110.00
C3—C4—C5119.9 (5)C9—C8—H8A110.00
C4—C5—C6119.8 (4)C9—C8—H8B110.00
C4—C5—C13123.5 (4)H8A—C8—H8B108.00
C6—C5—C13116.7 (4)C8—C9—H9A109.00
O4—C6—C1118.1 (4)C8—C9—H9B109.00
O4—C6—C5123.0 (4)C10—C9—H9A109.00
C1—C6—C5118.9 (4)C10—C9—H9B109.00
O2—C7—O4106.7 (3)H9A—C9—H9B108.00
O2—C7—C8107.4 (4)C9—C10—H10A109.00
O2—C7—C12111.7 (3)C9—C10—H10B109.00
O4—C7—C8106.1 (3)C11—C10—H10A109.00
O4—C7—C12110.9 (4)C11—C10—H10B109.00
C8—C7—C12113.7 (4)H10A—C10—H10B108.00
C7—C8—C9110.4 (4)C7—C12—H12107.00
C8—C9—C10111.8 (4)C11—C12—H12107.00
C9—C10—C11111.8 (4)C13—C12—H12107.00
O1—C11—C10123.6 (5)C5—C13—H13110.00
O1—C11—C12120.8 (4)C12—C13—H13110.00
C10—C11—C12115.6 (4)C14—C13—H13110.00
C7—C12—C11112.2 (4)C15—C16—H16A109.00
C7—C12—C13107.4 (4)C15—C16—H16B109.00
C11—C12—C13115.7 (4)C17—C16—H16A109.00
C5—C13—C12108.3 (4)C17—C16—H16B109.00
C5—C13—C14110.3 (4)H16A—C16—H16B108.00
C12—C13—C14107.6 (4)C16—C17—H17A109.00
C13—C14—C15119.3 (4)C16—C17—H17B109.00
C13—C14—C19120.3 (4)C18—C17—H17A109.00
C15—C14—C19120.4 (4)C18—C17—H17B109.00
O3—C15—C14121.3 (5)H17A—C17—H17B108.00
O3—C15—C16122.2 (5)C17—C18—H18A109.00
C14—C15—C16116.5 (4)C17—C18—H18B109.00
C15—C16—C17112.6 (4)C19—C18—H18A109.00
C16—C17—C18111.0 (4)C19—C18—H18B109.00
C17—C18—C19111.5 (4)H18A—C18—H18B108.00
C19—O2—C7—O488.4 (4)O4—C7—C12—C1170.2 (5)
C19—O2—C7—C8158.3 (4)O4—C7—C12—C1358.0 (4)
C19—O2—C7—C1232.9 (5)C8—C7—C12—C1149.2 (5)
C7—O2—C19—C142.0 (7)C8—C7—C12—C13177.4 (4)
C7—O2—C19—C18178.7 (4)C7—C8—C9—C1055.9 (5)
C7—O4—C6—C1176.9 (4)C8—C9—C10—C1153.0 (6)
C7—O4—C6—C53.2 (6)C9—C10—C11—O1134.8 (5)
C6—O4—C7—O296.0 (4)C9—C10—C11—C1248.4 (6)
C6—O4—C7—C8149.7 (4)O1—C11—C12—C7136.7 (5)
C6—O4—C7—C1225.8 (5)O1—C11—C12—C1313.0 (6)
Br1—C1—C2—C3178.8 (4)C10—C11—C12—C746.4 (5)
C6—C1—C2—C31.6 (7)C10—C11—C12—C13170.0 (4)
Br1—C1—C6—O40.9 (6)C7—C12—C13—C562.3 (5)
Br1—C1—C6—C5179.1 (3)C7—C12—C13—C1457.0 (4)
C2—C1—C6—O4179.5 (4)C11—C12—C13—C563.8 (5)
C2—C1—C6—C50.5 (7)C11—C12—C13—C14176.9 (4)
C1—C2—C3—Cl1175.9 (4)C5—C13—C14—C1590.3 (5)
C1—C2—C3—C42.0 (7)C5—C13—C14—C1988.6 (6)
Cl1—C3—C4—C5177.6 (4)C12—C13—C14—C15151.7 (4)
C2—C3—C4—C50.3 (8)C12—C13—C14—C1929.4 (6)
C3—C4—C5—C61.9 (7)C13—C14—C15—O37.1 (7)
C3—C4—C5—C13178.0 (4)C13—C14—C15—C16172.2 (4)
C4—C5—C6—O4177.7 (4)C19—C14—C15—O3171.9 (5)
C4—C5—C6—C12.3 (7)C19—C14—C15—C168.8 (7)
C13—C5—C6—O42.4 (7)C13—C14—C19—O20.7 (7)
C13—C5—C6—C1177.6 (4)C13—C14—C19—C18180.0 (4)
C4—C5—C13—C12144.7 (5)C15—C14—C19—O2179.7 (4)
C4—C5—C13—C1497.8 (5)C15—C14—C19—C181.1 (8)
C6—C5—C13—C1235.4 (6)O3—C15—C16—C17144.8 (5)
C6—C5—C13—C1482.2 (5)C14—C15—C16—C1735.9 (6)
O2—C7—C8—C9178.8 (4)C15—C16—C17—C1854.9 (6)
O4—C7—C8—C967.5 (5)C16—C17—C18—C1946.2 (6)
C12—C7—C8—C954.7 (5)C17—C18—C19—O2160.1 (4)
O2—C7—C12—C11171.0 (4)C17—C18—C19—C1420.5 (7)
O2—C7—C12—C1360.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···O3i0.992.533.407 (6)147
C9—H9B···Cg3ii0.992.893.731 (5)143
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H16BrClO4
Mr423.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)10.2741 (6), 10.2800 (6), 15.8581 (8)
β (°) 102.073 (5)
V3)1637.85 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.70
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.529, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
7243, 3516, 2547
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.134, 1.04
No. of reflections3516
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.73

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···O3i0.992.533.407 (6)147
C9—H9B···Cg3ii0.992.893.731 (5)143
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Higher Education Ministry of Egypt. The authors gratefully acknowledge Manchester Metropolitan University, the University of Strathclyde and Erciyes University for supporting this study.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGobbi, S., Belluti, F., Bisi, A., Piazzi, L., Rampa, A., Zampiron, A., Barbera, M., Caputo, A. & Carrara, M. (2006). Bioorg. Med. Chem. 14, 4101–4109.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, W., Lian, C., Yang, Y. & Zhu, Y. (2011). Acta Cryst. E67, o2108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012a). J. Chem. Pharm. Res. 4, 955–965.  CAS Google Scholar
First citationMohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012b). Acta Cryst. E68, o2315–o2316.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNa, Y. (2009). J. Pharm. Pharmacol. 61, 707–12.  CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds