organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­yl)-3-oxo-4-phenyl-2,3,3a,4,9,9a-hexa­hydro-1H-benzo[f]iso­indole-6-carbo­nitrile

aSchool of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
*Correspondence e-mail: yiminhu@yahoo.cn

(Received 10 March 2013; accepted 28 March 2013; online 5 April 2013)

In the title compound, C26H22N2O, one phenyl ring, one five-membered N-heterocyclic ring and one six-membered carbocyclic ring make up the hexa­hydro­benzo[f]iso­indole core. Another phenyl group is attached to the heterocyclic N atom as a substituent. The non-aromatic five- and six-membered rings both exhibit boat conformations. In the crystal, weak C—H⋯O and C—H⋯N inter­actions establish the observed three-dimensional structure. The crystal studied was refined as an inversion twin.

Related literature

For background to domino reactions, see Zhao et al. (2012[Zhao, Q.-S., Hu, Q., Wen, L., Wu, M. & Hu, Y.-M. (2012). Adv. Synth. Catal. 354, 2113-2116.]) and for palladium-catalyzed domino reactions, see Hu et al. (2009[Hu, Y.-M., Yu, C.-L., Ren, D., Hu, Q., Zhang, L.-D. & Cheng, D. (2009). Angew. Chem. Int. Ed. 48, 5448-5451.], 2010[Hu, Y.-M., Lin, X.-G., Zhu, T., Wan, J., Sun, Y.-J., Zhao, Q. S. & Yu, T. (2010). Synthesis, 42, 3467-3473.]). For the wide variety of active pharmaceutical ingredients, natural products and other complex organic mol­ecules economically accessible, see: Yu & Hu (2012[Yu, T. & Hu, Y. (2012). Acta Cryst. E68, o1184.]); Wang & Hu (2011[Wang, H. & Hu, Y. (2011). Acta Cryst. E67, o919.]). For benzo[f]isoindol-1-one derivatives as effective inter­mediates, see: Rixson et al. (2012[Rixson, J.-E., Chaloner, T., Heath, C. H., Tietze, L. F. & Stewart, S. G. (2012). Eur. J. Org. Chem. 23, 544-558.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N2O

  • Mr = 378.45

  • Orthorhombic, P c a 21

  • a = 25.005 (6) Å

  • b = 5.5023 (14) Å

  • c = 14.790 (4) Å

  • V = 2034.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.983

  • 14617 measured reflections

  • 4001 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.095

  • S = 1.03

  • 4001 reflections

  • 264 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O1i 0.93 2.69 3.577 (6) 159
C4—H4⋯N2ii 0.93 2.62 3.329 (6) 134
C21—H21⋯O1iii 0.93 2.58 3.498 (5) 169
Symmetry codes: (i) [-x+1, -y+2, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+2, z]; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Domino reactions have become an important tool of modern organic synthetic chemistry (Zhao et al., 2012). They have made a wide variety of active pharmaceutical ingredients, natural products and other complex organic molecules economically accessible (Yu et al., 2012; Wang et al., 2011). Benzo[f]isoindol-1-one derivatives, which have physiological activities themselves, are effective intermediates in the synthesis of many complex natural products (Rixson et al., 2012). We have reported some novel palladium-catalyzed domino reactions of aryl halides with olefins and diynes (Hu et al., 2010; Hu et al., 2009). The reaction of N-allyl-3-phenyl-N-(p-tolyl)acrylamide with 4-bromobenzonitrile, in the presence of palladium(II) acetate and triphenylphosphine in DMF at 413 K for 26 h unexpectedly generated title product.

The crystal structural data of molecule (I), C26H22N2O, reveals that all the bond lengths and angles have normal values. An asymmetric unit is composed of one title compound molecule. The title compound molecule contains one phenyl ring, one five-membered N-heterocyclic ring and one six-membered carbocyclic ring to make up the hexahydro-benzo[f]isoindole core. Another phenyl group is attached to nitrogen as a substituent. The non-aromatic five-membered and six-membered ring both show a boat conformation. All the rings are not coplanar (figure 1). In the crystal structure there are weak intermolecular C—H···O and C—H···N interactions (C25—H25 ···O1i (i: 1 - x,2 - y,-0.5 + z), C4—H4···N2ii (ii: -0.5 + x,2 - y,z) and C21—H21···O1iii (iii: x,1 + y,z)) that establish the observed 3D-structure (Figure 2).

Related literature top

For background to domino reactions, see Zhao et al. (2012) and for palladium-catalyzed domino reactions, see Hu et al. (2009, 2010). For the wide variety of active pharmaceutical ingredients, natural products and other complex organic molecules economically accessible, see: Yu & Hu (2012); Wang & Hu (2011). For benzo[f]isoindol-1-one derivatives as effective intermediates, see: Rixson et al. (2012).

Experimental top

An oven-dried Schlenk flask was evacuated, filled with nitrogen, and then charged with N-allyl-3-phenyl-N-(p-tolyl)acrylamide (2.77 g, 10 mmol), 4-bromobenzonitrile (1.82 g, 10 mmol), tributylamine (3 ml), PPh3 (52.5 mg, 0.2 mmol), Pd(OAc)2 (24 mg, 0.1 mol), and DMF (10 ml) to give a yellow solution. The reaction mixture was heated to 413 K while stirring for 26 hours. The reaction mixture was then cooled to room temperature and the resulting yellow-orange mixture was diluted with Et2O (10 ml). The mixture was washed with H2O (15 ml) and the aqueous layer was extracted with Et2O (20 ml). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. The crude material was purified by flash column chromatography on silica gel (petroleum ether: EtOAc = 9:1) and recrystallized from EtOAc (yield 3.14 g, 83%). Colorless crystals suitable for X-ray diffraction were obtained by another recrystallization from a solution of the title compound in ethyl acetate over a period of one week.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Since the crystal obviously was a racemic twin it makes no sense to give information about Flack parameter. So the Flack parameter was omitted from CIF.

Structure description top

Domino reactions have become an important tool of modern organic synthetic chemistry (Zhao et al., 2012). They have made a wide variety of active pharmaceutical ingredients, natural products and other complex organic molecules economically accessible (Yu et al., 2012; Wang et al., 2011). Benzo[f]isoindol-1-one derivatives, which have physiological activities themselves, are effective intermediates in the synthesis of many complex natural products (Rixson et al., 2012). We have reported some novel palladium-catalyzed domino reactions of aryl halides with olefins and diynes (Hu et al., 2010; Hu et al., 2009). The reaction of N-allyl-3-phenyl-N-(p-tolyl)acrylamide with 4-bromobenzonitrile, in the presence of palladium(II) acetate and triphenylphosphine in DMF at 413 K for 26 h unexpectedly generated title product.

The crystal structural data of molecule (I), C26H22N2O, reveals that all the bond lengths and angles have normal values. An asymmetric unit is composed of one title compound molecule. The title compound molecule contains one phenyl ring, one five-membered N-heterocyclic ring and one six-membered carbocyclic ring to make up the hexahydro-benzo[f]isoindole core. Another phenyl group is attached to nitrogen as a substituent. The non-aromatic five-membered and six-membered ring both show a boat conformation. All the rings are not coplanar (figure 1). In the crystal structure there are weak intermolecular C—H···O and C—H···N interactions (C25—H25 ···O1i (i: 1 - x,2 - y,-0.5 + z), C4—H4···N2ii (ii: -0.5 + x,2 - y,z) and C21—H21···O1iii (iii: x,1 + y,z)) that establish the observed 3D-structure (Figure 2).

For background to domino reactions, see Zhao et al. (2012) and for palladium-catalyzed domino reactions, see Hu et al. (2009, 2010). For the wide variety of active pharmaceutical ingredients, natural products and other complex organic molecules economically accessible, see: Yu & Hu (2012); Wang & Hu (2011). For benzo[f]isoindol-1-one derivatives as effective intermediates, see: Rixson et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of a 2-D layer of the title compound (i: 1 - x,2 - y,-0.5 + z; ii: -0.5 + x,2 - y,z). The interaction C21–H21···O1 producing the 3D-structure was omitted for clarity.
2-(4-Methylphenyl)-3-oxo-4-phenyl-2,3,3a,4,9,9a-hexahydro-1H-benzo[f]isoindole-6-carbonitrile top
Crystal data top
C26H22N2ODx = 1.235 Mg m3
Mr = 378.45Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2537 reflections
a = 25.005 (6) Åθ = 2.1–25.4°
b = 5.5023 (14) ŵ = 0.08 mm1
c = 14.790 (4) ÅT = 291 K
V = 2034.9 (9) Å3Block, colourless
Z = 40.28 × 0.24 × 0.22 mm
F(000) = 800
Data collection top
Bruker SMART APEX CCD
diffractometer
4001 independent reflections
Radiation source: sealed tube2187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
phi and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3029
Tmin = 0.972, Tmax = 0.983k = 66
14617 measured reflectionsl = 1818
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4001 reflectionsΔρmax = 0.13 e Å3
264 parametersΔρmin = 0.15 e Å3
Crystal data top
C26H22N2OV = 2034.9 (9) Å3
Mr = 378.45Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 25.005 (6) ŵ = 0.08 mm1
b = 5.5023 (14) ÅT = 291 K
c = 14.790 (4) Å0.28 × 0.24 × 0.22 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4001 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2187 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.068
14617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
4001 reflectionsΔρmin = 0.15 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27416 (18)0.1214 (8)0.8866 (4)0.0920 (15)
H1A0.24840.04560.92550.138*
H1B0.28990.25770.91710.138*
H1C0.25680.17610.83230.138*
C20.31699 (18)0.0587 (8)0.8628 (3)0.0682 (12)
C30.31038 (18)0.2255 (8)0.7939 (3)0.0762 (13)
H30.27830.22640.76210.091*
C40.34912 (17)0.3895 (8)0.7706 (3)0.0741 (13)
H40.34240.50080.72470.089*
C50.39807 (16)0.3928 (7)0.8141 (3)0.0543 (10)
C60.40556 (18)0.2282 (8)0.8835 (3)0.0690 (13)
H60.43750.22770.91570.083*
C70.36579 (18)0.0645 (8)0.9050 (3)0.0751 (14)
H70.37240.04790.95060.090*
C80.42905 (15)0.7232 (7)0.7095 (3)0.0594 (11)
H8A0.40590.85750.72610.071*
H8B0.41350.63770.65850.071*
C90.48494 (15)0.8106 (7)0.6881 (2)0.0525 (10)
H90.50210.68630.65060.063*
C100.51232 (13)0.8093 (7)0.7792 (3)0.0515 (10)
H100.50220.95860.81100.062*
C110.48623 (16)0.6001 (7)0.8268 (3)0.0566 (11)
C120.57264 (14)0.8097 (7)0.7688 (2)0.0515 (10)
H120.58230.65490.74040.062*
C130.58818 (16)1.0120 (7)0.7015 (3)0.0545 (10)
C140.55105 (16)1.1225 (7)0.6438 (3)0.0523 (10)
C150.49270 (16)1.0529 (7)0.6417 (3)0.0640 (11)
H15A0.48061.04240.57950.077*
H15B0.47171.17630.67220.077*
C160.60352 (16)0.8242 (7)0.8567 (3)0.0520 (10)
C170.63873 (18)0.6434 (8)0.8796 (3)0.0755 (14)
H170.64340.51230.84070.091*
C180.6674 (2)0.6525 (11)0.9596 (4)0.0998 (18)
H180.69070.52700.97470.120*
C190.6615 (2)0.8440 (12)1.0156 (4)0.0884 (16)
H190.68100.85141.06900.106*
C200.62664 (19)1.0285 (10)0.9938 (3)0.0782 (14)
H200.62261.16021.03260.094*
C210.59746 (17)1.0182 (8)0.9137 (3)0.0625 (11)
H210.57391.14290.89890.075*
C220.64117 (16)1.0829 (8)0.6969 (3)0.0624 (11)
H220.66611.00690.73410.075*
C230.65808 (19)1.2639 (9)0.6386 (3)0.0681 (12)
C240.6207 (2)1.3755 (8)0.5835 (3)0.0665 (12)
H240.63141.49980.54480.080*
C250.56853 (19)1.3048 (7)0.5855 (3)0.0625 (12)
H250.54411.37960.54720.075*
C260.7132 (2)1.3289 (10)0.6345 (3)0.0920 (17)
N10.43779 (13)0.5579 (5)0.7866 (2)0.0536 (8)
N20.7571 (2)1.3807 (9)0.6321 (3)0.1284 (19)
O10.50390 (11)0.4871 (5)0.8918 (2)0.0770 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.078 (3)0.098 (4)0.101 (4)0.015 (3)0.014 (3)0.018 (4)
C20.070 (3)0.066 (3)0.069 (3)0.002 (2)0.008 (3)0.006 (3)
C30.058 (3)0.088 (3)0.083 (3)0.009 (3)0.010 (3)0.022 (3)
C40.056 (3)0.079 (3)0.087 (3)0.005 (3)0.012 (3)0.027 (3)
C50.055 (3)0.055 (3)0.053 (2)0.005 (2)0.000 (2)0.004 (2)
C60.066 (3)0.079 (3)0.062 (3)0.001 (3)0.004 (2)0.016 (3)
C70.079 (3)0.083 (4)0.063 (3)0.007 (3)0.003 (3)0.022 (3)
C80.057 (3)0.063 (3)0.058 (3)0.001 (2)0.009 (2)0.014 (2)
C90.055 (3)0.056 (2)0.046 (2)0.003 (2)0.003 (2)0.003 (2)
C100.050 (2)0.052 (2)0.052 (3)0.005 (2)0.002 (2)0.000 (2)
C110.054 (3)0.060 (3)0.055 (3)0.009 (2)0.002 (2)0.003 (2)
C120.054 (2)0.052 (2)0.048 (2)0.003 (2)0.002 (2)0.006 (2)
C130.060 (3)0.061 (3)0.042 (2)0.002 (2)0.004 (2)0.010 (2)
C140.060 (3)0.050 (2)0.046 (2)0.002 (2)0.002 (2)0.001 (2)
C150.070 (3)0.067 (3)0.055 (2)0.004 (2)0.001 (2)0.010 (2)
C160.053 (3)0.051 (3)0.052 (3)0.003 (2)0.000 (2)0.003 (2)
C170.081 (3)0.062 (3)0.083 (4)0.010 (2)0.028 (3)0.003 (3)
C180.101 (4)0.088 (4)0.111 (5)0.005 (3)0.050 (4)0.022 (4)
C190.091 (4)0.112 (5)0.063 (3)0.022 (4)0.018 (3)0.018 (4)
C200.086 (4)0.098 (4)0.051 (3)0.017 (3)0.009 (3)0.016 (3)
C210.067 (3)0.074 (3)0.047 (3)0.000 (2)0.004 (2)0.007 (2)
C220.059 (3)0.082 (3)0.046 (2)0.005 (2)0.001 (2)0.007 (2)
C230.073 (3)0.092 (3)0.039 (2)0.023 (3)0.011 (2)0.011 (3)
C240.092 (4)0.066 (3)0.042 (2)0.018 (3)0.014 (3)0.008 (2)
C250.079 (3)0.062 (3)0.046 (3)0.004 (3)0.008 (2)0.001 (2)
C260.094 (4)0.140 (5)0.042 (3)0.050 (4)0.004 (3)0.001 (3)
N10.051 (2)0.055 (2)0.055 (2)0.0007 (17)0.0069 (18)0.0107 (17)
N20.110 (4)0.214 (5)0.061 (3)0.072 (4)0.001 (3)0.005 (4)
O10.0645 (17)0.096 (2)0.0705 (19)0.0025 (16)0.0153 (17)0.0313 (19)
Geometric parameters (Å, º) top
C1—C21.501 (5)C12—C131.543 (5)
C1—H1A0.9600C12—H120.9800
C1—H1B0.9600C13—C221.383 (5)
C1—H1C0.9600C13—C141.400 (5)
C2—C71.372 (5)C14—C251.393 (5)
C2—C31.380 (6)C14—C151.509 (5)
C3—C41.368 (6)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.383 (5)C16—C211.369 (5)
C4—H40.9300C16—C171.371 (5)
C5—C61.381 (5)C17—C181.385 (6)
C5—N11.406 (5)C17—H170.9300
C6—C71.379 (5)C18—C191.348 (7)
C6—H60.9300C18—H180.9300
C7—H70.9300C19—C201.376 (6)
C8—N11.475 (5)C19—H190.9300
C8—C91.512 (5)C20—C211.393 (6)
C8—H8A0.9700C20—H200.9300
C8—H8B0.9700C21—H210.9300
C9—C151.512 (5)C22—C231.384 (6)
C9—C101.512 (5)C22—H220.9300
C9—H90.9800C23—C241.383 (6)
C10—C111.499 (5)C23—C261.424 (6)
C10—C121.516 (5)C24—C251.363 (5)
C10—H100.9800C24—H240.9300
C11—O11.227 (5)C25—H250.9300
C11—N11.369 (5)C26—N21.136 (6)
C12—C161.514 (5)
C2—C1—H1A109.5C10—C12—H12106.8
C2—C1—H1B109.5C13—C12—H12106.8
H1A—C1—H1B109.5C22—C13—C14118.9 (4)
C2—C1—H1C109.5C22—C13—C12118.4 (4)
H1A—C1—H1C109.5C14—C13—C12122.6 (3)
H1B—C1—H1C109.5C25—C14—C13118.8 (4)
C7—C2—C3115.3 (4)C25—C14—C15118.3 (4)
C7—C2—C1122.9 (4)C13—C14—C15122.9 (3)
C3—C2—C1121.8 (4)C14—C15—C9109.8 (3)
C4—C3—C2122.7 (4)C14—C15—H15A109.7
C4—C3—H3118.7C9—C15—H15A109.7
C2—C3—H3118.7C14—C15—H15B109.7
C3—C4—C5121.2 (4)C9—C15—H15B109.7
C3—C4—H4119.4H15A—C15—H15B108.2
C5—C4—H4119.4C21—C16—C17119.0 (4)
C6—C5—C4117.2 (4)C21—C16—C12120.9 (4)
C6—C5—N1122.9 (4)C17—C16—C12120.1 (4)
C4—C5—N1119.9 (4)C16—C17—C18121.2 (5)
C7—C6—C5120.1 (4)C16—C17—H17119.4
C7—C6—H6119.9C18—C17—H17119.4
C5—C6—H6119.9C19—C18—C17119.7 (5)
C2—C7—C6123.4 (4)C19—C18—H18120.2
C2—C7—H7118.3C17—C18—H18120.2
C6—C7—H7118.3C18—C19—C20120.2 (5)
N1—C8—C9102.8 (3)C18—C19—H19119.9
N1—C8—H8A111.2C20—C19—H19119.9
C9—C8—H8A111.2C19—C20—C21120.0 (5)
N1—C8—H8B111.2C19—C20—H20120.0
C9—C8—H8B111.2C21—C20—H20120.0
H8A—C8—H8B109.1C16—C21—C20119.9 (4)
C8—C9—C15119.6 (3)C16—C21—H21120.1
C8—C9—C10103.3 (3)C20—C21—H21120.1
C15—C9—C10110.5 (3)C13—C22—C23121.7 (4)
C8—C9—H9107.6C13—C22—H22119.1
C15—C9—H9107.6C23—C22—H22119.1
C10—C9—H9107.6C24—C23—C22118.7 (4)
C11—C10—C9103.0 (3)C24—C23—C26121.1 (5)
C11—C10—C12118.8 (3)C22—C23—C26120.2 (5)
C9—C10—C12111.1 (3)C25—C24—C23120.4 (4)
C11—C10—H10107.8C25—C24—H24119.8
C9—C10—H10107.8C23—C24—H24119.8
C12—C10—H10107.8C24—C25—C14121.3 (4)
O1—C11—N1125.0 (4)C24—C25—H25119.3
O1—C11—C10126.9 (4)C14—C25—H25119.3
N1—C11—C10108.1 (3)N2—C26—C23179.3 (5)
C16—C12—C10114.8 (3)C11—N1—C5127.5 (3)
C16—C12—C13112.8 (3)C11—N1—C8111.3 (3)
C10—C12—C13108.5 (3)C5—N1—C8121.2 (3)
C16—C12—H12106.8
C7—C2—C3—C41.5 (7)C8—C9—C15—C14169.1 (4)
C1—C2—C3—C4179.3 (5)C10—C9—C15—C1449.4 (4)
C2—C3—C4—C51.5 (7)C10—C12—C16—C2160.2 (5)
C3—C4—C5—C61.7 (6)C13—C12—C16—C2164.8 (4)
C3—C4—C5—N1177.8 (4)C10—C12—C16—C17120.8 (4)
C4—C5—C6—C72.0 (6)C13—C12—C16—C17114.2 (4)
N1—C5—C6—C7177.5 (4)C21—C16—C17—C181.0 (7)
C3—C2—C7—C61.9 (7)C12—C16—C17—C18180.0 (4)
C1—C2—C7—C6179.6 (4)C16—C17—C18—C191.1 (8)
C5—C6—C7—C22.2 (7)C17—C18—C19—C200.7 (8)
N1—C8—C9—C15154.6 (3)C18—C19—C20—C210.1 (7)
N1—C8—C9—C1031.4 (4)C17—C16—C21—C200.4 (6)
C8—C9—C10—C1132.8 (4)C12—C16—C21—C20179.5 (4)
C15—C9—C10—C11161.9 (3)C19—C20—C21—C160.0 (6)
C8—C9—C10—C12161.0 (3)C14—C13—C22—C231.7 (6)
C15—C9—C10—C1269.8 (4)C12—C13—C22—C23179.7 (4)
C9—C10—C11—O1159.3 (4)C13—C22—C23—C240.1 (6)
C12—C10—C11—O136.0 (6)C13—C22—C23—C26178.8 (4)
C9—C10—C11—N122.2 (4)C22—C23—C24—C251.3 (6)
C12—C10—C11—N1145.5 (3)C26—C23—C24—C25177.3 (4)
C11—C10—C12—C1664.4 (5)C23—C24—C25—C141.2 (6)
C9—C10—C12—C16176.4 (3)C13—C14—C25—C240.3 (6)
C11—C10—C12—C13168.4 (3)C15—C14—C25—C24179.6 (4)
C9—C10—C12—C1349.2 (4)O1—C11—N1—C54.4 (6)
C16—C12—C13—C2237.2 (5)C10—C11—N1—C5174.2 (3)
C10—C12—C13—C22165.6 (3)O1—C11—N1—C8179.2 (4)
C16—C12—C13—C14144.2 (4)C10—C11—N1—C82.2 (4)
C10—C12—C13—C1415.8 (5)C6—C5—N1—C116.8 (6)
C22—C13—C14—C251.7 (6)C4—C5—N1—C11173.8 (4)
C12—C13—C14—C25179.7 (3)C6—C5—N1—C8177.2 (4)
C22—C13—C14—C15178.2 (4)C4—C5—N1—C82.3 (5)
C12—C13—C14—C150.4 (6)C9—C8—N1—C1118.7 (4)
C25—C14—C15—C9163.7 (3)C9—C8—N1—C5164.7 (3)
C13—C14—C15—C916.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O1i0.932.693.577 (6)159
C4—H4···N2ii0.932.623.329 (6)134
C21—H21···O1iii0.932.583.498 (5)169
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x1/2, y+2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H22N2O
Mr378.45
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)291
a, b, c (Å)25.005 (6), 5.5023 (14), 14.790 (4)
V3)2034.9 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.972, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
14617, 4001, 2187
Rint0.068
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.095, 1.03
No. of reflections4001
No. of parameters264
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O1i0.932.693.577 (6)159
C4—H4···N2ii0.932.623.329 (6)134
C21—H21···O1iii0.932.583.498 (5)169
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x1/2, y+2, z; (iii) x, y+1, z.
 

Acknowledgements

We thank the National Science Foundation of China (project Nos. 21272005 and 21072003) for financial support of this work.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y.-M., Lin, X.-G., Zhu, T., Wan, J., Sun, Y.-J., Zhao, Q. S. & Yu, T. (2010). Synthesis, 42, 3467–3473.  Web of Science CrossRef Google Scholar
First citationHu, Y.-M., Yu, C.-L., Ren, D., Hu, Q., Zhang, L.-D. & Cheng, D. (2009). Angew. Chem. Int. Ed. 48, 5448–5451.  Web of Science CSD CrossRef CAS Google Scholar
First citationRixson, J.-E., Chaloner, T., Heath, C. H., Tietze, L. F. & Stewart, S. G. (2012). Eur. J. Org. Chem. 23, 544–558.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H. & Hu, Y. (2011). Acta Cryst. E67, o919.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, T. & Hu, Y. (2012). Acta Cryst. E68, o1184.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q.-S., Hu, Q., Wen, L., Wu, M. & Hu, Y.-M. (2012). Adv. Synth. Catal. 354, 2113–2116.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds