metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­aqua­(5-hy­dr­oxy­pyridin-1-ium-3-carboxyl­ato-κO3)tris­­(μ-oxalato-κ4O1,O2:O1′,O2′)dieuropium(III)]

aDepartment of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: thjchen@jnu.edu.cn

(Received 15 April 2013; accepted 23 April 2013; online 27 April 2013)

In the title compound, [Eu2(C6H5NO3)2(C2O4)3(H2O)4]n, the EuIII atom is bonded to one O atom from a monodentate 5-hy­droxy­pyridin-1-ium-3-carboxyl­ate ligand, six O atoms from three oxalate ligands and two water mol­ecules, exhibiting a highly distorted tricapped trigonal geometry. Three independent oxalate ligands, each lying on an inversion center, bridge the EuIII atoms, forming a brickwall-like layer parallel to (001), which is stabilized by intra­layer O—H⋯O hydrogen bonds. The layers are further linked through inter­layer O—H⋯O and N—H⋯O hydrogen bonds and ππ inter­actions between the pyridine rings [centroid–centroid distance = 3.5741 (14) Å] into a three-dimensional supra­molecular network.

Related literature

For background to metal complexes of pyridine-carb­oxy­lic derivatives, see: Black et al. (2009[Black, C. A., Costa, J. S., Fu, W. T., Massera, C., Roubeau, O., Teat, S. J., Aromi, G., Gamez, P. & Reedijk, J. (2009). Inorg. Chem. 48, 1062-1068.]); Cañadillas-Delgado et al. (2010[Cañadillas-Delgado, L., Fabelo, O., Pasán, J., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2010). Dalton Trans. 39, 7286-7293.]); Hu et al. (2007[Hu, N.-H., Li, Z.-G., Xu, J.-W., Jia, H.-Q. & Niu, J.-J. (2007). Cryst. Growth Des. 7, 15-17.]); Sun et al. (2010[Sun, Y.-G., Gu, X.-F., Ding, F., Smet, P. F., Gao, E.-J., Poelman, D. & Verpoort, F. (2010). Cryst. Growth Des. 10, 1059-1067.]); Wen et al. (2007[Wen, L.-L., Lu, Z.-D., Lin, J.-G., Tian, Z.-F., Zhu, H.-Z. & Meng, Q.-J. (2007). Cryst. Growth Des. 7, 93-99.]); Xu et al. (2008[Xu, N., Shi, W., Liao, D.-Z., Yan, S.-P. & Cheng, P. (2008). Inorg. Chem. 47, 8748-8756.]). For structures and properties of coordination polymers derived from 5-hy­droxy­nicotinic acid, see: Bunzli (2010[Bunzli, J. C. G. (2010). Chem. Rev. 110, 2729-2755.]); Decadt et al. (2012[Decadt, R., Hecke, K. V., Depla, D., Leus, K., Weinberger, D., Driessche, I. V., Voort, P. V. D. & Deun, R. V. (2012). Inorg. Chem. 51, 11623-11634.]); Gai et al. (2012[Gai, Y.-L., Xiong, K.-C., Chen, L., Bu, Y., Li, X.-J., Jiang, F.-L. & Hong, M.-C. (2012). Inorg. Chem. 51, 13128-13137.]); Ramya et al. (2012[Ramya, A. R., Sharma, D., Natarajan, S. & Reddy, M. L. P. (2012). Inorg. Chem. 51, 8818-8826.]); Yang et al. (2011[Yang, J., Chen, H.-J. & Lo, T.-H. (2011). Inorg. Chem. Commun. 14, 217-220.]); Zhang et al. (2012[Zhang, J., Huang, J., Yang, J. & Chen, H.-J. (2012). Inorg. Chem. Commun. 17, 163-168.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C6H5NO3)2(C2O4)3(H2O)4]

  • Mr = 918.26

  • Triclinic, [P \overline 1]

  • a = 7.5912 (2) Å

  • b = 8.0973 (3) Å

  • c = 10.6706 (3) Å

  • α = 103.493 (3)°

  • β = 98.589 (3)°

  • γ = 92.240 (3)°

  • V = 628.78 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.05 mm−1

  • T = 153 K

  • 0.24 × 0.17 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.377, Tmax = 0.688

  • 12455 measured reflections

  • 3135 independent reflections

  • 2965 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.038

  • S = 1.09

  • 3135 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O9i 0.83 (3) 1.84 (3) 2.662 (3) 172 (3)
O3—H3A⋯O2ii 0.82 1.73 2.543 (2) 169
O10—H7⋯O4iii 0.76 (4) 2.26 (4) 3.016 (2) 168 (4)
O10—H8⋯O2iv 0.92 (4) 1.85 (4) 2.759 (3) 170 (3)
O11—H9⋯O6iii 0.88 (4) 1.90 (4) 2.771 (3) 170 (4)
O11—H10⋯O3v 0.74 (4) 2.04 (4) 2.776 (3) 172 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y-1, z; (iii) -x+2, -y+2, -z+1; (iv) -x+2, -y+2, -z+2; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine-carboxylic derivatives are of resent interest in coordination polymers due to their structural diverity and unique physical properties (Black et al., 2009; Cañadillas-Delgado et al., 2010). Some transition and/or rare earth metal complexes with pyridine-2,5/6-dicarboxylic acid (Sun et al., 2010; Wen et al., 2007) or 2/6-hydroxynicotinic acid (Hu et al., 2007; Xu et al., 2008) have been prepared and documented. Recently, a few coordination polymers from 5-hydroxynicotinic acid are reported, in which the multidentate bridging ligand exhibits versatile coordination modes in constructing transition metal (Yang et al., 2011) and rare earth metal (Zhang et al., 2012) organic frameworks. The research interest in europium(III) coordination polymers with the ligands comes from their luminescent properties (Decadt et al., 2012; Gai et al., 2012; Ramya et al., 2012) and applications (Bunzli, 2010). Here, we report the crystal structure of an europium(III) complex of a pyridine-carboxylic derivative.

The title compound is isostructural with its Tb(III) and Sm(III) analogues (Zhang et al., 2012). As shown in Fig. 1, the asymmetric unit contains an EuIII ion, a 3-H-5-hydroxynicotinate ligand, one and half oxalate ligands and two coordinated water molecules. The EuIII ion is bonded to nine O atoms, one from the 3-H-5-hydroxynicotinate ligand, six from three oxalate ligands and two from the water molecules, exhibiting a highly distorted tricapped trigonal geometry. The EuIII ions are linked by the oxalate ligands into a brickwall-like layer parallel to (001) (Fig. 2), with Eu···Eu distances of 6.1886 (3), 6.2845 (3) and 6.4206 (3) Å. In the compound, the three oxalate ligands are centrosymmetric and bridge metal ions in a side-by-side coordination manner. The layers are stabilized by intralayer O—H···O hydrogen bonds and further linked through interlayer O—H···O hydrogen bonds and ππ interactions between the pyridine rings [centroid–centroid distance = 3.5741 (14) Å] into a three-dimensional supramolecular network.

Related literature top

For background to metal complexes of pyridine-carboxylic derivatives, see: Black et al. (2009); Cañadillas-Delgado et al. (2010); Hu et al. (2007); Sun et al. (2010); Wen et al. (2007); Xu et al. (2008). For structures and properties of coordination polymers with 5-hydroxynicotinic acid, see: Bunzli (2010); Decadt et al. (2012); Gai et al. (2012); Ramya et al. (2012); Yang et al. (2011); Zhang et al. (2012).

Experimental top

A mixture of europium nitrate (0.4 mmol, 0.186 g), 5-hydroxynicotinic acid (0.8 mmol, 0.112 g), ammonium oxalate (0.8 mmol, 0.099 g) and 10 ml water was sealed in a 15 ml Teflon-lined autoclave. Colorless crystals suitable for X-ray analysis were obtained by heating the mixture at 443 K for 70 h and then cooled down to room temperature at a rate of 5 K/h (yield: 45%). Analysis, calculated for C9H9EuNO11: C 23.54, H 1.98, N 3.05%; found: C 23.36, H 2.02, N 3.01%.

Refinement top

C-bound H atoms and H atom on hydroxyl were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(C,O). Other H atoms were located from a difference Fourier map and refined isotropically.

Structure description top

Pyridine-carboxylic derivatives are of resent interest in coordination polymers due to their structural diverity and unique physical properties (Black et al., 2009; Cañadillas-Delgado et al., 2010). Some transition and/or rare earth metal complexes with pyridine-2,5/6-dicarboxylic acid (Sun et al., 2010; Wen et al., 2007) or 2/6-hydroxynicotinic acid (Hu et al., 2007; Xu et al., 2008) have been prepared and documented. Recently, a few coordination polymers from 5-hydroxynicotinic acid are reported, in which the multidentate bridging ligand exhibits versatile coordination modes in constructing transition metal (Yang et al., 2011) and rare earth metal (Zhang et al., 2012) organic frameworks. The research interest in europium(III) coordination polymers with the ligands comes from their luminescent properties (Decadt et al., 2012; Gai et al., 2012; Ramya et al., 2012) and applications (Bunzli, 2010). Here, we report the crystal structure of an europium(III) complex of a pyridine-carboxylic derivative.

The title compound is isostructural with its Tb(III) and Sm(III) analogues (Zhang et al., 2012). As shown in Fig. 1, the asymmetric unit contains an EuIII ion, a 3-H-5-hydroxynicotinate ligand, one and half oxalate ligands and two coordinated water molecules. The EuIII ion is bonded to nine O atoms, one from the 3-H-5-hydroxynicotinate ligand, six from three oxalate ligands and two from the water molecules, exhibiting a highly distorted tricapped trigonal geometry. The EuIII ions are linked by the oxalate ligands into a brickwall-like layer parallel to (001) (Fig. 2), with Eu···Eu distances of 6.1886 (3), 6.2845 (3) and 6.4206 (3) Å. In the compound, the three oxalate ligands are centrosymmetric and bridge metal ions in a side-by-side coordination manner. The layers are stabilized by intralayer O—H···O hydrogen bonds and further linked through interlayer O—H···O hydrogen bonds and ππ interactions between the pyridine rings [centroid–centroid distance = 3.5741 (14) Å] into a three-dimensional supramolecular network.

For background to metal complexes of pyridine-carboxylic derivatives, see: Black et al. (2009); Cañadillas-Delgado et al. (2010); Hu et al. (2007); Sun et al. (2010); Wen et al. (2007); Xu et al. (2008). For structures and properties of coordination polymers with 5-hydroxynicotinic acid, see: Bunzli (2010); Decadt et al. (2012); Gai et al. (2012); Ramya et al. (2012); Yang et al. (2011); Zhang et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. The layer structure of the title compound parallel to (001). H atoms are omitted for clarity.
Poly[tetraaqua(5-hydroxypyridin-1-ium-3-carboxylato-κO3)tris(µ-oxalato-κ4O1,O2:O1',O2')dieuropium(III)] top
Crystal data top
[Eu2(C6H5NO3)2(C2O4)3(H2O)4]Z = 1
Mr = 918.26F(000) = 442
Triclinic, P1Dx = 2.425 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5912 (2) ÅCell parameters from 3135 reflections
b = 8.0973 (3) Åθ = 2.6–29.4°
c = 10.6706 (3) ŵ = 5.05 mm1
α = 103.493 (3)°T = 153 K
β = 98.589 (3)°Block, colorless
γ = 92.240 (3)°0.24 × 0.17 × 0.08 mm
V = 628.78 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3135 independent reflections
Radiation source: fine-focus sealed tube2965 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 29.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.377, Tmax = 0.688k = 1110
12455 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0087P)2 + 0.3669P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
3135 reflectionsΔρmax = 0.55 e Å3
221 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (4)
Crystal data top
[Eu2(C6H5NO3)2(C2O4)3(H2O)4]γ = 92.240 (3)°
Mr = 918.26V = 628.78 (3) Å3
Triclinic, P1Z = 1
a = 7.5912 (2) ÅMo Kα radiation
b = 8.0973 (3) ŵ = 5.05 mm1
c = 10.6706 (3) ÅT = 153 K
α = 103.493 (3)°0.24 × 0.17 × 0.08 mm
β = 98.589 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3135 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2965 reflections with I > 2σ(I)
Tmin = 0.377, Tmax = 0.688Rint = 0.037
12455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.55 e Å3
3135 reflectionsΔρmin = 0.54 e Å3
221 parameters
Special details top

Experimental. IR (cm-1, KBr): 3495(s), 3380(s), 3103(m), 3076(w), 3047(w), 2929(w), 2461(m), 2146(m), 1968(w), 1893(w), 1695(s), 1655(s), 1621(s), 1602(s), 1575(s), 1379(s), 1320(s), 1256(m), 1147(w), 1114(w), 1010(w), 935(w), 880(m), 806(s), 784(s), 667(m), 620(w), 565(w), 531(w), 484(m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7687 (3)0.8846 (3)0.9610 (2)0.0095 (5)
C20.7420 (3)0.7295 (3)1.0146 (2)0.0094 (5)
C30.7733 (3)0.5691 (3)0.9454 (2)0.0116 (5)
H30.80820.55520.86390.014*
C40.7525 (4)0.4283 (3)0.9978 (2)0.0127 (5)
C50.7046 (4)0.4541 (3)1.1205 (2)0.0132 (5)
H50.69340.36311.15900.016*
C60.6887 (3)0.7479 (3)1.1353 (2)0.0110 (5)
H60.66310.85401.18180.013*
C70.5536 (3)1.0035 (3)0.4431 (2)0.0099 (5)
C81.0255 (3)0.5479 (3)0.4489 (2)0.0084 (5)
C90.4854 (3)0.4971 (3)0.5697 (2)0.0101 (5)
Eu10.797021 (16)0.810935 (14)0.626500 (11)0.00700 (5)
N10.6745 (3)0.6119 (3)1.1836 (2)0.0112 (4)
O10.8197 (2)0.8624 (2)0.85299 (16)0.0118 (4)
O20.7395 (3)1.0258 (2)1.03073 (16)0.0141 (4)
O30.7803 (3)0.2743 (2)0.92694 (18)0.0225 (5)
H3A0.77130.20350.96980.034*
O40.7120 (2)0.9644 (2)0.45635 (16)0.0117 (4)
O50.5274 (2)0.9519 (2)0.65247 (17)0.0138 (4)
O60.9752 (2)0.6961 (2)0.45804 (16)0.0103 (3)
O70.8889 (2)0.5283 (2)0.63432 (17)0.0120 (4)
O80.5549 (2)0.6147 (2)0.66268 (16)0.0117 (4)
O90.6111 (2)0.6314 (2)0.42511 (16)0.0138 (4)
O101.1269 (2)0.8348 (2)0.70926 (19)0.0138 (4)
O110.9123 (3)1.1139 (2)0.7043 (2)0.0161 (4)
H10.645 (4)0.622 (4)1.257 (3)0.025 (9)*
H71.179 (5)0.876 (4)0.667 (4)0.032 (11)*
H81.168 (5)0.893 (4)0.794 (4)0.038 (10)*
H90.937 (5)1.181 (5)0.654 (4)0.050 (12)*
H100.874 (5)1.164 (4)0.760 (4)0.027 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0109 (12)0.0101 (11)0.0078 (12)0.0005 (9)0.0008 (9)0.0036 (9)
C20.0096 (12)0.0113 (11)0.0076 (12)0.0008 (9)0.0007 (9)0.0037 (9)
C30.0162 (13)0.0124 (12)0.0073 (12)0.0010 (10)0.0041 (9)0.0035 (9)
C40.0177 (13)0.0096 (12)0.0118 (13)0.0024 (10)0.0037 (10)0.0034 (9)
C50.0191 (14)0.0104 (12)0.0127 (13)0.0025 (10)0.0051 (10)0.0060 (9)
C60.0151 (13)0.0080 (11)0.0101 (12)0.0007 (10)0.0036 (9)0.0015 (9)
C70.0127 (12)0.0076 (11)0.0106 (12)0.0009 (9)0.0053 (9)0.0025 (9)
C80.0074 (12)0.0105 (11)0.0078 (11)0.0007 (9)0.0009 (9)0.0030 (9)
C90.0080 (12)0.0138 (12)0.0103 (13)0.0028 (10)0.0037 (9)0.0045 (9)
Eu10.00918 (8)0.00665 (7)0.00609 (7)0.00141 (4)0.00295 (4)0.00217 (4)
N10.0159 (11)0.0124 (10)0.0056 (10)0.0002 (9)0.0039 (8)0.0014 (8)
O10.0162 (9)0.0119 (8)0.0077 (9)0.0008 (7)0.0031 (7)0.0027 (6)
O20.0256 (10)0.0077 (8)0.0102 (9)0.0014 (7)0.0067 (7)0.0019 (7)
O30.0487 (14)0.0073 (9)0.0173 (10)0.0068 (9)0.0196 (9)0.0049 (7)
O40.0101 (9)0.0144 (9)0.0126 (9)0.0033 (7)0.0047 (7)0.0052 (7)
O50.0154 (9)0.0194 (9)0.0107 (9)0.0078 (7)0.0051 (7)0.0088 (7)
O60.0128 (9)0.0080 (8)0.0129 (9)0.0032 (7)0.0067 (7)0.0049 (6)
O70.0170 (9)0.0095 (8)0.0131 (9)0.0045 (7)0.0096 (7)0.0047 (7)
O80.0125 (9)0.0142 (9)0.0082 (9)0.0020 (7)0.0027 (7)0.0020 (7)
O90.0173 (10)0.0148 (9)0.0098 (9)0.0066 (7)0.0049 (7)0.0038 (7)
O100.0118 (9)0.0165 (9)0.0123 (10)0.0015 (8)0.0031 (7)0.0016 (8)
O110.0274 (12)0.0109 (9)0.0122 (10)0.0002 (8)0.0090 (8)0.0035 (8)
Geometric parameters (Å, º) top
C1—O11.246 (3)C9—O9iii1.266 (3)
C1—O21.258 (3)C9—C9iii1.546 (5)
C1—C21.515 (3)Eu1—O12.3333 (16)
C2—C61.384 (3)Eu1—O52.4025 (18)
C2—C31.385 (3)Eu1—O72.4348 (16)
C3—C41.395 (3)Eu1—O62.4433 (17)
C3—H30.9300Eu1—O42.4539 (17)
C4—O31.341 (3)Eu1—O112.4776 (18)
C4—C51.383 (3)Eu1—O92.4899 (17)
C5—N11.344 (3)Eu1—O102.5118 (19)
C5—H50.9300Eu1—O82.5142 (16)
C6—N11.328 (3)N1—H10.83 (3)
C6—H60.9300O3—H3A0.8200
C7—O5i1.246 (3)O5—C7i1.246 (3)
C7—O41.252 (3)O7—C8ii1.241 (3)
C7—C7i1.569 (5)O9—C9iii1.266 (3)
C8—O7ii1.241 (3)O10—H70.76 (4)
C8—O61.260 (3)O10—H80.92 (4)
C8—C8ii1.562 (5)O11—H90.89 (4)
C9—O81.238 (3)O11—H100.74 (4)
O1—C1—O2125.5 (2)O1—Eu1—O875.12 (6)
O1—C1—C2117.7 (2)O5—Eu1—O868.60 (6)
O2—C1—C2116.8 (2)O7—Eu1—O866.05 (6)
C6—C2—C3119.3 (2)O6—Eu1—O8117.53 (5)
C6—C2—C1119.8 (2)O4—Eu1—O8115.81 (6)
C3—C2—C1120.9 (2)O11—Eu1—O8138.86 (6)
C2—C3—C4120.1 (2)O9—Eu1—O864.36 (5)
C2—C3—H3119.9O10—Eu1—O8129.19 (6)
C4—C3—H3119.9O1—Eu1—C7i100.78 (6)
O3—C4—C5123.0 (2)O5—Eu1—C7i20.20 (6)
O3—C4—C3118.5 (2)O7—Eu1—C7i140.16 (6)
C5—C4—C3118.5 (2)O6—Eu1—C7i120.37 (6)
N1—C5—C4119.3 (2)O4—Eu1—C7i48.67 (6)
N1—C5—H5120.4O11—Eu1—C7i78.99 (6)
C4—C5—H5120.4O9—Eu1—C7i70.91 (6)
N1—C6—C2119.0 (2)O10—Eu1—C7i148.31 (6)
N1—C6—H6120.5O8—Eu1—C7i77.75 (6)
C2—C6—H6120.5O1—Eu1—C7125.61 (6)
O5i—C7—O4125.9 (2)O5—Eu1—C748.20 (6)
O5i—C7—C7i116.6 (3)O7—Eu1—C7141.25 (6)
O4—C7—C7i117.5 (3)O6—Eu1—C793.32 (6)
O7ii—C8—O6125.7 (2)O4—Eu1—C720.65 (6)
O7ii—C8—C8ii117.4 (3)O11—Eu1—C775.30 (6)
O6—C8—C8ii116.9 (3)O9—Eu1—C762.82 (6)
O8—C9—O9iii126.9 (2)O10—Eu1—C7132.68 (6)
O8—C9—C9iii118.7 (3)O8—Eu1—C798.11 (6)
O9iii—C9—C9iii114.4 (3)C7i—Eu1—C728.45 (8)
O1—Eu1—O580.96 (6)O1—Eu1—C8ii102.84 (6)
O1—Eu1—O785.97 (6)O5—Eu1—C8ii146.68 (6)
O5—Eu1—O7134.62 (6)O7—Eu1—C8ii19.51 (6)
O1—Eu1—O6138.32 (6)O6—Eu1—C8ii47.81 (6)
O5—Eu1—O6140.49 (6)O4—Eu1—C8ii119.19 (6)
O7—Eu1—O667.29 (5)O11—Eu1—C8ii135.25 (6)
O1—Eu1—O4137.52 (6)O9—Eu1—C8ii71.90 (6)
O5—Eu1—O467.69 (6)O10—Eu1—C8ii67.29 (6)
O7—Eu1—O4136.49 (6)O8—Eu1—C8ii80.29 (6)
O6—Eu1—O475.83 (6)C7i—Eu1—C8ii142.17 (6)
O1—Eu1—O1176.53 (6)C7—Eu1—C8ii129.65 (6)
O5—Eu1—O1178.03 (7)C6—N1—C5123.8 (2)
O7—Eu1—O11140.07 (7)C6—N1—H1120 (2)
O6—Eu1—O11103.48 (6)C5—N1—H1116 (2)
O4—Eu1—O1169.67 (6)C1—O1—Eu1158.00 (17)
O1—Eu1—O9139.48 (6)C4—O3—H3A109.5
O5—Eu1—O983.77 (6)C7—O4—Eu1115.60 (15)
O7—Eu1—O978.60 (6)C7i—O5—Eu1118.04 (15)
O6—Eu1—O967.69 (6)C8—O6—Eu1118.79 (14)
O4—Eu1—O966.30 (6)C8ii—O7—Eu1119.54 (15)
O11—Eu1—O9135.93 (6)C9—O8—Eu1118.26 (15)
O1—Eu1—O1075.35 (6)C9iii—O9—Eu1120.53 (15)
O5—Eu1—O10143.27 (6)Eu1—O10—H7111 (3)
O7—Eu1—O1071.49 (6)Eu1—O10—H8119 (2)
O6—Eu1—O1066.30 (6)H7—O10—H8105 (3)
O4—Eu1—O10113.98 (6)Eu1—O11—H9125 (3)
O11—Eu1—O1069.47 (7)Eu1—O11—H10116 (3)
O9—Eu1—O10131.87 (6)H9—O11—H10109 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O9iv0.83 (3)1.84 (3)2.662 (3)172 (3)
O3—H3A···O2v0.821.732.543 (2)169
O10—H7···O4vi0.76 (4)2.26 (4)3.016 (2)168 (4)
O10—H8···O2vii0.92 (4)1.85 (4)2.759 (3)170 (3)
O11—H9···O6vi0.88 (4)1.90 (4)2.771 (3)170 (4)
O11—H10···O3viii0.74 (4)2.04 (4)2.776 (3)172 (4)
Symmetry codes: (iv) x, y, z+1; (v) x, y1, z; (vi) x+2, y+2, z+1; (vii) x+2, y+2, z+2; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Eu2(C6H5NO3)2(C2O4)3(H2O)4]
Mr918.26
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)7.5912 (2), 8.0973 (3), 10.6706 (3)
α, β, γ (°)103.493 (3), 98.589 (3), 92.240 (3)
V3)628.78 (3)
Z1
Radiation typeMo Kα
µ (mm1)5.05
Crystal size (mm)0.24 × 0.17 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.377, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
12455, 3135, 2965
Rint0.037
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.038, 1.09
No. of reflections3135
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.54

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O9i0.83 (3)1.84 (3)2.662 (3)172 (3)
O3—H3A···O2ii0.821.732.543 (2)169
O10—H7···O4iii0.76 (4)2.26 (4)3.016 (2)168 (4)
O10—H8···O2iv0.92 (4)1.85 (4)2.759 (3)170 (3)
O11—H9···O6iii0.88 (4)1.90 (4)2.771 (3)170 (4)
O11—H10···O3v0.74 (4)2.04 (4)2.776 (3)172 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x+2, y+2, z+1; (iv) x+2, y+2, z+2; (v) x, y+1, z.
 

References

First citationBlack, C. A., Costa, J. S., Fu, W. T., Massera, C., Roubeau, O., Teat, S. J., Aromi, G., Gamez, P. & Reedijk, J. (2009). Inorg. Chem. 48, 1062–1068.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunzli, J. C. G. (2010). Chem. Rev. 110, 2729–2755.  Web of Science PubMed Google Scholar
First citationCañadillas-Delgado, L., Fabelo, O., Pasán, J., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2010). Dalton Trans. 39, 7286–7293.  Web of Science PubMed Google Scholar
First citationDecadt, R., Hecke, K. V., Depla, D., Leus, K., Weinberger, D., Driessche, I. V., Voort, P. V. D. & Deun, R. V. (2012). Inorg. Chem. 51, 11623–11634.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGai, Y.-L., Xiong, K.-C., Chen, L., Bu, Y., Li, X.-J., Jiang, F.-L. & Hong, M.-C. (2012). Inorg. Chem. 51, 13128–13137.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHu, N.-H., Li, Z.-G., Xu, J.-W., Jia, H.-Q. & Niu, J.-J. (2007). Cryst. Growth Des. 7, 15–17.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamya, A. R., Sharma, D., Natarajan, S. & Reddy, M. L. P. (2012). Inorg. Chem. 51, 8818–8826.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-G., Gu, X.-F., Ding, F., Smet, P. F., Gao, E.-J., Poelman, D. & Verpoort, F. (2010). Cryst. Growth Des. 10, 1059–1067.  Web of Science CSD CrossRef CAS Google Scholar
First citationWen, L.-L., Lu, Z.-D., Lin, J.-G., Tian, Z.-F., Zhu, H.-Z. & Meng, Q.-J. (2007). Cryst. Growth Des. 7, 93–99.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, N., Shi, W., Liao, D.-Z., Yan, S.-P. & Cheng, P. (2008). Inorg. Chem. 47, 8748–8756.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, J., Chen, H.-J. & Lo, T.-H. (2011). Inorg. Chem. Commun. 14, 217–220.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Huang, J., Yang, J. & Chen, H.-J. (2012). Inorg. Chem. Commun. 17, 163–168.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds