organic compounds
4-Hydroxy-N-methylbenzamide
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and eDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: jjasinski@keene.edu
Three independent molecules comprise the 8H9NO2, in which the dihedral angles between the amide group and the benzene ring are 3.0 (2), 4.0 (3) and 3.3 (9)°. In the crystal, O—H⋯O hydrogen bonds and weak C—H⋯N interactions are observed, forming infinite chains along [101].
of the title compound, CRelated literature
For background to the biological activity of aromatic et al. (2008); Brunsveld et al. (2001); Prins et al. (2001). For the anti-emetic activity of N-substituted benzamides, see: Vega-Noverola et al. (1989). For related structures, see: Escalada et al. (2004); Pertlik (1992). For standard bond lengths, see: Allen et al. (1987).
see: SaeedExperimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
https://doi.org/10.1107/S1600536813009781/hg5306sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813009781/hg5306Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813009781/hg5306Isup3.cml
4-Hydroxybenzoyl chloride (1.56 g, 0.01 mole) and methylamine (0.31 g, 0.01 mole) were dissolved in 20 ml methanol and stirred at room temperature for 3 h (Fig. 3). Then the reaction mass was poured into 50 ml ice cold water. The solid obtained was filtered and dried. Single crystals were grown from acetone by the slow evaporation method with a yield of 76%. (m.p. 395 K). Analytical data: Found (Calculated): C % : 63.54 (63.56); H% : 5.98 (6.00) ; N% : 9.21 (9.27).
All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH3), 0.86Å (NH) or 0.82Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Aromatic/amide H refined with riding coordinates: N1A(H1AA), C1A(H1AB), C2A(H2A), C4A(H4A), C5A(H5A), N1B(H1BA), C1B(H1BB),C2B(H2B), C4B(H4B), C5B(H5B), N1C(H1CA), C1C(H1CB), C2C(H2C), C4C(H4C), C5C(H5C). Idealised Me refined as rotating group: C8A(H8AA,H8AB,H8AC), C8B(H8BA,H8BB,H8BC), C8C(H8CA,H8CB,H8CC). Idealised tetrahedral OH refined as rotating group: O1A(H1A), O1B(H1B), O1C(H1C).
Aromatic
have found extensive application in synthetic organic chemistry and have a wide range of biological activities (Saeed et al., 2008, Brunsveld et al., 2001; Prins et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). The of N-methylbenzamide, viz., 2,3-dihydroxy-N-methylbenzamide monohydrate has been reported (Escalada et al., 2004). Also the crystal structures of 2-hydroxy-N-methylbenzamide and 2-hydroxy-N-methylthiobenzamide have been published (Pertlik, 1992). In view of the importance of aromatic we report the of the title compound, C8H9NO2, (I).In (I), three independent molecules (A, B. C) crystallize in the π-ring systems is 5.214 (6) Å.
(Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angle between the amide group and the benzene ring is 3.0 (2)°, 4.0 (3)° and 3.3 (9)°, respectively. In the crystal, O—H···O hydrogen bonds and weak C—H···N intermolecular interactions are observed (Table 1) forming infinite 1-D chains along (101) and contribute to packing stability (Fig. 2). The closest intercentroid distance between twoFor background to the biological activity of aromatic
see: Saeed et al. (2008); Brunsveld et al. (2001); Prins et al. (2001). For the anti-emetic activity of N-substituted benzamides, see: Vega-Noverola et al. (1989). For related structures, see: Escalada et al. (2004); Pertlik (1992). For standard bond lengths, see: Allen et al. (1987).Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids of three independent molecules in the unit cell. | |
Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate O—H···O hydrogen bonds and weak C—H···O intermolecular interactions forming 1-D chains along (101). H atoms not involved in the hydrogen bonding and weak intermolecular interactions have been deleted for clarity. | |
Fig. 3. Reaction scheme for the synthesis of the title compound |
C8H9NO2 | F(000) = 960 |
Mr = 151.16 | Dx = 1.371 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.576 (3) Å | Cell parameters from 3483 reflections |
b = 16.964 (3) Å | θ = 4.6–77.5° |
c = 11.025 (2) Å | µ = 0.10 mm−1 |
β = 120.11 (3)° | T = 100 K |
V = 2196.5 (10) Å3 | Block, colourless |
Z = 12 | 0.42 × 0.28 × 0.22 mm |
Agilent Xcalibur diffractometer with a Ruby (Gemini Cu) detector | 2545 reflections with I > 2σ(I) |
Detector resolution: 10.5081 pixels mm-1 | Rint = 0.015 |
ω scans | θmax = 26.8°, θmin = 2.1° |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | h = −17→12 |
Tmin = 0.634, Tmax = 1.000 | k = −21→20 |
4810 measured reflections | l = −13→13 |
2802 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.059 | w = 1/[σ2(Fo2) + (0.1461P)2 + 0.3673P], where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.192 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.58 e Å−3 |
2802 reflections | Δρmin = −0.56 e Å−3 |
305 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.020 (6) |
C8H9NO2 | V = 2196.5 (10) Å3 |
Mr = 151.16 | Z = 12 |
Monoclinic, Cc | Mo Kα radiation |
a = 13.576 (3) Å | µ = 0.10 mm−1 |
b = 16.964 (3) Å | T = 100 K |
c = 11.025 (2) Å | 0.42 × 0.28 × 0.22 mm |
β = 120.11 (3)° |
Agilent Xcalibur diffractometer with a Ruby (Gemini Cu) detector | 2802 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 2545 reflections with I > 2σ(I) |
Tmin = 0.634, Tmax = 1.000 | Rint = 0.015 |
4810 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 2 restraints |
wR(F2) = 0.192 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.58 e Å−3 |
2802 reflections | Δρmin = −0.56 e Å−3 |
305 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1A | −0.1230 (3) | 0.69501 (19) | 0.1817 (4) | 0.0616 (8) | |
H1A | −0.1628 | 0.7033 | 0.0974 | 0.092* | |
O2A | 0.2475 (3) | 0.42236 (17) | 0.4097 (3) | 0.0612 (8) | |
N1A | 0.1573 (2) | 0.39940 (16) | 0.1817 (3) | 0.0404 (6) | |
H1AA | 0.1024 | 0.4109 | 0.0992 | 0.048* | |
C1A | 0.0968 (3) | 0.5501 (2) | 0.3666 (4) | 0.0471 (8) | |
H1AB | 0.1499 | 0.5376 | 0.4589 | 0.056* | |
C2A | 0.0254 (4) | 0.6130 (3) | 0.3400 (4) | 0.0504 (9) | |
H2A | 0.0306 | 0.6425 | 0.4141 | 0.060* | |
C3A | −0.0548 (3) | 0.6331 (2) | 0.2026 (4) | 0.0452 (8) | |
C4A | −0.0623 (3) | 0.5876 (2) | 0.0918 (4) | 0.0468 (8) | |
H4A | −0.1158 | 0.6002 | −0.0004 | 0.056* | |
C5A | 0.0102 (3) | 0.5240 (2) | 0.1201 (4) | 0.0439 (8) | |
H5A | 0.0048 | 0.4938 | 0.0467 | 0.053* | |
C6A | 0.0917 (3) | 0.5048 (2) | 0.2590 (3) | 0.0402 (7) | |
C7A | 0.1730 (3) | 0.4393 (2) | 0.2940 (4) | 0.0431 (8) | |
C8A | 0.2365 (5) | 0.3355 (3) | 0.2037 (6) | 0.0549 (9) | |
H8AA | 0.2520 | 0.3063 | 0.2861 | 0.082* | |
H8AB | 0.3062 | 0.3570 | 0.2156 | 0.082* | |
H8AC | 0.2034 | 0.3010 | 0.1239 | 0.082* | |
O1B | 1.1116 (3) | 0.8638 (2) | 0.7338 (3) | 0.0617 (9) | |
H1B | 1.1397 | 0.8800 | 0.8145 | 0.093* | |
O2B | 0.7422 (3) | 0.58944 (17) | 0.5125 (3) | 0.0576 (8) | |
N1B | 0.8321 (3) | 0.56916 (17) | 0.7436 (3) | 0.0406 (7) | |
H1BA | 0.8845 | 0.5830 | 0.8261 | 0.049* | |
C1B | 0.9770 (3) | 0.6941 (2) | 0.7987 (4) | 0.0455 (8) | |
H1BB | 0.9815 | 0.6651 | 0.8729 | 0.055* | |
C2B | 1.0491 (3) | 0.7578 (2) | 0.8255 (4) | 0.0464 (9) | |
H2B | 1.1014 | 0.7717 | 0.9175 | 0.056* | |
C3B | 1.0433 (3) | 0.8006 (2) | 0.7158 (4) | 0.0466 (9) | |
C4B | 0.9661 (4) | 0.7791 (3) | 0.5779 (5) | 0.0540 (10) | |
H4B | 0.9628 | 0.8074 | 0.5038 | 0.065* | |
C5B | 0.8946 (3) | 0.7156 (2) | 0.5518 (4) | 0.0486 (9) | |
H5B | 0.8434 | 0.7010 | 0.4598 | 0.058* | |
C6B | 0.8987 (3) | 0.6735 (2) | 0.6626 (4) | 0.0422 (8) | |
C7B | 0.8164 (3) | 0.6074 (2) | 0.6300 (4) | 0.0437 (9) | |
C8B | 0.7582 (4) | 0.5039 (2) | 0.7230 (5) | 0.0562 (11) | |
H8BA | 0.7827 | 0.4587 | 0.6927 | 0.084* | |
H8BB | 0.6817 | 0.5173 | 0.6530 | 0.084* | |
H8BC | 0.7606 | 0.4919 | 0.8096 | 0.084* | |
O1C | 0.3742 (3) | 0.4691 (2) | 0.6850 (4) | 0.0665 (9) | |
H1C | 0.3295 | 0.4643 | 0.6007 | 0.100* | |
O2C | 0.7454 (3) | 0.74129 (17) | 0.9069 (3) | 0.0630 (8) | |
N1C | 0.6574 (3) | 0.76016 (17) | 0.6775 (3) | 0.0433 (7) | |
H1CA | 0.6057 | 0.7459 | 0.5949 | 0.052* | |
C1C | 0.5934 (4) | 0.6151 (3) | 0.8683 (4) | 0.0532 (9) | |
H1CB | 0.6448 | 0.6298 | 0.9601 | 0.064* | |
C2C | 0.5220 (4) | 0.5522 (3) | 0.8445 (4) | 0.0558 (10) | |
H2C | 0.5255 | 0.5244 | 0.9193 | 0.067* | |
C3C | 0.4443 (3) | 0.5305 (2) | 0.7068 (4) | 0.0484 (9) | |
C4C | 0.4387 (4) | 0.5731 (2) | 0.5946 (4) | 0.0522 (9) | |
H4C | 0.3865 | 0.5590 | 0.5027 | 0.063* | |
C5C | 0.5114 (4) | 0.6359 (2) | 0.6212 (4) | 0.0491 (9) | |
H5C | 0.5075 | 0.6644 | 0.5469 | 0.059* | |
C6C | 0.5906 (3) | 0.6570 (2) | 0.7589 (4) | 0.0434 (8) | |
C7C | 0.6724 (3) | 0.7228 (2) | 0.7924 (4) | 0.0463 (8) | |
C8C | 0.7327 (5) | 0.8257 (2) | 0.6993 (6) | 0.0567 (10) | |
H8CA | 0.7403 | 0.8575 | 0.7756 | 0.085* | |
H8CB | 0.7016 | 0.8571 | 0.6156 | 0.085* | |
H8CC | 0.8061 | 0.8061 | 0.7211 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.068 (2) | 0.0641 (17) | 0.0477 (17) | 0.0157 (15) | 0.0253 (16) | −0.0002 (14) |
O2A | 0.0643 (19) | 0.0652 (17) | 0.0364 (15) | 0.0055 (14) | 0.0122 (13) | −0.0009 (13) |
N1A | 0.0413 (15) | 0.0462 (13) | 0.0254 (13) | 0.0085 (12) | 0.0107 (11) | 0.0014 (11) |
C1A | 0.050 (2) | 0.057 (2) | 0.0305 (16) | −0.0027 (16) | 0.0168 (16) | 0.0005 (14) |
C2A | 0.051 (2) | 0.062 (2) | 0.0323 (19) | −0.0003 (18) | 0.0161 (17) | −0.0064 (17) |
C3A | 0.047 (2) | 0.0462 (18) | 0.039 (2) | −0.0024 (14) | 0.0196 (17) | 0.0009 (14) |
C4A | 0.048 (2) | 0.055 (2) | 0.0309 (17) | 0.0003 (17) | 0.0146 (15) | 0.0058 (15) |
C5A | 0.050 (2) | 0.0504 (18) | 0.0297 (18) | −0.0048 (15) | 0.0187 (16) | −0.0044 (14) |
C6A | 0.0413 (17) | 0.0466 (16) | 0.0304 (17) | −0.0068 (14) | 0.0161 (14) | −0.0005 (13) |
C7A | 0.0399 (17) | 0.0477 (18) | 0.0364 (18) | −0.0064 (13) | 0.0152 (15) | 0.0020 (14) |
C8A | 0.055 (2) | 0.0538 (18) | 0.050 (2) | 0.0078 (16) | 0.0221 (17) | 0.0012 (16) |
O1B | 0.061 (2) | 0.0612 (18) | 0.053 (2) | −0.0118 (15) | 0.0207 (17) | 0.0036 (14) |
O2B | 0.0545 (17) | 0.0564 (16) | 0.0410 (17) | −0.0079 (13) | 0.0084 (13) | −0.0068 (13) |
N1B | 0.0472 (17) | 0.0416 (14) | 0.0294 (14) | −0.0108 (13) | 0.0165 (12) | −0.0029 (12) |
C1B | 0.046 (2) | 0.0509 (19) | 0.038 (2) | 0.0015 (16) | 0.0199 (17) | 0.0043 (15) |
C2B | 0.0418 (19) | 0.055 (2) | 0.037 (2) | −0.0008 (16) | 0.0159 (17) | −0.0020 (16) |
C3B | 0.044 (2) | 0.0481 (19) | 0.046 (2) | 0.0016 (16) | 0.0217 (18) | 0.0039 (16) |
C4B | 0.060 (3) | 0.058 (2) | 0.039 (2) | 0.0001 (19) | 0.021 (2) | 0.0109 (17) |
C5B | 0.048 (2) | 0.055 (2) | 0.0306 (18) | 0.0001 (17) | 0.0108 (17) | 0.0027 (15) |
C6B | 0.0440 (19) | 0.0419 (16) | 0.038 (2) | 0.0047 (14) | 0.0188 (17) | 0.0015 (14) |
C7B | 0.048 (2) | 0.0435 (18) | 0.036 (2) | 0.0085 (15) | 0.0189 (17) | 0.0025 (14) |
C8B | 0.057 (2) | 0.049 (2) | 0.065 (3) | −0.0082 (19) | 0.032 (2) | −0.009 (2) |
O1C | 0.069 (2) | 0.0711 (19) | 0.0519 (19) | −0.0204 (17) | 0.0249 (16) | 0.0013 (15) |
O2C | 0.070 (2) | 0.0558 (15) | 0.0412 (17) | −0.0042 (14) | 0.0114 (14) | 0.0022 (13) |
N1C | 0.0464 (16) | 0.0442 (13) | 0.0334 (14) | −0.0093 (12) | 0.0156 (12) | −0.0013 (12) |
C1C | 0.053 (2) | 0.059 (2) | 0.0360 (19) | 0.0029 (17) | 0.0141 (17) | 0.0029 (16) |
C2C | 0.055 (3) | 0.066 (2) | 0.037 (2) | −0.0010 (19) | 0.0153 (19) | 0.0130 (18) |
C3C | 0.044 (2) | 0.0509 (19) | 0.045 (2) | 0.0008 (15) | 0.0184 (17) | 0.0005 (16) |
C4C | 0.053 (2) | 0.059 (2) | 0.037 (2) | 0.0008 (18) | 0.0176 (18) | −0.0027 (16) |
C5C | 0.055 (2) | 0.053 (2) | 0.034 (2) | 0.0017 (17) | 0.0187 (18) | 0.0030 (15) |
C6C | 0.0439 (18) | 0.0445 (16) | 0.039 (2) | 0.0077 (15) | 0.0185 (16) | 0.0020 (14) |
C7C | 0.046 (2) | 0.0417 (17) | 0.047 (2) | 0.0048 (14) | 0.0198 (17) | −0.0018 (14) |
C8C | 0.063 (3) | 0.0435 (18) | 0.066 (3) | −0.0039 (17) | 0.034 (2) | 0.0017 (18) |
O1A—H1A | 0.8200 | C2B—C3B | 1.379 (5) |
O1A—C3A | 1.341 (5) | C3B—C4B | 1.395 (6) |
O2A—C7A | 1.199 (5) | C4B—H4B | 0.9300 |
N1A—H1AA | 0.8600 | C4B—C5B | 1.379 (6) |
N1A—C7A | 1.331 (5) | C5B—H5B | 0.9300 |
N1A—C8A | 1.460 (5) | C5B—C6B | 1.393 (5) |
C1A—H1AB | 0.9300 | C6B—C7B | 1.493 (5) |
C1A—C2A | 1.371 (6) | C8B—H8BA | 0.9600 |
C1A—C6A | 1.386 (5) | C8B—H8BB | 0.9600 |
C2A—H2A | 0.9300 | C8B—H8BC | 0.9600 |
C2A—C3A | 1.394 (6) | O1C—H1C | 0.8200 |
C3A—C4A | 1.405 (5) | O1C—C3C | 1.349 (5) |
C4A—H4A | 0.9300 | O2C—C7C | 1.191 (5) |
C4A—C5A | 1.386 (5) | N1C—H1CA | 0.8600 |
C5A—H5A | 0.9300 | N1C—C7C | 1.338 (5) |
C5A—C6A | 1.405 (5) | N1C—C8C | 1.446 (5) |
C6A—C7A | 1.474 (5) | C1C—H1CB | 0.9300 |
C8A—H8AA | 0.9600 | C1C—C2C | 1.376 (6) |
C8A—H8AB | 0.9600 | C1C—C6C | 1.385 (5) |
C8A—H8AC | 0.9600 | C2C—H2C | 0.9300 |
O1B—H1B | 0.8200 | C2C—C3C | 1.395 (6) |
O1B—C3B | 1.364 (5) | C3C—C4C | 1.402 (6) |
O2B—C7B | 1.215 (5) | C4C—H4C | 0.9300 |
N1B—H1BA | 0.8600 | C4C—C5C | 1.380 (6) |
N1B—C7B | 1.330 (5) | C5C—H5C | 0.9300 |
N1B—C8B | 1.434 (5) | C5C—C6C | 1.397 (5) |
C1B—H1BB | 0.9300 | C6C—C7C | 1.484 (5) |
C1B—C2B | 1.387 (6) | C8C—H8CA | 0.9600 |
C1B—C6B | 1.380 (6) | C8C—H8CB | 0.9600 |
C2B—H2B | 0.9300 | C8C—H8CC | 0.9600 |
C3A—O1A—H1A | 109.5 | C4B—C5B—H5B | 119.9 |
C7A—N1A—H1AA | 121.2 | C4B—C5B—C6B | 120.2 (4) |
C7A—N1A—C8A | 117.5 (4) | C6B—C5B—H5B | 119.9 |
C8A—N1A—H1AA | 121.2 | C1B—C6B—C5B | 119.6 (4) |
C2A—C1A—H1AB | 119.2 | C1B—C6B—C7B | 121.8 (3) |
C2A—C1A—C6A | 121.5 (4) | C5B—C6B—C7B | 118.6 (4) |
C6A—C1A—H1AB | 119.2 | O2B—C7B—N1B | 122.5 (4) |
C1A—C2A—H2A | 119.8 | O2B—C7B—C6B | 124.4 (4) |
C1A—C2A—C3A | 120.4 (3) | N1B—C7B—C6B | 113.1 (3) |
C3A—C2A—H2A | 119.8 | N1B—C8B—H8BA | 109.5 |
O1A—C3A—C2A | 118.2 (3) | N1B—C8B—H8BB | 109.5 |
O1A—C3A—C4A | 122.6 (4) | N1B—C8B—H8BC | 109.5 |
C2A—C3A—C4A | 119.2 (3) | H8BA—C8B—H8BB | 109.5 |
C3A—C4A—H4A | 120.1 | H8BA—C8B—H8BC | 109.5 |
C5A—C4A—C3A | 119.8 (4) | H8BB—C8B—H8BC | 109.5 |
C5A—C4A—H4A | 120.1 | C3C—O1C—H1C | 109.5 |
C4A—C5A—H5A | 119.7 | C7C—N1C—H1CA | 121.7 |
C4A—C5A—C6A | 120.6 (3) | C7C—N1C—C8C | 116.6 (4) |
C6A—C5A—H5A | 119.7 | C8C—N1C—H1CA | 121.7 |
C1A—C6A—C5A | 118.5 (3) | C2C—C1C—H1CB | 119.2 |
C1A—C6A—C7A | 119.0 (3) | C2C—C1C—C6C | 121.6 (4) |
C5A—C6A—C7A | 122.5 (3) | C6C—C1C—H1CB | 119.2 |
O2A—C7A—N1A | 121.6 (4) | C1C—C2C—H2C | 120.4 |
O2A—C7A—C6A | 125.4 (4) | C1C—C2C—C3C | 119.2 (4) |
N1A—C7A—C6A | 113.0 (3) | C3C—C2C—H2C | 120.4 |
N1A—C8A—H8AA | 109.5 | O1C—C3C—C2C | 118.6 (4) |
N1A—C8A—H8AB | 109.5 | O1C—C3C—C4C | 121.3 (4) |
N1A—C8A—H8AC | 109.5 | C2C—C3C—C4C | 120.1 (4) |
H8AA—C8A—H8AB | 109.5 | C3C—C4C—H4C | 120.2 |
H8AA—C8A—H8AC | 109.5 | C5C—C4C—C3C | 119.6 (4) |
H8AB—C8A—H8AC | 109.5 | C5C—C4C—H4C | 120.2 |
C3B—O1B—H1B | 109.5 | C4C—C5C—H5C | 119.7 |
C7B—N1B—H1BA | 121.3 | C4C—C5C—C6C | 120.6 (3) |
C7B—N1B—C8B | 117.3 (3) | C6C—C5C—H5C | 119.7 |
C8B—N1B—H1BA | 121.3 | C1C—C6C—C5C | 119.0 (4) |
C2B—C1B—H1BB | 119.8 | C1C—C6C—C7C | 118.6 (4) |
C6B—C1B—H1BB | 119.8 | C5C—C6C—C7C | 122.4 (3) |
C6B—C1B—C2B | 120.4 (4) | O2C—C7C—N1C | 122.0 (4) |
C1B—C2B—H2B | 120.0 | O2C—C7C—C6C | 125.6 (4) |
C3B—C2B—C1B | 120.0 (4) | N1C—C7C—C6C | 112.4 (3) |
C3B—C2B—H2B | 120.0 | N1C—C8C—H8CA | 109.5 |
O1B—C3B—C2B | 123.4 (4) | N1C—C8C—H8CB | 109.5 |
O1B—C3B—C4B | 116.7 (4) | N1C—C8C—H8CC | 109.5 |
C2B—C3B—C4B | 119.9 (4) | H8CA—C8C—H8CB | 109.5 |
C3B—C4B—H4B | 120.1 | H8CA—C8C—H8CC | 109.5 |
C5B—C4B—C3B | 119.9 (4) | H8CB—C8C—H8CC | 109.5 |
C5B—C4B—H4B | 120.1 | ||
O1A—C3A—C4A—C5A | −179.7 (3) | C3B—C4B—C5B—C6B | 0.5 (6) |
C1A—C2A—C3A—O1A | 179.9 (4) | C4B—C5B—C6B—C1B | −1.8 (6) |
C1A—C2A—C3A—C4A | 0.6 (6) | C4B—C5B—C6B—C7B | 177.3 (3) |
C1A—C6A—C7A—O2A | −2.4 (5) | C5B—C6B—C7B—O2B | −3.0 (6) |
C1A—C6A—C7A—N1A | 178.5 (3) | C5B—C6B—C7B—N1B | 176.9 (4) |
C2A—C1A—C6A—C5A | −0.7 (5) | C6B—C1B—C2B—C3B | −0.5 (6) |
C2A—C1A—C6A—C7A | 178.3 (3) | C8B—N1B—C7B—O2B | 0.8 (6) |
C2A—C3A—C4A—C5A | −0.3 (5) | C8B—N1B—C7B—C6B | −179.1 (3) |
C3A—C4A—C5A—C6A | −0.4 (5) | O1C—C3C—C4C—C5C | 179.6 (4) |
C4A—C5A—C6A—C1A | 0.9 (5) | C1C—C2C—C3C—O1C | −179.6 (4) |
C4A—C5A—C6A—C7A | −178.0 (3) | C1C—C2C—C3C—C4C | −0.6 (6) |
C5A—C6A—C7A—O2A | 176.5 (4) | C1C—C6C—C7C—O2C | 3.7 (6) |
C5A—C6A—C7A—N1A | −2.6 (4) | C1C—C6C—C7C—N1C | −177.5 (3) |
C6A—C1A—C2A—C3A | 0.0 (6) | C2C—C1C—C6C—C5C | 1.6 (6) |
C8A—N1A—C7A—O2A | −1.9 (6) | C2C—C1C—C6C—C7C | −178.3 (4) |
C8A—N1A—C7A—C6A | 177.2 (3) | C2C—C3C—C4C—C5C | 0.6 (6) |
O1B—C3B—C4B—C5B | 179.8 (4) | C3C—C4C—C5C—C6C | 0.4 (6) |
C1B—C2B—C3B—O1B | −179.7 (4) | C4C—C5C—C6C—C1C | −1.5 (6) |
C1B—C2B—C3B—C4B | −0.9 (6) | C4C—C5C—C6C—C7C | 178.4 (3) |
C1B—C6B—C7B—O2B | 176.1 (4) | C5C—C6C—C7C—O2C | −176.2 (4) |
C1B—C6B—C7B—N1B | −3.9 (5) | C5C—C6C—C7C—N1C | 2.7 (5) |
C2B—C1B—C6B—C5B | 1.8 (6) | C6C—C1C—C2C—C3C | −0.5 (7) |
C2B—C1B—C6B—C7B | −177.3 (3) | C8C—N1C—C7C—O2C | −1.5 (6) |
C2B—C3B—C4B—C5B | 0.9 (6) | C8C—N1C—C7C—C6C | 179.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O2Ci | 0.82 | 1.94 | 2.749 (5) | 170 |
C2A—H2A···N1Aii | 0.93 | 2.66 | 3.267 (5) | 124 |
C4A—H4A···N1Bi | 0.93 | 2.60 | 3.371 (5) | 141 |
O1B—H1B···O2Biii | 0.82 | 1.98 | 2.784 (5) | 166 |
C2B—H2B···N1Ciii | 0.93 | 2.63 | 3.404 (5) | 142 |
O1C—H1C···O2A | 0.82 | 1.96 | 2.750 (5) | 163 |
Symmetry codes: (i) x−1, y, z−1; (ii) x, −y+1, z+1/2; (iii) x+1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H9NO2 |
Mr | 151.16 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 100 |
a, b, c (Å) | 13.576 (3), 16.964 (3), 11.025 (2) |
β (°) | 120.11 (3) |
V (Å3) | 2196.5 (10) |
Z | 12 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.42 × 0.28 × 0.22 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer with a Ruby (Gemini Cu) detector |
Absorption correction | Multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) |
Tmin, Tmax | 0.634, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4810, 2802, 2545 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.634 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.192, 1.10 |
No. of reflections | 2802 |
No. of parameters | 305 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.56 |
Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O2Ci | 0.82 | 1.94 | 2.749 (5) | 170.4 |
C2A—H2A···N1Aii | 0.93 | 2.66 | 3.267 (5) | 123.5 |
C4A—H4A···N1Bi | 0.93 | 2.60 | 3.371 (5) | 141.2 |
O1B—H1B···O2Biii | 0.82 | 1.98 | 2.784 (5) | 166.2 |
C2B—H2B···N1Ciii | 0.93 | 2.63 | 3.404 (5) | 141.5 |
O1C—H1C···O2A | 0.82 | 1.96 | 2.750 (5) | 162.5 |
Symmetry codes: (i) x−1, y, z−1; (ii) x, −y+1, z+1/2; (iii) x+1/2, −y+3/2, z+1/2. |
Acknowledgements
BN thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071–4097. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Escalada, J., Freedman, D. & Werner, E. J. (2004). Acta Cryst. E60, o1296–o1298. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pertlik, F. (1992). Z. Kristallogr. 202, 17–23. CrossRef CAS Web of Science Google Scholar
Prins, L. J., Peinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2383–2426. CrossRef Google Scholar
Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322–o2323. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4877780. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aromatic amides have found extensive application in synthetic organic chemistry and have a wide range of biological activities (Saeed et al., 2008, Brunsveld et al., 2001; Prins et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). The crystal structure of N-methylbenzamide, viz., 2,3-dihydroxy-N-methylbenzamide monohydrate has been reported (Escalada et al., 2004). Also the crystal structures of 2-hydroxy-N-methylbenzamide and 2-hydroxy-N-methylthiobenzamide have been published (Pertlik, 1992). In view of the importance of aromatic amides, we report the crystal structure of the title compound, C8H9NO2, (I).
In (I), three independent molecules (A, B. C) crystallize in the asymmetric unit (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angle between the amide group and the benzene ring is 3.0 (2)°, 4.0 (3)° and 3.3 (9)°, respectively. In the crystal, O—H···O hydrogen bonds and weak C—H···N intermolecular interactions are observed (Table 1) forming infinite 1-D chains along (101) and contribute to packing stability (Fig. 2). The closest intercentroid distance between two π-ring systems is 5.214 (6) Å.