organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[2-Hy­dr­oxy-4,6-bis­­(meth­­oxy­meth­­oxy)phen­yl]-3-phenyl­prop-2-en-1-one

aKey Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, People's Republic of China, and bState Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, People's Republic of China
*Correspondence e-mail: haji@ms.xjb.ac.cn

(Received 5 March 2013; accepted 7 April 2013; online 13 April 2013)

The title compound, C19H20O6, consists of a tetra­substituted benzene ring with one substituent being an α,β-unsaturated cinnamoyl group, which forms an extended conjugated system in the mol­ecule. In addition, two meth­oxy­meth­oxy and one hy­droxy group are bonded to the central benzene ring. The dihedral angle between eh rings is 10.22 (10)°. An intra­molecular hydrogen bond is observed between the hy­droxy group and the carbonyl O atom. One of the meth­oxy­meth­oxy substituents is conformationally disordered over two sets of sites with site-occupation factors of 0.831 (3) and 0.169 (3).

Related literature

For the preparation of the title compound, see: Sui et al. (2012[Sui, X., Quan, Y. C., Chang, Y., Zhang, R. P., Xu, Y. F. & Guan, L. P. (2012). Med. Chem. Res. 21, 1290-1296.]). For general background to the biological activity of chalcones which posess more than one hy­droxy substituent, see: Jun et al. (2007[Jun, N., Hong, G. & Jun, K. (2007). Bioorg. Med. Chem. 15, 2396-2402.]); Jin et al. (2007[Jin, F., Jin, X. Y., Jin, Y. L., Sohn, D. W., Kim, S. A., Sohn, D. H., Kim, Y. C. & Kim, H. S. (2007). Arch. Pharm. Res. 30, 1359-1367.]); Urgaonkar et al. (2005[Urgaonkar, S., La Pierre, H. S., Meir, I., Lund, H., RayChaudhuri, D. & Shaw, J. T. (2005). Org. Lett. 7, 5609-5612.]); Nerya et al. (2004[Nerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389-1395.], 2003[Nerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R. & Tamir, S. (2003). J. Agric. Food. Chem. 51, 1201-1207.]); Khatib et al. (2005[Khatib, S., Nerya, O., Musa, R., Shmuel, M., Tamir, S. & Vaya, J. (2005). Bioorg. Med. Chem. 13, 433-441.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20O6

  • Mr = 344.35

  • Monoclinic, P 21 /n

  • a = 8.7791 (2) Å

  • b = 9.7807 (2) Å

  • c = 20.2209 (4) Å

  • β = 96.792 (2)°

  • V = 1724.10 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.82 mm−1

  • T = 290 K

  • 0.45 × 0.40 × 0.32 mm

Data collection
  • Agilent Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.] Tmin = 0.709, Tmax = 0.779

  • 5842 measured reflections

  • 2964 independent reflections

  • 2492 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.161

  • S = 1.02

  • 2964 reflections

  • 235 parameters

  • 37 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.73 2.466 (2) 148

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcones are a major class of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based food stuff. They contain two aromatic rings with an unsaturated chain. Many biological activities have been attributed to this group. Recently, the 2',4',6'-trihydroxychalcones were of increasing interest because of their biological properties such as anti-inflammatory activity (Jin et al., 2007), tyrosinase inhibitory activity (Jun et al., 2007) and antidepressant activity (Sui et al., 2012). Many research showed that some chalcones which posess more than one hydroxy substituents on ring A or B act as potential inhibitors of tyrosinase and the position of the hydroxyl group attached to the chalcone rings is of major importance in that activity (Jun et al., 2007; Nerya et al., 2004; Nerya et al., 2003; Khatib et al., 2005).

The structure and the ORTEP plot of the molecule are shown in Scheme 1 and Fig. 1. Initially, we assumed that the compound exsisted in only one stable conformation. However, the crystal structure showed two conformational isomers in the crystal structure.

Related literature top

For the preparation of the title compound, see: Sui et al. (2012). For general background to the biological activity of chalcones which posess more

than one hydroxy substituent, see: Jun et al. (2007); Jin et al. (2007); Urgaonkar et al. (2005); Nerya et al. (2004, 2003); Khatib et al. (2005).

Experimental top

Preparation of the title compound was carried out according to the reported procedure (Sui et al., 2012). Single crystals with sufficient quality for Xray diffraction were prepared by recrystallization from a mixed solution of ethanol and acetone at room temperature.

Refinement top

The C-bound H atoms were placed in ideal positions and were refined as riding on their parent C atoms with C—H = 0.93–0.97 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 times Ueq(C). The hydroxy H atom was placed in a calculated position with O—H = 0.82 Å and refined with Uiso(H) = 1.5 times Ueq(O).

Structure description top

Chalcones are a major class of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based food stuff. They contain two aromatic rings with an unsaturated chain. Many biological activities have been attributed to this group. Recently, the 2',4',6'-trihydroxychalcones were of increasing interest because of their biological properties such as anti-inflammatory activity (Jin et al., 2007), tyrosinase inhibitory activity (Jun et al., 2007) and antidepressant activity (Sui et al., 2012). Many research showed that some chalcones which posess more than one hydroxy substituents on ring A or B act as potential inhibitors of tyrosinase and the position of the hydroxyl group attached to the chalcone rings is of major importance in that activity (Jun et al., 2007; Nerya et al., 2004; Nerya et al., 2003; Khatib et al., 2005).

The structure and the ORTEP plot of the molecule are shown in Scheme 1 and Fig. 1. Initially, we assumed that the compound exsisted in only one stable conformation. However, the crystal structure showed two conformational isomers in the crystal structure.

For the preparation of the title compound, see: Sui et al. (2012). For general background to the biological activity of chalcones which posess more

than one hydroxy substituent, see: Jun et al. (2007); Jin et al. (2007); Urgaonkar et al. (2005); Nerya et al. (2004, 2003); Khatib et al. (2005).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with thermal ellipsoids on the 50% probability level.
(E)-1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]-3-phenylprop-2-en-1-one top
Crystal data top
C19H20O6F(000) = 728
Mr = 344.35Dx = 1.327 Mg m3
Monoclinic, P21/nMelting point: 351 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 8.7791 (2) ÅCell parameters from 3081 reflections
b = 9.7807 (2) Åθ = 4.4–69.7°
c = 20.2209 (4) ŵ = 0.82 mm1
β = 96.792 (2)°T = 290 K
V = 1724.10 (6) Å3Block, yellow
Z = 40.45 × 0.40 × 0.32 mm
Data collection top
Agilent Gemini S Ultra
diffractometer
2964 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2492 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 15.9149 pixels mm-1θmax = 65.8°, θmin = 4.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1111
Tmin = 0.709, Tmax = 0.779l = 1623
5842 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0915P)2 + 0.2682P]
where P = (Fo2 + 2Fc2)/3
2964 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.21 e Å3
37 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H20O6V = 1724.10 (6) Å3
Mr = 344.35Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.7791 (2) ŵ = 0.82 mm1
b = 9.7807 (2) ÅT = 290 K
c = 20.2209 (4) Å0.45 × 0.40 × 0.32 mm
β = 96.792 (2)°
Data collection top
Agilent Gemini S Ultra
diffractometer
2964 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2492 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.779Rint = 0.045
5842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05537 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
2964 reflectionsΔρmin = 0.21 e Å3
235 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 (release 14-08-2012 CrysAlis171 .NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.21800 (16)0.09828 (14)0.66097 (7)0.0649 (4)
O10.0530 (2)0.30639 (14)0.87486 (8)0.0750 (5)
H10.11670.31990.90730.112*
O30.19754 (16)0.05558 (14)0.74997 (6)0.0626 (4)
O20.2224 (2)0.25370 (14)0.97783 (8)0.0742 (5)
O50.12831 (19)0.15711 (14)0.94560 (7)0.0711 (4)
C80.3002 (2)0.0383 (2)1.01680 (9)0.0574 (5)
H80.31100.05351.00630.069*
C20.0697 (2)0.1321 (2)0.81172 (9)0.0563 (5)
H20.11500.19730.78220.068*
C70.2076 (2)0.12700 (19)0.96934 (9)0.0547 (5)
C30.0291 (2)0.17122 (18)0.86711 (9)0.0541 (5)
C40.10277 (19)0.07590 (18)0.91324 (8)0.0483 (4)
C60.0300 (2)0.10263 (18)0.84434 (9)0.0526 (4)
H60.04890.19480.83560.063*
C100.4654 (2)0.00877 (19)1.12493 (8)0.0507 (4)
C90.3686 (2)0.0851 (2)1.07405 (9)0.0545 (4)
H90.35330.17711.08290.065*
C50.0665 (2)0.06416 (18)0.89966 (8)0.0489 (4)
C150.4845 (3)0.1320 (2)1.12293 (10)0.0659 (5)
H150.43310.18191.08800.079*
C130.6568 (3)0.1276 (3)1.22351 (11)0.0702 (6)
H130.72080.17321.25620.084*
C140.5784 (3)0.1987 (2)1.17194 (12)0.0745 (6)
H140.58870.29321.17000.089*
C10.0993 (2)0.00402 (19)0.80133 (8)0.0513 (4)
C160.2928 (2)0.0378 (2)0.70981 (10)0.0615 (5)
H16A0.38230.01040.68890.074*
H16B0.32780.10860.73810.074*
C170.1989 (3)0.0086 (3)0.60743 (12)0.0811 (7)
H17A0.16260.05930.57180.122*
H17B0.29550.03320.59190.122*
H17C0.12570.06100.62240.122*
C120.6400 (3)0.0115 (3)1.22645 (10)0.0722 (6)
H120.69320.06051.26120.087*
C110.5442 (3)0.0794 (2)1.17786 (10)0.0639 (5)
H110.53260.17371.18070.077*
C180.0761 (3)0.2935 (2)0.94163 (12)0.0743 (6)0.831 (3)
H18A0.10020.33620.98490.089*0.831 (3)
H18B0.03460.29340.93120.089*0.831 (3)
O60.1357 (2)0.3676 (2)0.89696 (10)0.0789 (6)0.831 (3)
C190.2932 (4)0.3990 (4)0.9126 (2)0.0947 (10)0.831 (3)
H19A0.32700.45310.87760.142*0.831 (3)
H19B0.30790.44930.95360.142*0.831 (3)
H19C0.35150.31570.91740.142*0.831 (3)
C18'0.0761 (3)0.2935 (2)0.94163 (12)0.0743 (6)0.169 (3)
H18C0.00850.30370.96800.089*0.169 (3)
H18D0.03860.31500.89580.089*0.169 (3)
O6'0.1929 (12)0.3852 (10)0.9645 (5)0.0789 (6)0.169 (3)
C19'0.342 (2)0.388 (2)0.9489 (10)0.0947 (10)0.169 (3)
H19D0.39720.45990.97310.142*0.169 (3)
H19E0.39020.30160.96080.142*0.169 (3)
H19F0.34080.40270.90190.142*0.169 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0802 (9)0.0532 (8)0.0573 (8)0.0038 (6)0.0086 (7)0.0012 (6)
O10.0951 (11)0.0422 (7)0.0783 (10)0.0016 (7)0.0283 (8)0.0011 (6)
O30.0701 (8)0.0561 (8)0.0555 (7)0.0068 (6)0.0174 (6)0.0021 (6)
O20.0957 (11)0.0501 (8)0.0688 (9)0.0009 (7)0.0232 (8)0.0067 (6)
O50.0916 (10)0.0479 (8)0.0657 (9)0.0043 (7)0.0244 (7)0.0106 (6)
C80.0627 (10)0.0522 (10)0.0536 (10)0.0056 (8)0.0086 (8)0.0059 (8)
C20.0620 (11)0.0489 (10)0.0540 (10)0.0024 (8)0.0101 (8)0.0026 (8)
C70.0598 (10)0.0515 (10)0.0506 (10)0.0018 (8)0.0027 (8)0.0065 (8)
C30.0606 (10)0.0419 (9)0.0573 (10)0.0025 (8)0.0037 (8)0.0011 (8)
C40.0516 (9)0.0459 (9)0.0459 (9)0.0025 (7)0.0010 (7)0.0014 (7)
C60.0620 (10)0.0434 (9)0.0502 (10)0.0031 (8)0.0029 (8)0.0007 (7)
C100.0521 (9)0.0538 (10)0.0449 (9)0.0048 (8)0.0008 (7)0.0009 (7)
C90.0605 (10)0.0500 (10)0.0511 (10)0.0027 (8)0.0018 (8)0.0024 (8)
C50.0540 (9)0.0459 (9)0.0448 (9)0.0026 (7)0.0023 (7)0.0032 (7)
C150.0747 (13)0.0573 (12)0.0600 (11)0.0006 (10)0.0149 (9)0.0074 (9)
C130.0664 (12)0.0832 (15)0.0569 (11)0.0044 (11)0.0099 (9)0.0096 (10)
C140.0855 (15)0.0600 (13)0.0726 (13)0.0104 (11)0.0126 (11)0.0003 (10)
C10.0517 (9)0.0534 (10)0.0465 (9)0.0024 (8)0.0041 (7)0.0003 (8)
C160.0578 (10)0.0650 (12)0.0575 (11)0.0012 (9)0.0116 (8)0.0018 (9)
C170.1038 (18)0.0701 (14)0.0687 (13)0.0104 (13)0.0078 (12)0.0033 (11)
C120.0782 (13)0.0797 (15)0.0529 (11)0.0131 (12)0.0155 (10)0.0021 (10)
C110.0804 (13)0.0566 (11)0.0510 (10)0.0110 (10)0.0075 (9)0.0017 (8)
C180.0887 (14)0.0545 (11)0.0760 (13)0.0065 (10)0.0060 (10)0.0119 (9)
O60.0952 (13)0.0614 (10)0.0743 (11)0.0005 (9)0.0151 (9)0.0004 (8)
C190.102 (2)0.0909 (19)0.090 (2)0.0088 (17)0.0051 (17)0.0009 (18)
C18'0.0887 (14)0.0545 (11)0.0760 (13)0.0065 (10)0.0060 (10)0.0119 (9)
O6'0.0952 (13)0.0614 (10)0.0743 (11)0.0005 (9)0.0151 (9)0.0004 (8)
C19'0.102 (2)0.0909 (19)0.090 (2)0.0088 (17)0.0051 (17)0.0009 (18)
Geometric parameters (Å, º) top
O4—C161.382 (2)C15—C141.376 (3)
O4—C171.419 (3)C15—H150.9300
O1—C31.345 (2)C13—C141.369 (3)
O1—H10.8200C13—C121.370 (3)
O3—C11.366 (2)C13—H130.9300
O3—C161.426 (2)C14—H140.9300
O2—C71.256 (2)C16—H16A0.9700
O5—C51.366 (2)C16—H16B0.9700
O5—C181.410 (3)C17—H17A0.9600
C8—C91.321 (3)C17—H17B0.9600
C8—C71.466 (3)C17—H17C0.9600
C8—H80.9300C12—C111.385 (3)
C2—C11.368 (3)C12—H120.9300
C2—C31.387 (3)C11—H110.9300
C2—H20.9300C18—O61.313 (3)
C7—C41.462 (2)C18—H18A0.9700
C3—C41.420 (3)C18—H18B0.9700
C4—C51.426 (3)O6—C191.415 (4)
C6—C51.373 (2)C19—H19A0.9600
C6—C11.390 (3)C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C10—C111.388 (3)O6'—C19'1.38 (2)
C10—C151.388 (3)C19'—H19D0.9600
C10—C91.460 (2)C19'—H19E0.9600
C9—H90.9300C19'—H19F0.9600
C16—O4—C17112.95 (18)O3—C1—C2124.58 (16)
C3—O1—H1109.5O3—C1—C6114.20 (17)
C1—O3—C16118.14 (15)C2—C1—C6121.21 (17)
C5—O5—C18119.41 (16)O4—C16—O3112.66 (16)
C9—C8—C7121.84 (18)O4—C16—H16A109.1
C9—C8—H8119.1O3—C16—H16A109.1
C7—C8—H8119.1O4—C16—H16B109.1
C1—C2—C3118.79 (17)O3—C16—H16B109.1
C1—C2—H2120.6H16A—C16—H16B107.8
C3—C2—H2120.6O4—C17—H17A109.5
O2—C7—C4119.27 (17)O4—C17—H17B109.5
O2—C7—C8117.02 (16)H17A—C17—H17B109.5
C4—C7—C8123.70 (16)O4—C17—H17C109.5
O1—C3—C2116.05 (17)H17A—C17—H17C109.5
O1—C3—C4121.08 (17)H17B—C17—H17C109.5
C2—C3—C4122.86 (17)C13—C12—C11120.3 (2)
C3—C4—C5115.49 (16)C13—C12—H12119.8
C3—C4—C7118.79 (16)C11—C12—H12119.8
C5—C4—C7125.72 (16)C12—C11—C10120.9 (2)
C5—C6—C1120.12 (17)C12—C11—H11119.5
C5—C6—H6119.9C10—C11—H11119.5
C1—C6—H6119.9O6—C18—O5114.1 (2)
C11—C10—C15117.74 (18)O6—C18—H18A108.7
C11—C10—C9118.97 (18)O5—C18—H18A108.7
C15—C10—C9123.28 (17)O6—C18—H18B108.7
C8—C9—C10127.34 (18)O5—C18—H18B108.7
C8—C9—H9116.3H18A—C18—H18B107.6
C10—C9—H9116.3C18—O6—C19115.0 (2)
O5—C5—C6121.93 (16)O6—C19—H19A109.5
O5—C5—C4116.55 (15)O6—C19—H19B109.5
C6—C5—C4121.49 (16)H19A—C19—H19B109.5
C14—C15—C10120.88 (19)O6—C19—H19C109.5
C14—C15—H15119.6H19A—C19—H19C109.5
C10—C15—H15119.6H19B—C19—H19C109.5
C14—C13—C12119.4 (2)O6'—C19'—H19D109.5
C14—C13—H13120.3O6'—C19'—H19E109.5
C12—C13—H13120.3H19D—C19'—H19E109.5
C13—C14—C15120.8 (2)O6'—C19'—H19F109.5
C13—C14—H14119.6H19D—C19'—H19F109.5
C15—C14—H14119.6H19E—C19'—H19F109.5
C9—C8—C7—O215.2 (3)C3—C4—C5—C61.9 (3)
C9—C8—C7—C4165.70 (18)C7—C4—C5—C6177.89 (17)
C1—C2—C3—O1179.65 (18)C11—C10—C15—C140.1 (3)
C1—C2—C3—C40.9 (3)C9—C10—C15—C14179.39 (19)
O1—C3—C4—C5179.44 (18)C12—C13—C14—C150.6 (4)
C2—C3—C4—C51.1 (3)C10—C15—C14—C130.8 (4)
O1—C3—C4—C70.8 (3)C16—O3—C1—C29.5 (3)
C2—C3—C4—C7178.66 (17)C16—O3—C1—C6169.82 (16)
O2—C7—C4—C34.6 (3)C3—C2—C1—O3177.95 (17)
C8—C7—C4—C3174.55 (17)C3—C2—C1—C61.3 (3)
O2—C7—C4—C5175.71 (18)C5—C6—C1—O3177.26 (16)
C8—C7—C4—C55.2 (3)C5—C6—C1—C22.1 (3)
C7—C8—C9—C10178.90 (17)C17—O4—C16—O374.6 (2)
C11—C10—C9—C8171.4 (2)C1—O3—C16—O482.4 (2)
C15—C10—C9—C87.9 (3)C14—C13—C12—C110.2 (4)
C18—O5—C5—C69.0 (3)C13—C12—C11—C101.0 (3)
C18—O5—C5—C4168.81 (18)C15—C10—C11—C120.8 (3)
C1—C6—C5—O5175.31 (16)C9—C10—C11—C12178.55 (18)
C1—C6—C5—C42.4 (3)C5—O5—C18—O679.7 (3)
C3—C4—C5—O5175.96 (16)O5—C18—O6—C1970.1 (3)
C7—C4—C5—O54.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.732.466 (2)148

Experimental details

Crystal data
Chemical formulaC19H20O6
Mr344.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)8.7791 (2), 9.7807 (2), 20.2209 (4)
β (°) 96.792 (2)
V3)1724.10 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.45 × 0.40 × 0.32
Data collection
DiffractometerAgilent Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.709, 0.779
No. of measured, independent and
observed [I > 2σ(I)] reflections
5842, 2964, 2492
Rint0.045
(sin θ/λ)max1)0.592
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.161, 1.02
No. of reflections2964
No. of parameters235
No. of restraints37
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.732.466 (2)147.8
 

Acknowledgements

This work was supported by a grant from the Xinjiang Natural Science Foundation (No. 2009211B34), the China National Science Fund for Distinguished Young Scholars (No. 30925045), the National Basic Research Program of China (No. 2011CB512013) and the CAS/SAFEA Inter­national Partnership Program for Creative Research Teams (2008–18).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJin, F., Jin, X. Y., Jin, Y. L., Sohn, D. W., Kim, S. A., Sohn, D. H., Kim, Y. C. & Kim, H. S. (2007). Arch. Pharm. Res. 30, 1359–1367.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJun, N., Hong, G. & Jun, K. (2007). Bioorg. Med. Chem. 15, 2396–2402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhatib, S., Nerya, O., Musa, R., Shmuel, M., Tamir, S. & Vaya, J. (2005). Bioorg. Med. Chem. 13, 433–441.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389–1395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R. & Tamir, S. (2003). J. Agric. Food. Chem. 51, 1201–1207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui, X., Quan, Y. C., Chang, Y., Zhang, R. P., Xu, Y. F. & Guan, L. P. (2012). Med. Chem. Res. 21, 1290–1296.  Web of Science CrossRef CAS Google Scholar
First citationUrgaonkar, S., La Pierre, H. S., Meir, I., Lund, H., RayChaudhuri, D. & Shaw, J. T. (2005). Org. Lett. 7, 5609–5612.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds