organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-N-methyl­benzamide

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and eDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 7 April 2013; accepted 9 April 2013; online 17 April 2013)

Three independent mol­ecules comprise the asymmetric unit of the title compound, C8H9NO2, in which the dihedral angles between the amide group and the benzene ring are 3.0 (2), 4.0 (3) and 3.3 (9)°. In the crystal, O—H⋯O hydrogen bonds and weak C—H⋯N inter­actions are observed, forming infinite chains along [101].

Related literature

For background to the biological activity of aromatic amides, see: Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322-o2323.]); Brunsveld et al. (2001[Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071-4097.]); Prins et al. (2001[Prins, L. J., Peinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2383-2426.]). For the anti-emetic activity of N-substituted benzamides, see: Vega-Noverola et al. (1989[Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4877780.]). For related structures, see: Escalada et al. (2004[Escalada, J., Freedman, D. & Werner, E. J. (2004). Acta Cryst. E60, o1296-o1298.]); Pertlik (1992[Pertlik, F. (1992). Z. Kristallogr. 202, 17-23.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NO2

  • Mr = 151.16

  • Monoclinic, C c

  • a = 13.576 (3) Å

  • b = 16.964 (3) Å

  • c = 11.025 (2) Å

  • β = 120.11 (3)°

  • V = 2196.5 (10) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.42 × 0.28 × 0.22 mm

Data collection
  • Agilent Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.634, Tmax = 1.000

  • 4810 measured reflections

  • 2802 independent reflections

  • 2545 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.192

  • S = 1.10

  • 2802 reflections

  • 305 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2Ci 0.82 1.94 2.749 (5) 170
C2A—H2A⋯N1Aii 0.93 2.66 3.267 (5) 124
C4A—H4A⋯N1Bi 0.93 2.60 3.371 (5) 141
O1B—H1B⋯O2Biii 0.82 1.98 2.784 (5) 166
C2B—H2B⋯N1Ciii 0.93 2.63 3.404 (5) 142
O1C—H1C⋯O2A 0.82 1.96 2.750 (5) 163
Symmetry codes: (i) x-1, y, z-1; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Aromatic amides have found extensive application in synthetic organic chemistry and have a wide range of biological activities (Saeed et al., 2008, Brunsveld et al., 2001; Prins et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). The crystal structure of N-methylbenzamide, viz., 2,3-dihydroxy-N-methylbenzamide monohydrate has been reported (Escalada et al., 2004). Also the crystal structures of 2-hydroxy-N-methylbenzamide and 2-hydroxy-N-methylthiobenzamide have been published (Pertlik, 1992). In view of the importance of aromatic amides, we report the crystal structure of the title compound, C8H9NO2, (I).

In (I), three independent molecules (A, B. C) crystallize in the asymmetric unit (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angle between the amide group and the benzene ring is 3.0 (2)°, 4.0 (3)° and 3.3 (9)°, respectively. In the crystal, O—H···O hydrogen bonds and weak C—H···N intermolecular interactions are observed (Table 1) forming infinite 1-D chains along (101) and contribute to packing stability (Fig. 2). The closest intercentroid distance between two π-ring systems is 5.214 (6) Å.

Related literature top

For background to the biological activity of aromatic amides, see: Saeed et al. (2008); Brunsveld et al. (2001); Prins et al. (2001). For the anti-emetic activity of N-substituted benzamides, see: Vega-Noverola et al. (1989). For related structures, see: Escalada et al. (2004); Pertlik (1992). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-Hydroxybenzoyl chloride (1.56 g, 0.01 mole) and methylamine (0.31 g, 0.01 mole) were dissolved in 20 ml methanol and stirred at room temperature for 3 h (Fig. 3). Then the reaction mass was poured into 50 ml ice cold water. The solid obtained was filtered and dried. Single crystals were grown from acetone by the slow evaporation method with a yield of 76%. (m.p. 395 K). Analytical data: Found (Calculated): C % : 63.54 (63.56); H% : 5.98 (6.00) ; N% : 9.21 (9.27).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH3), 0.86Å (NH) or 0.82Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Aromatic/amide H refined with riding coordinates: N1A(H1AA), C1A(H1AB), C2A(H2A), C4A(H4A), C5A(H5A), N1B(H1BA), C1B(H1BB),C2B(H2B), C4B(H4B), C5B(H5B), N1C(H1CA), C1C(H1CB), C2C(H2C), C4C(H4C), C5C(H5C). Idealised Me refined as rotating group: C8A(H8AA,H8AB,H8AC), C8B(H8BA,H8BB,H8BC), C8C(H8CA,H8CB,H8CC). Idealised tetrahedral OH refined as rotating group: O1A(H1A), O1B(H1B), O1C(H1C).

Structure description top

Aromatic amides have found extensive application in synthetic organic chemistry and have a wide range of biological activities (Saeed et al., 2008, Brunsveld et al., 2001; Prins et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). The crystal structure of N-methylbenzamide, viz., 2,3-dihydroxy-N-methylbenzamide monohydrate has been reported (Escalada et al., 2004). Also the crystal structures of 2-hydroxy-N-methylbenzamide and 2-hydroxy-N-methylthiobenzamide have been published (Pertlik, 1992). In view of the importance of aromatic amides, we report the crystal structure of the title compound, C8H9NO2, (I).

In (I), three independent molecules (A, B. C) crystallize in the asymmetric unit (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angle between the amide group and the benzene ring is 3.0 (2)°, 4.0 (3)° and 3.3 (9)°, respectively. In the crystal, O—H···O hydrogen bonds and weak C—H···N intermolecular interactions are observed (Table 1) forming infinite 1-D chains along (101) and contribute to packing stability (Fig. 2). The closest intercentroid distance between two π-ring systems is 5.214 (6) Å.

For background to the biological activity of aromatic amides, see: Saeed et al. (2008); Brunsveld et al. (2001); Prins et al. (2001). For the anti-emetic activity of N-substituted benzamides, see: Vega-Noverola et al. (1989). For related structures, see: Escalada et al. (2004); Pertlik (1992). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids of three independent molecules in the unit cell.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate O—H···O hydrogen bonds and weak C—H···O intermolecular interactions forming 1-D chains along (101). H atoms not involved in the hydrogen bonding and weak intermolecular interactions have been deleted for clarity.
[Figure 3] Fig. 3. Reaction scheme for the synthesis of the title compound
4-Hydroxy-N-methylbenzamide top
Crystal data top
C8H9NO2F(000) = 960
Mr = 151.16Dx = 1.371 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 13.576 (3) ÅCell parameters from 3483 reflections
b = 16.964 (3) Åθ = 4.6–77.5°
c = 11.025 (2) ŵ = 0.10 mm1
β = 120.11 (3)°T = 100 K
V = 2196.5 (10) Å3Block, colourless
Z = 120.42 × 0.28 × 0.22 mm
Data collection top
Agilent Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
2545 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.015
ω scansθmax = 26.8°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1712
Tmin = 0.634, Tmax = 1.000k = 2120
4810 measured reflectionsl = 1313
2802 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.1461P)2 + 0.3673P],
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.192(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.58 e Å3
2802 reflectionsΔρmin = 0.56 e Å3
305 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.020 (6)
Crystal data top
C8H9NO2V = 2196.5 (10) Å3
Mr = 151.16Z = 12
Monoclinic, CcMo Kα radiation
a = 13.576 (3) ŵ = 0.10 mm1
b = 16.964 (3) ÅT = 100 K
c = 11.025 (2) Å0.42 × 0.28 × 0.22 mm
β = 120.11 (3)°
Data collection top
Agilent Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
2802 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2545 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 1.000Rint = 0.015
4810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.10Δρmax = 0.58 e Å3
2802 reflectionsΔρmin = 0.56 e Å3
305 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.1230 (3)0.69501 (19)0.1817 (4)0.0616 (8)
H1A0.16280.70330.09740.092*
O2A0.2475 (3)0.42236 (17)0.4097 (3)0.0612 (8)
N1A0.1573 (2)0.39940 (16)0.1817 (3)0.0404 (6)
H1AA0.10240.41090.09920.048*
C1A0.0968 (3)0.5501 (2)0.3666 (4)0.0471 (8)
H1AB0.14990.53760.45890.056*
C2A0.0254 (4)0.6130 (3)0.3400 (4)0.0504 (9)
H2A0.03060.64250.41410.060*
C3A0.0548 (3)0.6331 (2)0.2026 (4)0.0452 (8)
C4A0.0623 (3)0.5876 (2)0.0918 (4)0.0468 (8)
H4A0.11580.60020.00040.056*
C5A0.0102 (3)0.5240 (2)0.1201 (4)0.0439 (8)
H5A0.00480.49380.04670.053*
C6A0.0917 (3)0.5048 (2)0.2590 (3)0.0402 (7)
C7A0.1730 (3)0.4393 (2)0.2940 (4)0.0431 (8)
C8A0.2365 (5)0.3355 (3)0.2037 (6)0.0549 (9)
H8AA0.25200.30630.28610.082*
H8AB0.30620.35700.21560.082*
H8AC0.20340.30100.12390.082*
O1B1.1116 (3)0.8638 (2)0.7338 (3)0.0617 (9)
H1B1.13970.88000.81450.093*
O2B0.7422 (3)0.58944 (17)0.5125 (3)0.0576 (8)
N1B0.8321 (3)0.56916 (17)0.7436 (3)0.0406 (7)
H1BA0.88450.58300.82610.049*
C1B0.9770 (3)0.6941 (2)0.7987 (4)0.0455 (8)
H1BB0.98150.66510.87290.055*
C2B1.0491 (3)0.7578 (2)0.8255 (4)0.0464 (9)
H2B1.10140.77170.91750.056*
C3B1.0433 (3)0.8006 (2)0.7158 (4)0.0466 (9)
C4B0.9661 (4)0.7791 (3)0.5779 (5)0.0540 (10)
H4B0.96280.80740.50380.065*
C5B0.8946 (3)0.7156 (2)0.5518 (4)0.0486 (9)
H5B0.84340.70100.45980.058*
C6B0.8987 (3)0.6735 (2)0.6626 (4)0.0422 (8)
C7B0.8164 (3)0.6074 (2)0.6300 (4)0.0437 (9)
C8B0.7582 (4)0.5039 (2)0.7230 (5)0.0562 (11)
H8BA0.78270.45870.69270.084*
H8BB0.68170.51730.65300.084*
H8BC0.76060.49190.80960.084*
O1C0.3742 (3)0.4691 (2)0.6850 (4)0.0665 (9)
H1C0.32950.46430.60070.100*
O2C0.7454 (3)0.74129 (17)0.9069 (3)0.0630 (8)
N1C0.6574 (3)0.76016 (17)0.6775 (3)0.0433 (7)
H1CA0.60570.74590.59490.052*
C1C0.5934 (4)0.6151 (3)0.8683 (4)0.0532 (9)
H1CB0.64480.62980.96010.064*
C2C0.5220 (4)0.5522 (3)0.8445 (4)0.0558 (10)
H2C0.52550.52440.91930.067*
C3C0.4443 (3)0.5305 (2)0.7068 (4)0.0484 (9)
C4C0.4387 (4)0.5731 (2)0.5946 (4)0.0522 (9)
H4C0.38650.55900.50270.063*
C5C0.5114 (4)0.6359 (2)0.6212 (4)0.0491 (9)
H5C0.50750.66440.54690.059*
C6C0.5906 (3)0.6570 (2)0.7589 (4)0.0434 (8)
C7C0.6724 (3)0.7228 (2)0.7924 (4)0.0463 (8)
C8C0.7327 (5)0.8257 (2)0.6993 (6)0.0567 (10)
H8CA0.74030.85750.77560.085*
H8CB0.70160.85710.61560.085*
H8CC0.80610.80610.72110.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.068 (2)0.0641 (17)0.0477 (17)0.0157 (15)0.0253 (16)0.0002 (14)
O2A0.0643 (19)0.0652 (17)0.0364 (15)0.0055 (14)0.0122 (13)0.0009 (13)
N1A0.0413 (15)0.0462 (13)0.0254 (13)0.0085 (12)0.0107 (11)0.0014 (11)
C1A0.050 (2)0.057 (2)0.0305 (16)0.0027 (16)0.0168 (16)0.0005 (14)
C2A0.051 (2)0.062 (2)0.0323 (19)0.0003 (18)0.0161 (17)0.0064 (17)
C3A0.047 (2)0.0462 (18)0.039 (2)0.0024 (14)0.0196 (17)0.0009 (14)
C4A0.048 (2)0.055 (2)0.0309 (17)0.0003 (17)0.0146 (15)0.0058 (15)
C5A0.050 (2)0.0504 (18)0.0297 (18)0.0048 (15)0.0187 (16)0.0044 (14)
C6A0.0413 (17)0.0466 (16)0.0304 (17)0.0068 (14)0.0161 (14)0.0005 (13)
C7A0.0399 (17)0.0477 (18)0.0364 (18)0.0064 (13)0.0152 (15)0.0020 (14)
C8A0.055 (2)0.0538 (18)0.050 (2)0.0078 (16)0.0221 (17)0.0012 (16)
O1B0.061 (2)0.0612 (18)0.053 (2)0.0118 (15)0.0207 (17)0.0036 (14)
O2B0.0545 (17)0.0564 (16)0.0410 (17)0.0079 (13)0.0084 (13)0.0068 (13)
N1B0.0472 (17)0.0416 (14)0.0294 (14)0.0108 (13)0.0165 (12)0.0029 (12)
C1B0.046 (2)0.0509 (19)0.038 (2)0.0015 (16)0.0199 (17)0.0043 (15)
C2B0.0418 (19)0.055 (2)0.037 (2)0.0008 (16)0.0159 (17)0.0020 (16)
C3B0.044 (2)0.0481 (19)0.046 (2)0.0016 (16)0.0217 (18)0.0039 (16)
C4B0.060 (3)0.058 (2)0.039 (2)0.0001 (19)0.021 (2)0.0109 (17)
C5B0.048 (2)0.055 (2)0.0306 (18)0.0001 (17)0.0108 (17)0.0027 (15)
C6B0.0440 (19)0.0419 (16)0.038 (2)0.0047 (14)0.0188 (17)0.0015 (14)
C7B0.048 (2)0.0435 (18)0.036 (2)0.0085 (15)0.0189 (17)0.0025 (14)
C8B0.057 (2)0.049 (2)0.065 (3)0.0082 (19)0.032 (2)0.009 (2)
O1C0.069 (2)0.0711 (19)0.0519 (19)0.0204 (17)0.0249 (16)0.0013 (15)
O2C0.070 (2)0.0558 (15)0.0412 (17)0.0042 (14)0.0114 (14)0.0022 (13)
N1C0.0464 (16)0.0442 (13)0.0334 (14)0.0093 (12)0.0156 (12)0.0013 (12)
C1C0.053 (2)0.059 (2)0.0360 (19)0.0029 (17)0.0141 (17)0.0029 (16)
C2C0.055 (3)0.066 (2)0.037 (2)0.0010 (19)0.0153 (19)0.0130 (18)
C3C0.044 (2)0.0509 (19)0.045 (2)0.0008 (15)0.0184 (17)0.0005 (16)
C4C0.053 (2)0.059 (2)0.037 (2)0.0008 (18)0.0176 (18)0.0027 (16)
C5C0.055 (2)0.053 (2)0.034 (2)0.0017 (17)0.0187 (18)0.0030 (15)
C6C0.0439 (18)0.0445 (16)0.039 (2)0.0077 (15)0.0185 (16)0.0020 (14)
C7C0.046 (2)0.0417 (17)0.047 (2)0.0048 (14)0.0198 (17)0.0018 (14)
C8C0.063 (3)0.0435 (18)0.066 (3)0.0039 (17)0.034 (2)0.0017 (18)
Geometric parameters (Å, º) top
O1A—H1A0.8200C2B—C3B1.379 (5)
O1A—C3A1.341 (5)C3B—C4B1.395 (6)
O2A—C7A1.199 (5)C4B—H4B0.9300
N1A—H1AA0.8600C4B—C5B1.379 (6)
N1A—C7A1.331 (5)C5B—H5B0.9300
N1A—C8A1.460 (5)C5B—C6B1.393 (5)
C1A—H1AB0.9300C6B—C7B1.493 (5)
C1A—C2A1.371 (6)C8B—H8BA0.9600
C1A—C6A1.386 (5)C8B—H8BB0.9600
C2A—H2A0.9300C8B—H8BC0.9600
C2A—C3A1.394 (6)O1C—H1C0.8200
C3A—C4A1.405 (5)O1C—C3C1.349 (5)
C4A—H4A0.9300O2C—C7C1.191 (5)
C4A—C5A1.386 (5)N1C—H1CA0.8600
C5A—H5A0.9300N1C—C7C1.338 (5)
C5A—C6A1.405 (5)N1C—C8C1.446 (5)
C6A—C7A1.474 (5)C1C—H1CB0.9300
C8A—H8AA0.9600C1C—C2C1.376 (6)
C8A—H8AB0.9600C1C—C6C1.385 (5)
C8A—H8AC0.9600C2C—H2C0.9300
O1B—H1B0.8200C2C—C3C1.395 (6)
O1B—C3B1.364 (5)C3C—C4C1.402 (6)
O2B—C7B1.215 (5)C4C—H4C0.9300
N1B—H1BA0.8600C4C—C5C1.380 (6)
N1B—C7B1.330 (5)C5C—H5C0.9300
N1B—C8B1.434 (5)C5C—C6C1.397 (5)
C1B—H1BB0.9300C6C—C7C1.484 (5)
C1B—C2B1.387 (6)C8C—H8CA0.9600
C1B—C6B1.380 (6)C8C—H8CB0.9600
C2B—H2B0.9300C8C—H8CC0.9600
C3A—O1A—H1A109.5C4B—C5B—H5B119.9
C7A—N1A—H1AA121.2C4B—C5B—C6B120.2 (4)
C7A—N1A—C8A117.5 (4)C6B—C5B—H5B119.9
C8A—N1A—H1AA121.2C1B—C6B—C5B119.6 (4)
C2A—C1A—H1AB119.2C1B—C6B—C7B121.8 (3)
C2A—C1A—C6A121.5 (4)C5B—C6B—C7B118.6 (4)
C6A—C1A—H1AB119.2O2B—C7B—N1B122.5 (4)
C1A—C2A—H2A119.8O2B—C7B—C6B124.4 (4)
C1A—C2A—C3A120.4 (3)N1B—C7B—C6B113.1 (3)
C3A—C2A—H2A119.8N1B—C8B—H8BA109.5
O1A—C3A—C2A118.2 (3)N1B—C8B—H8BB109.5
O1A—C3A—C4A122.6 (4)N1B—C8B—H8BC109.5
C2A—C3A—C4A119.2 (3)H8BA—C8B—H8BB109.5
C3A—C4A—H4A120.1H8BA—C8B—H8BC109.5
C5A—C4A—C3A119.8 (4)H8BB—C8B—H8BC109.5
C5A—C4A—H4A120.1C3C—O1C—H1C109.5
C4A—C5A—H5A119.7C7C—N1C—H1CA121.7
C4A—C5A—C6A120.6 (3)C7C—N1C—C8C116.6 (4)
C6A—C5A—H5A119.7C8C—N1C—H1CA121.7
C1A—C6A—C5A118.5 (3)C2C—C1C—H1CB119.2
C1A—C6A—C7A119.0 (3)C2C—C1C—C6C121.6 (4)
C5A—C6A—C7A122.5 (3)C6C—C1C—H1CB119.2
O2A—C7A—N1A121.6 (4)C1C—C2C—H2C120.4
O2A—C7A—C6A125.4 (4)C1C—C2C—C3C119.2 (4)
N1A—C7A—C6A113.0 (3)C3C—C2C—H2C120.4
N1A—C8A—H8AA109.5O1C—C3C—C2C118.6 (4)
N1A—C8A—H8AB109.5O1C—C3C—C4C121.3 (4)
N1A—C8A—H8AC109.5C2C—C3C—C4C120.1 (4)
H8AA—C8A—H8AB109.5C3C—C4C—H4C120.2
H8AA—C8A—H8AC109.5C5C—C4C—C3C119.6 (4)
H8AB—C8A—H8AC109.5C5C—C4C—H4C120.2
C3B—O1B—H1B109.5C4C—C5C—H5C119.7
C7B—N1B—H1BA121.3C4C—C5C—C6C120.6 (3)
C7B—N1B—C8B117.3 (3)C6C—C5C—H5C119.7
C8B—N1B—H1BA121.3C1C—C6C—C5C119.0 (4)
C2B—C1B—H1BB119.8C1C—C6C—C7C118.6 (4)
C6B—C1B—H1BB119.8C5C—C6C—C7C122.4 (3)
C6B—C1B—C2B120.4 (4)O2C—C7C—N1C122.0 (4)
C1B—C2B—H2B120.0O2C—C7C—C6C125.6 (4)
C3B—C2B—C1B120.0 (4)N1C—C7C—C6C112.4 (3)
C3B—C2B—H2B120.0N1C—C8C—H8CA109.5
O1B—C3B—C2B123.4 (4)N1C—C8C—H8CB109.5
O1B—C3B—C4B116.7 (4)N1C—C8C—H8CC109.5
C2B—C3B—C4B119.9 (4)H8CA—C8C—H8CB109.5
C3B—C4B—H4B120.1H8CA—C8C—H8CC109.5
C5B—C4B—C3B119.9 (4)H8CB—C8C—H8CC109.5
C5B—C4B—H4B120.1
O1A—C3A—C4A—C5A179.7 (3)C3B—C4B—C5B—C6B0.5 (6)
C1A—C2A—C3A—O1A179.9 (4)C4B—C5B—C6B—C1B1.8 (6)
C1A—C2A—C3A—C4A0.6 (6)C4B—C5B—C6B—C7B177.3 (3)
C1A—C6A—C7A—O2A2.4 (5)C5B—C6B—C7B—O2B3.0 (6)
C1A—C6A—C7A—N1A178.5 (3)C5B—C6B—C7B—N1B176.9 (4)
C2A—C1A—C6A—C5A0.7 (5)C6B—C1B—C2B—C3B0.5 (6)
C2A—C1A—C6A—C7A178.3 (3)C8B—N1B—C7B—O2B0.8 (6)
C2A—C3A—C4A—C5A0.3 (5)C8B—N1B—C7B—C6B179.1 (3)
C3A—C4A—C5A—C6A0.4 (5)O1C—C3C—C4C—C5C179.6 (4)
C4A—C5A—C6A—C1A0.9 (5)C1C—C2C—C3C—O1C179.6 (4)
C4A—C5A—C6A—C7A178.0 (3)C1C—C2C—C3C—C4C0.6 (6)
C5A—C6A—C7A—O2A176.5 (4)C1C—C6C—C7C—O2C3.7 (6)
C5A—C6A—C7A—N1A2.6 (4)C1C—C6C—C7C—N1C177.5 (3)
C6A—C1A—C2A—C3A0.0 (6)C2C—C1C—C6C—C5C1.6 (6)
C8A—N1A—C7A—O2A1.9 (6)C2C—C1C—C6C—C7C178.3 (4)
C8A—N1A—C7A—C6A177.2 (3)C2C—C3C—C4C—C5C0.6 (6)
O1B—C3B—C4B—C5B179.8 (4)C3C—C4C—C5C—C6C0.4 (6)
C1B—C2B—C3B—O1B179.7 (4)C4C—C5C—C6C—C1C1.5 (6)
C1B—C2B—C3B—C4B0.9 (6)C4C—C5C—C6C—C7C178.4 (3)
C1B—C6B—C7B—O2B176.1 (4)C5C—C6C—C7C—O2C176.2 (4)
C1B—C6B—C7B—N1B3.9 (5)C5C—C6C—C7C—N1C2.7 (5)
C2B—C1B—C6B—C5B1.8 (6)C6C—C1C—C2C—C3C0.5 (7)
C2B—C1B—C6B—C7B177.3 (3)C8C—N1C—C7C—O2C1.5 (6)
C2B—C3B—C4B—C5B0.9 (6)C8C—N1C—C7C—C6C179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2Ci0.821.942.749 (5)170
C2A—H2A···N1Aii0.932.663.267 (5)124
C4A—H4A···N1Bi0.932.603.371 (5)141
O1B—H1B···O2Biii0.821.982.784 (5)166
C2B—H2B···N1Ciii0.932.633.404 (5)142
O1C—H1C···O2A0.821.962.750 (5)163
Symmetry codes: (i) x1, y, z1; (ii) x, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H9NO2
Mr151.16
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)13.576 (3), 16.964 (3), 11.025 (2)
β (°) 120.11 (3)
V3)2196.5 (10)
Z12
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.28 × 0.22
Data collection
DiffractometerAgilent Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.634, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4810, 2802, 2545
Rint0.015
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.192, 1.10
No. of reflections2802
No. of parameters305
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.56

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2Ci0.821.942.749 (5)170.4
C2A—H2A···N1Aii0.932.663.267 (5)123.5
C4A—H4A···N1Bi0.932.603.371 (5)141.2
O1B—H1B···O2Biii0.821.982.784 (5)166.2
C2B—H2B···N1Ciii0.932.633.404 (5)141.5
O1C—H1C···O2A0.821.962.750 (5)162.5
Symmetry codes: (i) x1, y, z1; (ii) x, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

BN thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071–4097.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEscalada, J., Freedman, D. & Werner, E. J. (2004). Acta Cryst. E60, o1296–o1298.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPertlik, F. (1992). Z. Kristallogr. 202, 17–23.  CrossRef CAS Web of Science Google Scholar
First citationPrins, L. J., Peinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2383–2426.  CrossRef Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322–o2323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4877780.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds