metal-organic compounds
Poly[tetraaqua(5-hydroxypyridin-1-ium-3-carboxylato-κO3)tris(μ-oxalato-κ4O1,O2:O1′,O2′)dieuropium(III)]
aDepartment of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: thjchen@jnu.edu.cn
In the title compound, [Eu2(C6H5NO3)2(C2O4)3(H2O)4]n, the EuIII atom is bonded to one O atom from a monodentate 5-hydroxypyridin-1-ium-3-carboxylate ligand, six O atoms from three oxalate ligands and two water molecules, exhibiting a highly distorted tricapped trigonal geometry. Three independent oxalate ligands, each lying on an inversion center, bridge the EuIII atoms, forming a brickwall-like layer parallel to (001), which is stabilized by intralayer O—H⋯O hydrogen bonds. The layers are further linked through interlayer O—H⋯O and N—H⋯O hydrogen bonds and π–π interactions between the pyridine rings [centroid–centroid distance = 3.5741 (14) Å] into a three-dimensional supramolecular network.
Related literature
For background to metal complexes of pyridine-carboxylic derivatives, see: Black et al. (2009); Cañadillas-Delgado et al. (2010); Hu et al. (2007); Sun et al. (2010); Wen et al. (2007); Xu et al. (2008). For structures and properties of coordination polymers derived from 5-hydroxynicotinic acid, see: Bunzli (2010); Decadt et al. (2012); Gai et al. (2012); Ramya et al. (2012); Yang et al. (2011); Zhang et al. (2012).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536813011057/hy2623sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813011057/hy2623Isup2.hkl
A mixture of europium nitrate (0.4 mmol, 0.186 g), 5-hydroxynicotinic acid (0.8 mmol, 0.112 g), ammonium oxalate (0.8 mmol, 0.099 g) and 10 ml water was sealed in a 15 ml Teflon-lined autoclave. Colorless crystals suitable for X-ray analysis were obtained by heating the mixture at 443 K for 70 h and then cooled down to room temperature at a rate of 5 K/h (yield: 45%). Analysis, calculated for C9H9EuNO11: C 23.54, H 1.98, N 3.05%; found: C 23.36, H 2.02, N 3.01%.
C-bound H atoms and H atom on hydroxyl were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(C,O). Other H atoms were located from a difference Fourier map and refined isotropically.
Pyridine-carboxylic derivatives are of resent interest in coordination polymers due to their structural diverity and unique physical properties (Black et al., 2009; Cañadillas-Delgado et al., 2010). Some transition and/or rare earth metal complexes with pyridine-2,5/6-dicarboxylic acid (Sun et al., 2010; Wen et al., 2007) or 2/6-hydroxynicotinic acid (Hu et al., 2007; Xu et al., 2008) have been prepared and documented. Recently, a few coordination polymers from 5-hydroxynicotinic acid are reported, in which the multidentate bridging ligand exhibits versatile coordination modes in constructing transition metal (Yang et al., 2011) and rare earth metal (Zhang et al., 2012) organic frameworks. The research interest in europium(III) coordination polymers with the ligands comes from their luminescent properties (Decadt et al., 2012; Gai et al., 2012; Ramya et al., 2012) and applications (Bunzli, 2010). Here, we report the
of an europium(III) complex of a pyridine-carboxylic derivative.The title compound is isostructural with its Tb(III) and Sm(III) analogues (Zhang et al., 2012). As shown in Fig. 1, the π–π interactions between the pyridine rings [centroid–centroid distance = 3.5741 (14) Å] into a three-dimensional supramolecular network.
contains an EuIII ion, a 3-H-5-hydroxynicotinate ligand, one and half oxalate ligands and two coordinated water molecules. The EuIII ion is bonded to nine O atoms, one from the 3-H-5-hydroxynicotinate ligand, six from three oxalate ligands and two from the water molecules, exhibiting a highly distorted tricapped trigonal geometry. The EuIII ions are linked by the oxalate ligands into a brickwall-like layer parallel to (001) (Fig. 2), with Eu···Eu distances of 6.1886 (3), 6.2845 (3) and 6.4206 (3) Å. In the compound, the three oxalate ligands are centrosymmetric and bridge metal ions in a side-by-side coordination manner. The layers are stabilized by intralayer O—H···O hydrogen bonds and further linked through interlayer O—H···O hydrogen bonds andFor background to metal complexes of pyridine-carboxylic derivatives, see: Black et al. (2009); Cañadillas-Delgado et al. (2010); Hu et al. (2007); Sun et al. (2010); Wen et al. (2007); Xu et al. (2008). For structures and properties of coordination polymers with 5-hydroxynicotinic acid, see: Bunzli (2010); Decadt et al. (2012); Gai et al. (2012); Ramya et al. (2012); Yang et al. (2011); Zhang et al. (2012).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.] | |
Fig. 2. The layer structure of the title compound parallel to (001). H atoms are omitted for clarity. |
[Eu2(C6H5NO3)2(C2O4)3(H2O)4] | Z = 1 |
Mr = 918.26 | F(000) = 442 |
Triclinic, P1 | Dx = 2.425 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5912 (2) Å | Cell parameters from 3135 reflections |
b = 8.0973 (3) Å | θ = 2.6–29.4° |
c = 10.6706 (3) Å | µ = 5.05 mm−1 |
α = 103.493 (3)° | T = 153 K |
β = 98.589 (3)° | Block, colorless |
γ = 92.240 (3)° | 0.24 × 0.17 × 0.08 mm |
V = 628.78 (3) Å3 |
Bruker APEXII CCD diffractometer | 3135 independent reflections |
Radiation source: fine-focus sealed tube | 2965 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 29.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.377, Tmax = 0.688 | k = −11→10 |
12455 measured reflections | l = −13→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.038 | w = 1/[σ2(Fo2) + (0.0087P)2 + 0.3669P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.002 |
3135 reflections | Δρmax = 0.55 e Å−3 |
221 parameters | Δρmin = −0.54 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0094 (4) |
[Eu2(C6H5NO3)2(C2O4)3(H2O)4] | γ = 92.240 (3)° |
Mr = 918.26 | V = 628.78 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.5912 (2) Å | Mo Kα radiation |
b = 8.0973 (3) Å | µ = 5.05 mm−1 |
c = 10.6706 (3) Å | T = 153 K |
α = 103.493 (3)° | 0.24 × 0.17 × 0.08 mm |
β = 98.589 (3)° |
Bruker APEXII CCD diffractometer | 3135 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2965 reflections with I > 2σ(I) |
Tmin = 0.377, Tmax = 0.688 | Rint = 0.037 |
12455 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 0 restraints |
wR(F2) = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.55 e Å−3 |
3135 reflections | Δρmin = −0.54 e Å−3 |
221 parameters |
Experimental. IR (cm-1, KBr): 3495(s), 3380(s), 3103(m), 3076(w), 3047(w), 2929(w), 2461(m), 2146(m), 1968(w), 1893(w), 1695(s), 1655(s), 1621(s), 1602(s), 1575(s), 1379(s), 1320(s), 1256(m), 1147(w), 1114(w), 1010(w), 935(w), 880(m), 806(s), 784(s), 667(m), 620(w), 565(w), 531(w), 484(m). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7687 (3) | 0.8846 (3) | 0.9610 (2) | 0.0095 (5) | |
C2 | 0.7420 (3) | 0.7295 (3) | 1.0146 (2) | 0.0094 (5) | |
C3 | 0.7733 (3) | 0.5691 (3) | 0.9454 (2) | 0.0116 (5) | |
H3 | 0.8082 | 0.5552 | 0.8639 | 0.014* | |
C4 | 0.7525 (4) | 0.4283 (3) | 0.9978 (2) | 0.0127 (5) | |
C5 | 0.7046 (4) | 0.4541 (3) | 1.1205 (2) | 0.0132 (5) | |
H5 | 0.6934 | 0.3631 | 1.1590 | 0.016* | |
C6 | 0.6887 (3) | 0.7479 (3) | 1.1353 (2) | 0.0110 (5) | |
H6 | 0.6631 | 0.8540 | 1.1818 | 0.013* | |
C7 | 0.5536 (3) | 1.0035 (3) | 0.4431 (2) | 0.0099 (5) | |
C8 | 1.0255 (3) | 0.5479 (3) | 0.4489 (2) | 0.0084 (5) | |
C9 | 0.4854 (3) | 0.4971 (3) | 0.5697 (2) | 0.0101 (5) | |
Eu1 | 0.797021 (16) | 0.810935 (14) | 0.626500 (11) | 0.00700 (5) | |
N1 | 0.6745 (3) | 0.6119 (3) | 1.1836 (2) | 0.0112 (4) | |
O1 | 0.8197 (2) | 0.8624 (2) | 0.85299 (16) | 0.0118 (4) | |
O2 | 0.7395 (3) | 1.0258 (2) | 1.03073 (16) | 0.0141 (4) | |
O3 | 0.7803 (3) | 0.2743 (2) | 0.92694 (18) | 0.0225 (5) | |
H3A | 0.7713 | 0.2035 | 0.9698 | 0.034* | |
O4 | 0.7120 (2) | 0.9644 (2) | 0.45635 (16) | 0.0117 (4) | |
O5 | 0.5274 (2) | 0.9519 (2) | 0.65247 (17) | 0.0138 (4) | |
O6 | 0.9752 (2) | 0.6961 (2) | 0.45804 (16) | 0.0103 (3) | |
O7 | 0.8889 (2) | 0.5283 (2) | 0.63432 (17) | 0.0120 (4) | |
O8 | 0.5549 (2) | 0.6147 (2) | 0.66268 (16) | 0.0117 (4) | |
O9 | 0.6111 (2) | 0.6314 (2) | 0.42511 (16) | 0.0138 (4) | |
O10 | 1.1269 (2) | 0.8348 (2) | 0.70926 (19) | 0.0138 (4) | |
O11 | 0.9123 (3) | 1.1139 (2) | 0.7043 (2) | 0.0161 (4) | |
H1 | 0.645 (4) | 0.622 (4) | 1.257 (3) | 0.025 (9)* | |
H7 | 1.179 (5) | 0.876 (4) | 0.667 (4) | 0.032 (11)* | |
H8 | 1.168 (5) | 0.893 (4) | 0.794 (4) | 0.038 (10)* | |
H9 | 0.937 (5) | 1.181 (5) | 0.654 (4) | 0.050 (12)* | |
H10 | 0.874 (5) | 1.164 (4) | 0.760 (4) | 0.027 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0109 (12) | 0.0101 (11) | 0.0078 (12) | −0.0005 (9) | 0.0008 (9) | 0.0036 (9) |
C2 | 0.0096 (12) | 0.0113 (11) | 0.0076 (12) | −0.0008 (9) | 0.0007 (9) | 0.0037 (9) |
C3 | 0.0162 (13) | 0.0124 (12) | 0.0073 (12) | 0.0010 (10) | 0.0041 (9) | 0.0035 (9) |
C4 | 0.0177 (13) | 0.0096 (12) | 0.0118 (13) | 0.0024 (10) | 0.0037 (10) | 0.0034 (9) |
C5 | 0.0191 (14) | 0.0104 (12) | 0.0127 (13) | 0.0025 (10) | 0.0051 (10) | 0.0060 (9) |
C6 | 0.0151 (13) | 0.0080 (11) | 0.0101 (12) | −0.0007 (10) | 0.0036 (9) | 0.0015 (9) |
C7 | 0.0127 (12) | 0.0076 (11) | 0.0106 (12) | 0.0009 (9) | 0.0053 (9) | 0.0025 (9) |
C8 | 0.0074 (12) | 0.0105 (11) | 0.0078 (11) | 0.0007 (9) | 0.0009 (9) | 0.0030 (9) |
C9 | 0.0080 (12) | 0.0138 (12) | 0.0103 (13) | 0.0028 (10) | 0.0037 (9) | 0.0045 (9) |
Eu1 | 0.00918 (8) | 0.00665 (7) | 0.00609 (7) | 0.00141 (4) | 0.00295 (4) | 0.00217 (4) |
N1 | 0.0159 (11) | 0.0124 (10) | 0.0056 (10) | −0.0002 (9) | 0.0039 (8) | 0.0014 (8) |
O1 | 0.0162 (9) | 0.0119 (8) | 0.0077 (9) | −0.0008 (7) | 0.0031 (7) | 0.0027 (6) |
O2 | 0.0256 (10) | 0.0077 (8) | 0.0102 (9) | 0.0014 (7) | 0.0067 (7) | 0.0019 (7) |
O3 | 0.0487 (14) | 0.0073 (9) | 0.0173 (10) | 0.0068 (9) | 0.0196 (9) | 0.0049 (7) |
O4 | 0.0101 (9) | 0.0144 (9) | 0.0126 (9) | 0.0033 (7) | 0.0047 (7) | 0.0052 (7) |
O5 | 0.0154 (9) | 0.0194 (9) | 0.0107 (9) | 0.0078 (7) | 0.0051 (7) | 0.0088 (7) |
O6 | 0.0128 (9) | 0.0080 (8) | 0.0129 (9) | 0.0032 (7) | 0.0067 (7) | 0.0049 (6) |
O7 | 0.0170 (9) | 0.0095 (8) | 0.0131 (9) | 0.0045 (7) | 0.0096 (7) | 0.0047 (7) |
O8 | 0.0125 (9) | 0.0142 (9) | 0.0082 (9) | −0.0020 (7) | 0.0027 (7) | 0.0020 (7) |
O9 | 0.0173 (10) | 0.0148 (9) | 0.0098 (9) | −0.0066 (7) | 0.0049 (7) | 0.0038 (7) |
O10 | 0.0118 (9) | 0.0165 (9) | 0.0123 (10) | −0.0015 (8) | 0.0031 (7) | 0.0016 (8) |
O11 | 0.0274 (12) | 0.0109 (9) | 0.0122 (10) | 0.0002 (8) | 0.0090 (8) | 0.0035 (8) |
C1—O1 | 1.246 (3) | C9—O9iii | 1.266 (3) |
C1—O2 | 1.258 (3) | C9—C9iii | 1.546 (5) |
C1—C2 | 1.515 (3) | Eu1—O1 | 2.3333 (16) |
C2—C6 | 1.384 (3) | Eu1—O5 | 2.4025 (18) |
C2—C3 | 1.385 (3) | Eu1—O7 | 2.4348 (16) |
C3—C4 | 1.395 (3) | Eu1—O6 | 2.4433 (17) |
C3—H3 | 0.9300 | Eu1—O4 | 2.4539 (17) |
C4—O3 | 1.341 (3) | Eu1—O11 | 2.4776 (18) |
C4—C5 | 1.383 (3) | Eu1—O9 | 2.4899 (17) |
C5—N1 | 1.344 (3) | Eu1—O10 | 2.5118 (19) |
C5—H5 | 0.9300 | Eu1—O8 | 2.5142 (16) |
C6—N1 | 1.328 (3) | N1—H1 | 0.83 (3) |
C6—H6 | 0.9300 | O3—H3A | 0.8200 |
C7—O5i | 1.246 (3) | O5—C7i | 1.246 (3) |
C7—O4 | 1.252 (3) | O7—C8ii | 1.241 (3) |
C7—C7i | 1.569 (5) | O9—C9iii | 1.266 (3) |
C8—O7ii | 1.241 (3) | O10—H7 | 0.76 (4) |
C8—O6 | 1.260 (3) | O10—H8 | 0.92 (4) |
C8—C8ii | 1.562 (5) | O11—H9 | 0.89 (4) |
C9—O8 | 1.238 (3) | O11—H10 | 0.74 (4) |
O1—C1—O2 | 125.5 (2) | O1—Eu1—O8 | 75.12 (6) |
O1—C1—C2 | 117.7 (2) | O5—Eu1—O8 | 68.60 (6) |
O2—C1—C2 | 116.8 (2) | O7—Eu1—O8 | 66.05 (6) |
C6—C2—C3 | 119.3 (2) | O6—Eu1—O8 | 117.53 (5) |
C6—C2—C1 | 119.8 (2) | O4—Eu1—O8 | 115.81 (6) |
C3—C2—C1 | 120.9 (2) | O11—Eu1—O8 | 138.86 (6) |
C2—C3—C4 | 120.1 (2) | O9—Eu1—O8 | 64.36 (5) |
C2—C3—H3 | 119.9 | O10—Eu1—O8 | 129.19 (6) |
C4—C3—H3 | 119.9 | O1—Eu1—C7i | 100.78 (6) |
O3—C4—C5 | 123.0 (2) | O5—Eu1—C7i | 20.20 (6) |
O3—C4—C3 | 118.5 (2) | O7—Eu1—C7i | 140.16 (6) |
C5—C4—C3 | 118.5 (2) | O6—Eu1—C7i | 120.37 (6) |
N1—C5—C4 | 119.3 (2) | O4—Eu1—C7i | 48.67 (6) |
N1—C5—H5 | 120.4 | O11—Eu1—C7i | 78.99 (6) |
C4—C5—H5 | 120.4 | O9—Eu1—C7i | 70.91 (6) |
N1—C6—C2 | 119.0 (2) | O10—Eu1—C7i | 148.31 (6) |
N1—C6—H6 | 120.5 | O8—Eu1—C7i | 77.75 (6) |
C2—C6—H6 | 120.5 | O1—Eu1—C7 | 125.61 (6) |
O5i—C7—O4 | 125.9 (2) | O5—Eu1—C7 | 48.20 (6) |
O5i—C7—C7i | 116.6 (3) | O7—Eu1—C7 | 141.25 (6) |
O4—C7—C7i | 117.5 (3) | O6—Eu1—C7 | 93.32 (6) |
O7ii—C8—O6 | 125.7 (2) | O4—Eu1—C7 | 20.65 (6) |
O7ii—C8—C8ii | 117.4 (3) | O11—Eu1—C7 | 75.30 (6) |
O6—C8—C8ii | 116.9 (3) | O9—Eu1—C7 | 62.82 (6) |
O8—C9—O9iii | 126.9 (2) | O10—Eu1—C7 | 132.68 (6) |
O8—C9—C9iii | 118.7 (3) | O8—Eu1—C7 | 98.11 (6) |
O9iii—C9—C9iii | 114.4 (3) | C7i—Eu1—C7 | 28.45 (8) |
O1—Eu1—O5 | 80.96 (6) | O1—Eu1—C8ii | 102.84 (6) |
O1—Eu1—O7 | 85.97 (6) | O5—Eu1—C8ii | 146.68 (6) |
O5—Eu1—O7 | 134.62 (6) | O7—Eu1—C8ii | 19.51 (6) |
O1—Eu1—O6 | 138.32 (6) | O6—Eu1—C8ii | 47.81 (6) |
O5—Eu1—O6 | 140.49 (6) | O4—Eu1—C8ii | 119.19 (6) |
O7—Eu1—O6 | 67.29 (5) | O11—Eu1—C8ii | 135.25 (6) |
O1—Eu1—O4 | 137.52 (6) | O9—Eu1—C8ii | 71.90 (6) |
O5—Eu1—O4 | 67.69 (6) | O10—Eu1—C8ii | 67.29 (6) |
O7—Eu1—O4 | 136.49 (6) | O8—Eu1—C8ii | 80.29 (6) |
O6—Eu1—O4 | 75.83 (6) | C7i—Eu1—C8ii | 142.17 (6) |
O1—Eu1—O11 | 76.53 (6) | C7—Eu1—C8ii | 129.65 (6) |
O5—Eu1—O11 | 78.03 (7) | C6—N1—C5 | 123.8 (2) |
O7—Eu1—O11 | 140.07 (7) | C6—N1—H1 | 120 (2) |
O6—Eu1—O11 | 103.48 (6) | C5—N1—H1 | 116 (2) |
O4—Eu1—O11 | 69.67 (6) | C1—O1—Eu1 | 158.00 (17) |
O1—Eu1—O9 | 139.48 (6) | C4—O3—H3A | 109.5 |
O5—Eu1—O9 | 83.77 (6) | C7—O4—Eu1 | 115.60 (15) |
O7—Eu1—O9 | 78.60 (6) | C7i—O5—Eu1 | 118.04 (15) |
O6—Eu1—O9 | 67.69 (6) | C8—O6—Eu1 | 118.79 (14) |
O4—Eu1—O9 | 66.30 (6) | C8ii—O7—Eu1 | 119.54 (15) |
O11—Eu1—O9 | 135.93 (6) | C9—O8—Eu1 | 118.26 (15) |
O1—Eu1—O10 | 75.35 (6) | C9iii—O9—Eu1 | 120.53 (15) |
O5—Eu1—O10 | 143.27 (6) | Eu1—O10—H7 | 111 (3) |
O7—Eu1—O10 | 71.49 (6) | Eu1—O10—H8 | 119 (2) |
O6—Eu1—O10 | 66.30 (6) | H7—O10—H8 | 105 (3) |
O4—Eu1—O10 | 113.98 (6) | Eu1—O11—H9 | 125 (3) |
O11—Eu1—O10 | 69.47 (7) | Eu1—O11—H10 | 116 (3) |
O9—Eu1—O10 | 131.87 (6) | H9—O11—H10 | 109 (4) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O9iv | 0.83 (3) | 1.84 (3) | 2.662 (3) | 172 (3) |
O3—H3A···O2v | 0.82 | 1.73 | 2.543 (2) | 169 |
O10—H7···O4vi | 0.76 (4) | 2.26 (4) | 3.016 (2) | 168 (4) |
O10—H8···O2vii | 0.92 (4) | 1.85 (4) | 2.759 (3) | 170 (3) |
O11—H9···O6vi | 0.88 (4) | 1.90 (4) | 2.771 (3) | 170 (4) |
O11—H10···O3viii | 0.74 (4) | 2.04 (4) | 2.776 (3) | 172 (4) |
Symmetry codes: (iv) x, y, z+1; (v) x, y−1, z; (vi) −x+2, −y+2, −z+1; (vii) −x+2, −y+2, −z+2; (viii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Eu2(C6H5NO3)2(C2O4)3(H2O)4] |
Mr | 918.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 153 |
a, b, c (Å) | 7.5912 (2), 8.0973 (3), 10.6706 (3) |
α, β, γ (°) | 103.493 (3), 98.589 (3), 92.240 (3) |
V (Å3) | 628.78 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 5.05 |
Crystal size (mm) | 0.24 × 0.17 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.377, 0.688 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12455, 3135, 2965 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.038, 1.09 |
No. of reflections | 3135 |
No. of parameters | 221 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.55, −0.54 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O9i | 0.83 (3) | 1.84 (3) | 2.662 (3) | 172 (3) |
O3—H3A···O2ii | 0.82 | 1.73 | 2.543 (2) | 169 |
O10—H7···O4iii | 0.76 (4) | 2.26 (4) | 3.016 (2) | 168 (4) |
O10—H8···O2iv | 0.92 (4) | 1.85 (4) | 2.759 (3) | 170 (3) |
O11—H9···O6iii | 0.88 (4) | 1.90 (4) | 2.771 (3) | 170 (4) |
O11—H10···O3v | 0.74 (4) | 2.04 (4) | 2.776 (3) | 172 (4) |
Symmetry codes: (i) x, y, z+1; (ii) x, y−1, z; (iii) −x+2, −y+2, −z+1; (iv) −x+2, −y+2, −z+2; (v) x, y+1, z. |
References
Black, C. A., Costa, J. S., Fu, W. T., Massera, C., Roubeau, O., Teat, S. J., Aromi, G., Gamez, P. & Reedijk, J. (2009). Inorg. Chem. 48, 1062–1068. Web of Science CSD CrossRef PubMed CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bunzli, J. C. G. (2010). Chem. Rev. 110, 2729–2755. Web of Science PubMed Google Scholar
Cañadillas-Delgado, L., Fabelo, O., Pasán, J., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2010). Dalton Trans. 39, 7286–7293. Web of Science PubMed Google Scholar
Decadt, R., Hecke, K. V., Depla, D., Leus, K., Weinberger, D., Driessche, I. V., Voort, P. V. D. & Deun, R. V. (2012). Inorg. Chem. 51, 11623–11634. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gai, Y.-L., Xiong, K.-C., Chen, L., Bu, Y., Li, X.-J., Jiang, F.-L. & Hong, M.-C. (2012). Inorg. Chem. 51, 13128–13137. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hu, N.-H., Li, Z.-G., Xu, J.-W., Jia, H.-Q. & Niu, J.-J. (2007). Cryst. Growth Des. 7, 15–17. Web of Science CSD CrossRef CAS Google Scholar
Ramya, A. R., Sharma, D., Natarajan, S. & Reddy, M. L. P. (2012). Inorg. Chem. 51, 8818–8826. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-G., Gu, X.-F., Ding, F., Smet, P. F., Gao, E.-J., Poelman, D. & Verpoort, F. (2010). Cryst. Growth Des. 10, 1059–1067. Web of Science CSD CrossRef CAS Google Scholar
Wen, L.-L., Lu, Z.-D., Lin, J.-G., Tian, Z.-F., Zhu, H.-Z. & Meng, Q.-J. (2007). Cryst. Growth Des. 7, 93–99. Web of Science CSD CrossRef CAS Google Scholar
Xu, N., Shi, W., Liao, D.-Z., Yan, S.-P. & Cheng, P. (2008). Inorg. Chem. 47, 8748–8756. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yang, J., Chen, H.-J. & Lo, T.-H. (2011). Inorg. Chem. Commun. 14, 217–220. Web of Science CSD CrossRef CAS Google Scholar
Zhang, J., Huang, J., Yang, J. & Chen, H.-J. (2012). Inorg. Chem. Commun. 17, 163–168. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine-carboxylic derivatives are of resent interest in coordination polymers due to their structural diverity and unique physical properties (Black et al., 2009; Cañadillas-Delgado et al., 2010). Some transition and/or rare earth metal complexes with pyridine-2,5/6-dicarboxylic acid (Sun et al., 2010; Wen et al., 2007) or 2/6-hydroxynicotinic acid (Hu et al., 2007; Xu et al., 2008) have been prepared and documented. Recently, a few coordination polymers from 5-hydroxynicotinic acid are reported, in which the multidentate bridging ligand exhibits versatile coordination modes in constructing transition metal (Yang et al., 2011) and rare earth metal (Zhang et al., 2012) organic frameworks. The research interest in europium(III) coordination polymers with the ligands comes from their luminescent properties (Decadt et al., 2012; Gai et al., 2012; Ramya et al., 2012) and applications (Bunzli, 2010). Here, we report the crystal structure of an europium(III) complex of a pyridine-carboxylic derivative.
The title compound is isostructural with its Tb(III) and Sm(III) analogues (Zhang et al., 2012). As shown in Fig. 1, the asymmetric unit contains an EuIII ion, a 3-H-5-hydroxynicotinate ligand, one and half oxalate ligands and two coordinated water molecules. The EuIII ion is bonded to nine O atoms, one from the 3-H-5-hydroxynicotinate ligand, six from three oxalate ligands and two from the water molecules, exhibiting a highly distorted tricapped trigonal geometry. The EuIII ions are linked by the oxalate ligands into a brickwall-like layer parallel to (001) (Fig. 2), with Eu···Eu distances of 6.1886 (3), 6.2845 (3) and 6.4206 (3) Å. In the compound, the three oxalate ligands are centrosymmetric and bridge metal ions in a side-by-side coordination manner. The layers are stabilized by intralayer O—H···O hydrogen bonds and further linked through interlayer O—H···O hydrogen bonds and π–π interactions between the pyridine rings [centroid–centroid distance = 3.5741 (14) Å] into a three-dimensional supramolecular network.