organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Adamantan-1-yl)-N-methyl-1,3,4-thia­diazol-2-amine

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, Salman bin Abdulaziz University, Alkharj 11942, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 2 April 2013; accepted 3 April 2013; online 10 April 2013)

In the title compound, C13H19N3S, the methyl­amine substituent is coplanar with the thia­diazole ring to which it is attached [C—N—C—S torsion angle = 175.9 (2)°] and the amine H atom is syn to the thia­diazole S atom. Supra­molecular chains along [101], sustained by N—H⋯N hydrogen bonding, feature in the crystal packing.

Related literature

For the biological activity of 1,3,4-thia­diazol-2-amine derivatives, see: Carvalho et al. (2008[Carvalho, S. A., Lopes, F. A. S., Salomão, K., Romeiro, N. C., Wardell, S. M. S. V., de Castro, S. L., da Silva, E. F. & Fraga, C. A. M. (2008). Bioorg. Med. Chem. 16, 413-421.]); Foroumadi et al. (1999[Foroumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim.-Forsch. Drug. Res. 49, 1035-1038.]), and of adamantane derivatives, see: Togo et al. (1968[Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089-1094.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]). For related structures, see: El-Emam et al. (2012[El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.]); Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]). For the synthesis of the title compound, see: El-Emam & Lehmann (1994[El-Emam, A. A. & Lehmann, J. (1994). Monatsh. Chem. 125, 587-591.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19N3S

  • Mr = 249.37

  • Monoclinic, P 21 /n

  • a = 10.4394 (12) Å

  • b = 13.0910 (13) Å

  • c = 10.8871 (15) Å

  • β = 118.008 (16)°

  • V = 1313.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.887, Tmax = 1.000

  • 6791 measured reflections

  • 3027 independent reflections

  • 1975 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.144

  • S = 1.04

  • 3027 reflections

  • 159 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1i 0.87 (1) 2.15 (1) 3.021 (3) 179 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Derivatives of adamantane have long been known for their diverse biological activities including anti-viral activity against influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, 1,3,4-thiadiazole derivatives were reported to exhibit marked anti-trypanosomal (Carvalho et al., 2008) and anti-microbial activities (Foroumadi et al., 1999). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of on-going structural studies of these (El-Emam et al., 2012; Almutairi et al., 2012), we report herein the X-ray crystallographic data of the title compound, (I).

In (I), Fig. 1, the five-membered ring is planar (r.m.s. deviation = 0.009 Å) and the methylamine substituent is co-planar: the C13—N3—C2—S1 torsion angle is 175.9 (2)°. The amine-H atom is syn to the thiadiazole-S1 atom. N—H···N hydrogen bonds feature in the crystal packing, leading to supramolecular chains along [1 0 1], Fig. 2 and Table 1. Chains pack with no specific intermolecular interactions between them. Globally, the crystal structure comprises alternating layers of hydrophilic and hydrophobic regions, Fig. 3.

Related literature top

For the biological activity of 1,3,4-thiadiazol-2-amine derivatives, see: Carvalho et al. (2008); Foroumadi et al. (1999), and of adamantane derivatives, see: Togo et al. (1968); El-Emam et al. (2004). For related structures, see: El-Emam et al. (2012); Almutairi et al. (2012). For the synthesis of the title compound, see: El-Emam & Lehmann (1994).

Experimental top

The title compound was prepared by dehydrative cyclization of 1-(1-adamantylcarbonyl)-4-methylthiosemicarbazide using sulfuric acid at room temperature for 24 h as previously described (El-Emam & Lehmann, 1994). Single crystals were obtained by slow evaporation from its CHCl3:EtOH solution at room temperature; M.pt: 441–443 K.

Refinement top

The C-bound H-atoms were placed in calculated positions [C—H = 0.96 to 0.98 Å, Uiso(H) = 1.2 or 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atom was refined with N—H = 0.88±0.01 Å.

Structure description top

Derivatives of adamantane have long been known for their diverse biological activities including anti-viral activity against influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, 1,3,4-thiadiazole derivatives were reported to exhibit marked anti-trypanosomal (Carvalho et al., 2008) and anti-microbial activities (Foroumadi et al., 1999). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of on-going structural studies of these (El-Emam et al., 2012; Almutairi et al., 2012), we report herein the X-ray crystallographic data of the title compound, (I).

In (I), Fig. 1, the five-membered ring is planar (r.m.s. deviation = 0.009 Å) and the methylamine substituent is co-planar: the C13—N3—C2—S1 torsion angle is 175.9 (2)°. The amine-H atom is syn to the thiadiazole-S1 atom. N—H···N hydrogen bonds feature in the crystal packing, leading to supramolecular chains along [1 0 1], Fig. 2 and Table 1. Chains pack with no specific intermolecular interactions between them. Globally, the crystal structure comprises alternating layers of hydrophilic and hydrophobic regions, Fig. 3.

For the biological activity of 1,3,4-thiadiazol-2-amine derivatives, see: Carvalho et al. (2008); Foroumadi et al. (1999), and of adamantane derivatives, see: Togo et al. (1968); El-Emam et al. (2004). For related structures, see: El-Emam et al. (2012); Almutairi et al. (2012). For the synthesis of the title compound, see: El-Emam & Lehmann (1994).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) sustained by N—H···N hydrogen bonds shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I).
5-(Adamantan-1-yl)-N-methyl-1,3,4-thiadiazol-2-amine top
Crystal data top
C13H19N3SF(000) = 536
Mr = 249.37Dx = 1.261 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1515 reflections
a = 10.4394 (12) Åθ = 3.1–27.5°
b = 13.0910 (13) ŵ = 0.23 mm1
c = 10.8871 (15) ÅT = 295 K
β = 118.008 (16)°Prism, colourless
V = 1313.6 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3027 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1975 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.1°
ω scanh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1617
Tmin = 0.887, Tmax = 1.000l = 1314
6791 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1967P]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C13H19N3SV = 1313.6 (3) Å3
Mr = 249.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4394 (12) ŵ = 0.23 mm1
b = 13.0910 (13) ÅT = 295 K
c = 10.8871 (15) Å0.30 × 0.20 × 0.10 mm
β = 118.008 (16)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3027 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1975 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.039
6791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
3027 reflectionsΔρmin = 0.22 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21237 (6)0.64435 (5)0.41269 (6)0.0480 (2)
N10.45652 (19)0.66351 (15)0.62872 (19)0.0446 (5)
N20.43886 (18)0.75355 (15)0.55520 (19)0.0455 (5)
N30.2711 (2)0.83210 (16)0.3481 (2)0.0514 (5)
H30.1801 (12)0.8326 (19)0.2850 (19)0.047 (7)*
C10.3500 (2)0.60016 (19)0.5713 (2)0.0398 (5)
C20.3152 (2)0.75433 (18)0.4397 (2)0.0404 (5)
C30.3392 (2)0.49988 (18)0.6325 (2)0.0398 (5)
C40.4805 (3)0.4770 (2)0.7646 (3)0.0614 (7)
H4A0.50160.53210.83080.074*
H4B0.55980.47250.74200.074*
C50.4676 (3)0.3761 (2)0.8298 (3)0.0698 (9)
H50.55800.36270.91500.084*
C60.3426 (3)0.3824 (3)0.8635 (3)0.0744 (9)
H6A0.33590.31900.90620.089*
H6B0.36000.43730.92920.089*
C70.2019 (3)0.4013 (2)0.7331 (3)0.0614 (7)
H70.12210.40470.75640.074*
C80.2149 (3)0.5035 (2)0.6717 (3)0.0566 (7)
H8A0.23370.55750.73910.068*
H8B0.12420.51880.58960.068*
C90.3080 (3)0.4115 (2)0.5300 (3)0.0605 (7)
H9A0.38480.40730.50400.073*
H9B0.21750.42420.44650.073*
C100.2977 (3)0.3098 (2)0.5956 (3)0.0682 (8)
H100.27920.25400.52940.082*
C110.1735 (3)0.3176 (2)0.6301 (3)0.0675 (8)
H11A0.08400.33140.54590.081*
H11B0.16250.25330.66830.081*
C120.4399 (3)0.2912 (3)0.7263 (4)0.0807 (10)
H12A0.43580.22620.76710.097*
H12B0.51870.28820.70280.097*
C130.3567 (3)0.9237 (2)0.3810 (3)0.0619 (7)
H13A0.31600.96930.30280.093*
H13B0.45440.90680.40200.093*
H13C0.35700.95620.46020.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0374 (3)0.0496 (4)0.0422 (4)0.0049 (3)0.0063 (3)0.0015 (3)
N10.0365 (9)0.0478 (12)0.0403 (11)0.0009 (9)0.0105 (8)0.0020 (9)
N20.0361 (9)0.0460 (12)0.0435 (11)0.0023 (9)0.0096 (8)0.0033 (10)
N30.0380 (10)0.0503 (13)0.0490 (13)0.0012 (10)0.0063 (9)0.0077 (11)
C10.0314 (10)0.0487 (14)0.0366 (12)0.0015 (10)0.0138 (9)0.0020 (11)
C20.0327 (10)0.0455 (14)0.0396 (12)0.0020 (10)0.0142 (9)0.0001 (11)
C30.0366 (11)0.0435 (13)0.0388 (12)0.0010 (10)0.0171 (9)0.0007 (11)
C40.0435 (13)0.0650 (18)0.0611 (17)0.0039 (13)0.0125 (12)0.0184 (14)
C50.0500 (14)0.070 (2)0.0689 (19)0.0026 (15)0.0110 (14)0.0242 (17)
C60.089 (2)0.081 (2)0.0559 (18)0.0179 (18)0.0364 (17)0.0018 (16)
C70.0560 (15)0.073 (2)0.0647 (18)0.0040 (14)0.0364 (14)0.0026 (15)
C80.0556 (14)0.0574 (17)0.0643 (17)0.0008 (13)0.0344 (13)0.0009 (14)
C90.0785 (18)0.0535 (16)0.0597 (17)0.0018 (14)0.0408 (15)0.0035 (14)
C100.095 (2)0.0474 (16)0.070 (2)0.0086 (16)0.0448 (18)0.0112 (15)
C110.0611 (16)0.0589 (18)0.075 (2)0.0128 (15)0.0254 (15)0.0020 (16)
C120.081 (2)0.066 (2)0.115 (3)0.0235 (18)0.062 (2)0.034 (2)
C130.0534 (14)0.0537 (17)0.0642 (18)0.0072 (13)0.0157 (13)0.0063 (14)
Geometric parameters (Å, º) top
S1—C21.737 (2)C6—H6B0.9700
S1—C11.747 (2)C7—C111.495 (4)
N1—C11.289 (3)C7—C81.530 (4)
N1—N21.388 (3)C7—H70.9800
N2—C21.313 (3)C8—H8A0.9700
N3—C21.346 (3)C8—H8B0.9700
N3—C131.437 (3)C9—C101.538 (4)
N3—H30.872 (9)C9—H9A0.9700
C1—C31.500 (3)C9—H9B0.9700
C3—C41.530 (3)C10—C111.513 (4)
C3—C91.532 (3)C10—C121.518 (4)
C3—C81.545 (3)C10—H100.9800
C4—C51.535 (4)C11—H11A0.9700
C4—H4A0.9700C11—H11B0.9700
C4—H4B0.9700C12—H12A0.9700
C5—C121.511 (4)C12—H12B0.9700
C5—C61.514 (4)C13—H13A0.9600
C5—H50.9800C13—H13B0.9600
C6—C71.509 (4)C13—H13C0.9600
C6—H6A0.9700
C2—S1—C187.21 (11)C11—C7—H7109.5
C1—N1—N2114.59 (18)C6—C7—H7109.5
C2—N2—N1111.34 (18)C8—C7—H7109.5
C2—N3—C13119.4 (2)C7—C8—C3110.6 (2)
C2—N3—H3117.1 (16)C7—C8—H8A109.5
C13—N3—H3120.7 (16)C3—C8—H8A109.5
N1—C1—C3125.1 (2)C7—C8—H8B109.5
N1—C1—S1112.82 (18)C3—C8—H8B109.5
C3—C1—S1122.04 (16)H8A—C8—H8B108.1
N2—C2—N3123.8 (2)C3—C9—C10110.7 (2)
N2—C2—S1114.02 (17)C3—C9—H9A109.5
N3—C2—S1122.18 (16)C10—C9—H9A109.5
C1—C3—C4110.38 (18)C3—C9—H9B109.5
C1—C3—C9111.84 (19)C10—C9—H9B109.5
C4—C3—C9108.5 (2)H9A—C9—H9B108.1
C1—C3—C8110.08 (19)C11—C10—C12110.7 (2)
C4—C3—C8108.1 (2)C11—C10—C9108.1 (2)
C9—C3—C8107.8 (2)C12—C10—C9108.9 (2)
C3—C4—C5110.3 (2)C11—C10—H10109.7
C3—C4—H4A109.6C12—C10—H10109.7
C5—C4—H4A109.6C9—C10—H10109.7
C3—C4—H4B109.6C7—C11—C10110.1 (2)
C5—C4—H4B109.6C7—C11—H11A109.6
H4A—C4—H4B108.1C10—C11—H11A109.6
C12—C5—C6109.6 (2)C7—C11—H11B109.6
C12—C5—C4108.4 (3)C10—C11—H11B109.6
C6—C5—C4109.8 (3)H11A—C11—H11B108.1
C12—C5—H5109.7C5—C12—C10109.9 (2)
C6—C5—H5109.7C5—C12—H12A109.7
C4—C5—H5109.7C10—C12—H12A109.7
C7—C6—C5110.5 (2)C5—C12—H12B109.7
C7—C6—H6A109.6C10—C12—H12B109.7
C5—C6—H6A109.6H12A—C12—H12B108.2
C7—C6—H6B109.6N3—C13—H13A109.5
C5—C6—H6B109.6N3—C13—H13B109.5
H6A—C6—H6B108.1H13A—C13—H13B109.5
C11—C7—C6110.4 (3)N3—C13—H13C109.5
C11—C7—C8109.9 (2)H13A—C13—H13C109.5
C6—C7—C8108.0 (2)H13B—C13—H13C109.5
C1—N1—N2—C20.7 (3)C12—C5—C6—C758.7 (3)
N2—N1—C1—C3177.1 (2)C4—C5—C6—C760.3 (3)
N2—N1—C1—S11.3 (2)C5—C6—C7—C1158.9 (3)
C2—S1—C1—N11.21 (18)C5—C6—C7—C861.2 (3)
C2—S1—C1—C3177.24 (19)C11—C7—C8—C359.0 (3)
N1—N2—C2—N3179.5 (2)C6—C7—C8—C361.4 (3)
N1—N2—C2—S10.3 (2)C1—C3—C8—C7179.5 (2)
C13—N3—C2—N25.0 (4)C4—C3—C8—C759.9 (3)
C13—N3—C2—S1175.9 (2)C9—C3—C8—C757.3 (3)
C1—S1—C2—N20.84 (18)C1—C3—C9—C10179.9 (2)
C1—S1—C2—N3180.0 (2)C4—C3—C9—C1057.9 (3)
N1—C1—C3—C46.8 (3)C8—C3—C9—C1058.9 (3)
S1—C1—C3—C4174.97 (17)C3—C9—C10—C1161.2 (3)
N1—C1—C3—C9127.7 (2)C3—C9—C10—C1259.1 (3)
S1—C1—C3—C954.0 (3)C6—C7—C11—C1058.0 (3)
N1—C1—C3—C8112.5 (2)C8—C7—C11—C1060.9 (3)
S1—C1—C3—C865.8 (2)C12—C10—C11—C757.7 (3)
C1—C3—C4—C5178.1 (2)C9—C10—C11—C761.5 (3)
C9—C3—C4—C559.0 (3)C6—C5—C12—C1057.9 (3)
C8—C3—C4—C557.7 (3)C4—C5—C12—C1061.9 (3)
C3—C4—C5—C1261.2 (3)C11—C10—C12—C557.8 (3)
C3—C4—C5—C658.5 (3)C9—C10—C12—C561.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.87 (1)2.15 (1)3.021 (3)179 (2)
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H19N3S
Mr249.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.4394 (12), 13.0910 (13), 10.8871 (15)
β (°) 118.008 (16)
V3)1313.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6791, 3027, 1975
Rint0.039
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.144, 1.04
No. of reflections3027
No. of parameters159
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.872 (9)2.149 (10)3.021 (3)179 (2)
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research, Salman bin Abdulaziz University, Alkharj, Saudi Arabia, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/03).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarvalho, S. A., Lopes, F. A. S., Salomão, K., Romeiro, N. C., Wardell, S. M. S. V., de Castro, S. L., da Silva, E. F. & Fraga, C. A. M. (2008). Bioorg. Med. Chem. 16, 413–421.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A. & Lehmann, J. (1994). Monatsh. Chem. 125, 587–591.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForoumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim.-Forsch. Drug. Res. 49, 1035–1038.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds