organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Dimeth­­oxy-10-oxostrychnidinium hydrogen oxalate dihydrate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, anbu_24663@yahoo.co.in

(Received 15 February 2013; accepted 28 March 2013; online 5 April 2013)

In the cation of the title salt, C23H27N2O4+·C2HO4·2H2O, both fused pyrrolidine rings exhibit twisted conformations, while the piperidine rings adopt screw-boat and boat conformations. In the crystal, the three components are linked via O—H⋯O and N—H⋯O inter­actions, forming a tape along the b axis. The tapes are further linked by weak C—H⋯O hydrogen bonds. forming a three-dimensional network.

Related literature

For related structures, see: Smith et al. (2005[Smith, G., Wermuth, U. D., Healy, P. C., Young, D. J. & White, J. M. (2005). Acta Cryst. E61, o2646-o2648.], 2006[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o1553-o1555.]).

[Scheme 1]

Experimental

Crystal data
  • C23H27N2O4+·C2HO4·2H2O

  • Mr = 520.53

  • Orthorhombic, P 21 21 21

  • a = 7.6110 (2) Å

  • b = 10.7375 (3) Å

  • c = 29.4990 (7) Å

  • V = 2410.75 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.978

  • 13171 measured reflections

  • 5805 independent reflections

  • 5363 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.05

  • 5805 reflections

  • 354 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O8 0.88 (1) 1.87 (1) 2.712 (2) 159 (2)
O5—H5A⋯O7i 0.83 (1) 1.83 (1) 2.652 (2) 170 (4)
O9—H9A⋯O3ii 0.85 (1) 2.04 (2) 2.832 (3) 155 (5)
O9—H9B⋯O10 0.84 (1) 2.40 (3) 3.161 (4) 151 (5)
O10—H10D⋯O8 0.82 (1) 2.04 (1) 2.854 (3) 173 (5)
C7—H7⋯O9iii 0.98 2.50 3.456 (3) 166
C11—H11⋯O9iv 0.98 2.56 3.519 (3) 168
C17—H17A⋯O1ii 0.97 2.56 3.518 (2) 168
C21—H21A⋯O6v 0.97 2.43 3.188 (3) 135
C21—H21B⋯O5vi 0.97 2.59 3.293 (3) 130
C14—H14B⋯O1vii 0.97 2.49 3.291 (2) 139
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x, y-1, z; (iv) x+1, y-1, z; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The strychnos alkaloids strychnine and brucine have mostly been used to resolve enantiomorphic mixtures of chiral compounds, and the number of crystal structures of both salts and adducts of strychnine (Smith et al., 2006).

The geometric parameters of the title compound (Fig. 1) agree well with reported similar structure (Smith et al., 2005,2006). In the cation, both the pyrrolidine rings exhibit twisted conformations. The sum of bond angles around N1 [354.9 (2)°] and N2 [330.4 (2)°] indicates the sp2 and sp3 hybridized state of N1 and N2 atoms, respectively. The crystal packing is influenced by intermolecular N—H···O, O—H···O and C—H···O interactions (Table 1 & Fig. 2).

Related literature top

For related structures, see: Smith et al. (2005, 2006).

Experimental top

The title compound was synthesized by mixing brucine (3.94 g, 0.01 mol) and oxalic acid dihydrate in 50 ml of 50% ethanol/water under reflux for 10 min. The partial room temperature evaporation of the filtered solution gave colorless single crystals in a week.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. O- and N-bound H atoms were located in a difference Fourier map and the positions were refined with distance restraints [N2—H2B = 0.88 (1) Å, O5—H5A, O9—H9A, O9—H9B, O10—H10A and O10—H10B = 0.82 (1) Å, and H10C···H10D = 1.40 (2) Å], and with Uiso(H) = 1.5Ueq(O,N).

Structure description top

The strychnos alkaloids strychnine and brucine have mostly been used to resolve enantiomorphic mixtures of chiral compounds, and the number of crystal structures of both salts and adducts of strychnine (Smith et al., 2006).

The geometric parameters of the title compound (Fig. 1) agree well with reported similar structure (Smith et al., 2005,2006). In the cation, both the pyrrolidine rings exhibit twisted conformations. The sum of bond angles around N1 [354.9 (2)°] and N2 [330.4 (2)°] indicates the sp2 and sp3 hybridized state of N1 and N2 atoms, respectively. The crystal packing is influenced by intermolecular N—H···O, O—H···O and C—H···O interactions (Table 1 & Fig. 2).

For related structures, see: Smith et al. (2005, 2006).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.
2,3-Dimethoxy-10-oxostrychnidinium hydrogen oxalate dihydrate top
Crystal data top
C23H27N2O4+·C2HO4·2H2OF(000) = 1104
Mr = 520.53Dx = 1.434 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5990 reflections
a = 7.6110 (2) Åθ = 2.0–28.2°
b = 10.7375 (3) ŵ = 0.11 mm1
c = 29.4990 (7) ÅT = 295 K
V = 2410.75 (11) Å3Block, colourless
Z = 40.28 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5805 independent reflections
Radiation source: fine-focus sealed tube5363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and φ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 49
Tmin = 0.970, Tmax = 0.978k = 1014
13171 measured reflectionsl = 3932
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.4586P]
where P = (Fo2 + 2Fc2)/3
5805 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.33 e Å3
7 restraintsΔρmin = 0.32 e Å3
Crystal data top
C23H27N2O4+·C2HO4·2H2OV = 2410.75 (11) Å3
Mr = 520.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6110 (2) ŵ = 0.11 mm1
b = 10.7375 (3) ÅT = 295 K
c = 29.4990 (7) Å0.28 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5805 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5363 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.978Rint = 0.020
13171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0427 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
5805 reflectionsΔρmin = 0.32 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8167 (2)0.10403 (15)0.04553 (5)0.0273 (3)
C20.7938 (2)0.22682 (15)0.03194 (5)0.0300 (3)
H20.77330.28900.05320.036*
C30.8019 (2)0.25510 (14)0.01380 (5)0.0281 (3)
C40.8270 (2)0.16002 (15)0.04610 (5)0.0283 (3)
C50.8518 (2)0.03741 (15)0.03262 (5)0.0277 (3)
H50.87020.02560.05370.033*
C60.8480 (2)0.01221 (14)0.01373 (5)0.0262 (3)
C70.8725 (2)0.08541 (14)0.08561 (5)0.0240 (3)
H70.79400.14690.09950.029*
C80.7954 (2)0.04770 (14)0.09221 (5)0.0255 (3)
C90.9615 (3)0.20278 (15)0.01824 (6)0.0331 (4)
C101.0233 (3)0.29667 (16)0.05273 (6)0.0407 (4)
H10A1.11230.34820.03850.049*
H10B0.92490.35050.06000.049*
C111.0995 (2)0.24681 (16)0.09759 (6)0.0330 (4)
H111.22700.25970.09780.040*
C121.0603 (2)0.10686 (15)0.10212 (5)0.0263 (3)
H121.13660.06520.08010.032*
C131.0974 (2)0.04399 (16)0.14785 (6)0.0287 (3)
H131.22000.05940.15630.034*
C141.0718 (2)0.09617 (16)0.14006 (6)0.0331 (4)
H14A1.11110.14220.16650.040*
H14B1.14060.12300.11420.040*
C150.8791 (2)0.12124 (15)0.13160 (5)0.0288 (3)
H2A0.86360.21040.12580.035*
C160.6084 (2)0.0154 (2)0.15679 (6)0.0371 (4)
H16A0.62020.07310.16250.045*
H16B0.50320.04550.17180.045*
C170.6010 (2)0.04159 (18)0.10656 (6)0.0346 (4)
H17A0.54200.11990.10060.042*
H17B0.54000.02450.09060.042*
C181.0805 (4)0.30313 (19)0.17721 (7)0.0494 (5)
H18A1.20290.27790.17680.059*
H18B1.07180.38000.19430.059*
C190.9727 (3)0.20421 (18)0.19990 (6)0.0387 (4)
H190.90010.22560.22400.046*
C200.9792 (2)0.08679 (16)0.18616 (5)0.0296 (3)
C210.8705 (3)0.01255 (17)0.20833 (6)0.0329 (4)
H21A0.94650.06850.22510.040*
H21B0.78930.02540.22960.040*
C220.8296 (3)0.47074 (16)0.00029 (7)0.0383 (4)
H22A0.73790.47840.02190.057*
H22B0.84110.54770.01660.057*
H22C0.93850.45180.01460.057*
C230.8254 (4)0.1045 (2)0.12426 (7)0.0518 (6)
H23A0.93090.05580.12240.078*
H23B0.81830.14280.15360.078*
H23C0.72530.05150.11980.078*
C240.6076 (2)0.36823 (15)0.23109 (6)0.0334 (4)
C250.6212 (3)0.51090 (15)0.23589 (6)0.0337 (4)
N10.8757 (2)0.10346 (12)0.03567 (4)0.0277 (3)
N20.7689 (2)0.08528 (14)0.17329 (5)0.0309 (3)
H2B0.728 (3)0.1521 (16)0.1869 (8)0.046*
O10.8278 (2)0.19783 (12)0.09044 (4)0.0388 (3)
O20.7871 (2)0.37348 (11)0.03112 (4)0.0376 (3)
O30.9853 (3)0.21823 (13)0.02266 (5)0.0509 (4)
O41.0205 (2)0.32384 (12)0.13148 (5)0.0432 (3)
O50.4765 (2)0.57002 (13)0.22834 (7)0.0586 (5)
H5A0.470 (5)0.6456 (12)0.2345 (12)0.088*
O60.7510 (3)0.56036 (16)0.24876 (10)0.0912 (9)
O70.5180 (3)0.31491 (13)0.25994 (6)0.0654 (6)
O80.6928 (2)0.32090 (14)0.19997 (5)0.0524 (4)
O90.5505 (4)0.7048 (3)0.11705 (8)0.0835 (6)
H9A0.565 (6)0.709 (5)0.0885 (4)0.125*
H9B0.609 (6)0.647 (3)0.1290 (16)0.125*
O100.7913 (4)0.4655 (3)0.12287 (7)0.0885 (8)
H10C0.8980 (17)0.462 (5)0.1196 (15)0.133*
H10D0.758 (5)0.429 (4)0.1460 (10)0.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0343 (8)0.0252 (7)0.0223 (7)0.0027 (6)0.0002 (6)0.0020 (6)
C20.0409 (9)0.0237 (7)0.0255 (7)0.0035 (6)0.0005 (7)0.0003 (6)
C30.0350 (8)0.0222 (7)0.0271 (7)0.0006 (6)0.0029 (6)0.0033 (6)
C40.0333 (8)0.0287 (8)0.0228 (7)0.0018 (6)0.0025 (6)0.0023 (6)
C50.0357 (8)0.0249 (7)0.0226 (7)0.0009 (6)0.0023 (6)0.0018 (6)
C60.0325 (8)0.0206 (7)0.0254 (7)0.0007 (6)0.0011 (6)0.0011 (5)
C70.0295 (7)0.0202 (6)0.0224 (6)0.0010 (6)0.0007 (6)0.0010 (5)
C80.0331 (8)0.0204 (7)0.0229 (7)0.0035 (6)0.0010 (6)0.0023 (5)
C90.0472 (10)0.0236 (7)0.0285 (8)0.0034 (7)0.0008 (7)0.0012 (6)
C100.0663 (12)0.0236 (7)0.0323 (9)0.0115 (8)0.0008 (9)0.0030 (6)
C110.0396 (9)0.0279 (8)0.0314 (8)0.0098 (7)0.0000 (7)0.0013 (6)
C120.0283 (7)0.0251 (7)0.0255 (7)0.0002 (6)0.0022 (6)0.0004 (6)
C130.0259 (7)0.0318 (8)0.0283 (8)0.0029 (6)0.0018 (6)0.0003 (6)
C140.0399 (9)0.0283 (8)0.0310 (8)0.0122 (7)0.0024 (7)0.0029 (6)
C150.0433 (9)0.0205 (7)0.0225 (7)0.0008 (7)0.0041 (7)0.0005 (5)
C160.0312 (8)0.0506 (11)0.0294 (8)0.0005 (8)0.0047 (7)0.0042 (8)
C170.0328 (8)0.0428 (9)0.0283 (8)0.0081 (7)0.0010 (7)0.0028 (7)
C180.0812 (16)0.0349 (9)0.0321 (9)0.0151 (10)0.0075 (10)0.0069 (8)
C190.0514 (11)0.0378 (9)0.0270 (8)0.0005 (8)0.0003 (8)0.0044 (7)
C200.0323 (8)0.0326 (8)0.0239 (7)0.0007 (7)0.0021 (6)0.0003 (6)
C210.0397 (9)0.0360 (9)0.0231 (7)0.0019 (7)0.0019 (7)0.0015 (6)
C220.0549 (11)0.0242 (8)0.0357 (9)0.0015 (8)0.0059 (8)0.0002 (7)
C230.0891 (17)0.0400 (10)0.0264 (8)0.0080 (11)0.0042 (10)0.0017 (8)
C240.0441 (9)0.0212 (7)0.0350 (8)0.0023 (7)0.0045 (7)0.0003 (6)
C250.0417 (9)0.0229 (7)0.0366 (9)0.0005 (7)0.0056 (8)0.0019 (6)
N10.0382 (7)0.0221 (6)0.0229 (6)0.0002 (6)0.0022 (5)0.0005 (5)
N20.0378 (7)0.0315 (7)0.0233 (6)0.0054 (6)0.0036 (6)0.0006 (5)
O10.0630 (9)0.0298 (6)0.0236 (6)0.0004 (6)0.0020 (6)0.0036 (5)
O20.0614 (8)0.0229 (5)0.0285 (6)0.0004 (6)0.0094 (6)0.0038 (5)
O30.0907 (12)0.0356 (7)0.0264 (6)0.0144 (8)0.0030 (7)0.0031 (5)
O40.0689 (10)0.0273 (6)0.0333 (7)0.0015 (6)0.0040 (7)0.0054 (5)
O50.0460 (8)0.0263 (6)0.1035 (14)0.0053 (6)0.0038 (9)0.0004 (8)
O60.0656 (12)0.0400 (9)0.168 (3)0.0093 (9)0.0456 (15)0.0125 (12)
O70.1001 (14)0.0238 (6)0.0724 (12)0.0072 (8)0.0471 (11)0.0007 (7)
O80.0770 (11)0.0329 (7)0.0473 (8)0.0084 (7)0.0221 (8)0.0039 (6)
O90.0839 (15)0.0941 (17)0.0725 (14)0.0141 (14)0.0099 (12)0.0102 (13)
O100.1118 (19)0.0983 (17)0.0553 (11)0.0444 (16)0.0036 (12)0.0131 (11)
Geometric parameters (Å, º) top
C1—C61.382 (2)C15—H2A0.9800
C1—C21.389 (2)C16—C171.509 (2)
C1—C81.513 (2)C16—N21.514 (2)
C2—C31.384 (2)C16—H16A0.9700
C2—H20.9300C16—H16B0.9700
C3—O21.3745 (19)C17—H17A0.9700
C3—C41.410 (2)C17—H17B0.9700
C4—O11.3694 (19)C18—O41.441 (2)
C4—C51.388 (2)C18—C191.499 (3)
C5—C61.394 (2)C18—H18A0.9700
C5—H50.9300C18—H18B0.9700
C6—N11.4162 (19)C19—C201.325 (2)
C7—N11.4861 (19)C19—H190.9300
C7—C121.528 (2)C20—C211.500 (2)
C7—C81.557 (2)C21—N21.509 (2)
C7—H70.9800C21—H21A0.9700
C8—C171.540 (2)C21—H21B0.9700
C8—C151.543 (2)C22—O21.422 (2)
C9—O31.231 (2)C22—H22A0.9600
C9—N11.352 (2)C22—H22B0.9600
C9—C101.508 (2)C22—H22C0.9600
C10—C111.541 (3)C23—O11.414 (2)
C10—H10A0.9700C23—H23A0.9600
C10—H10B0.9700C23—H23B0.9600
C11—O41.430 (2)C23—H23C0.9600
C11—C121.538 (2)C24—O71.232 (2)
C11—H110.9800C24—O81.234 (2)
C12—C131.535 (2)C24—C251.542 (2)
C12—H120.9800C25—O61.184 (3)
C13—C201.515 (2)C25—O51.291 (3)
C13—C141.535 (2)N2—H2B0.880 (10)
C13—H130.9800O5—H5A0.833 (10)
C14—C151.512 (3)O9—H9A0.850 (10)
C14—H14A0.9700O9—H9B0.836 (10)
C14—H14B0.9700O10—H10C0.818 (10)
C15—N21.537 (2)O10—H10D0.824 (10)
C6—C1—C2120.21 (15)C14—C15—H2A108.6
C6—C1—C8110.56 (13)N2—C15—H2A108.6
C2—C1—C8128.96 (14)C8—C15—H2A108.6
C3—C2—C1118.94 (15)C17—C16—N2104.69 (14)
C3—C2—H2120.5C17—C16—H16A110.8
C1—C2—H2120.5N2—C16—H16A110.8
O2—C3—C2124.15 (15)C17—C16—H16B110.8
O2—C3—C4115.44 (14)N2—C16—H16B110.8
C2—C3—C4120.40 (14)H16A—C16—H16B108.9
O1—C4—C5123.65 (14)C16—C17—C8104.00 (13)
O1—C4—C3115.56 (14)C16—C17—H17A111.0
C5—C4—C3120.78 (14)C8—C17—H17A111.0
C4—C5—C6117.53 (14)C16—C17—H17B111.0
C4—C5—H5121.2C8—C17—H17B111.0
C6—C5—H5121.2H17A—C17—H17B109.0
C1—C6—C5122.07 (14)O4—C18—C19110.72 (17)
C1—C6—N1109.96 (14)O4—C18—H18A109.5
C5—C6—N1127.97 (14)C19—C18—H18A109.5
N1—C7—C12106.32 (13)O4—C18—H18B109.5
N1—C7—C8104.47 (12)C19—C18—H18B109.5
C12—C7—C8116.82 (13)H18A—C18—H18B108.1
N1—C7—H7109.6C20—C19—C18121.13 (18)
C12—C7—H7109.6C20—C19—H19119.4
C8—C7—H7109.6C18—C19—H19119.4
C1—C8—C17111.72 (13)C19—C20—C21121.50 (16)
C1—C8—C15115.90 (13)C19—C20—C13122.60 (16)
C17—C8—C15102.20 (13)C21—C20—C13115.90 (14)
C1—C8—C7102.29 (12)C20—C21—N2110.60 (13)
C17—C8—C7110.93 (13)C20—C21—H21A109.5
C15—C8—C7114.10 (13)N2—C21—H21A109.5
O3—C9—N1123.36 (16)C20—C21—H21B109.5
O3—C9—C10121.68 (16)N2—C21—H21B109.5
N1—C9—C10114.94 (15)H21A—C21—H21B108.1
C9—C10—C11117.69 (14)O2—C22—H22A109.5
C9—C10—H10A107.9O2—C22—H22B109.5
C11—C10—H10A107.9H22A—C22—H22B109.5
C9—C10—H10B107.9O2—C22—H22C109.5
C11—C10—H10B107.9H22A—C22—H22C109.5
H10A—C10—H10B107.2H22B—C22—H22C109.5
O4—C11—C12115.02 (14)O1—C23—H23A109.5
O4—C11—C10103.96 (15)O1—C23—H23B109.5
C12—C11—C10109.95 (14)H23A—C23—H23B109.5
O4—C11—H11109.2O1—C23—H23C109.5
C12—C11—H11109.2H23A—C23—H23C109.5
C10—C11—H11109.2H23B—C23—H23C109.5
C7—C12—C13112.69 (13)O7—C24—O8127.87 (17)
C7—C12—C11107.52 (13)O7—C24—C25115.82 (16)
C13—C12—C11118.08 (14)O8—C24—C25116.25 (16)
C7—C12—H12105.9O6—C25—O5123.14 (17)
C13—C12—H12105.9O6—C25—C24122.07 (18)
C11—C12—H12105.9O5—C25—C24114.56 (17)
C20—C13—C12114.40 (13)C9—N1—C6126.16 (14)
C20—C13—C14109.49 (14)C9—N1—C7119.19 (13)
C12—C13—C14106.05 (13)C6—N1—C7109.64 (12)
C20—C13—H13108.9C21—N2—C16112.17 (14)
C12—C13—H13108.9C21—N2—C15113.49 (14)
C14—C13—H13108.9C16—N2—C15107.91 (13)
C15—C14—C13108.81 (13)C21—N2—H2B106.9 (16)
C15—C14—H14A109.9C16—N2—H2B105.2 (17)
C13—C14—H14A109.9C15—N2—H2B110.8 (17)
C15—C14—H14B109.9C4—O1—C23117.63 (14)
C13—C14—H14B109.9C3—O2—C22115.02 (13)
H14A—C14—H14B108.3C11—O4—C18115.61 (16)
C14—C15—N2110.62 (13)C25—O5—H5A120 (3)
C14—C15—C8115.71 (14)H9A—O9—H9B113 (5)
N2—C15—C8104.41 (13)H10C—O10—H10D112 (3)
C6—C1—C2—C30.4 (3)C17—C8—C15—C14153.36 (14)
C8—C1—C2—C3173.02 (16)C7—C8—C15—C1433.55 (18)
C1—C2—C3—O2177.73 (17)C1—C8—C15—N2153.27 (13)
C1—C2—C3—C42.1 (3)C17—C8—C15—N231.53 (15)
O2—C3—C4—O12.0 (2)C7—C8—C15—N288.28 (15)
C2—C3—C4—O1178.14 (16)N2—C16—C17—C834.94 (18)
O2—C3—C4—C5177.02 (16)C1—C8—C17—C16165.99 (14)
C2—C3—C4—C52.9 (3)C15—C8—C17—C1641.43 (17)
O1—C4—C5—C6179.91 (16)C7—C8—C17—C1680.57 (17)
C3—C4—C5—C61.0 (2)O4—C18—C19—C2067.2 (3)
C2—C1—C6—C52.3 (3)C18—C19—C20—C21179.35 (18)
C8—C1—C6—C5172.24 (15)C18—C19—C20—C131.5 (3)
C2—C1—C6—N1177.02 (16)C12—C13—C20—C1960.4 (2)
C8—C1—C6—N18.48 (19)C14—C13—C20—C19179.25 (17)
C4—C5—C6—C11.6 (2)C12—C13—C20—C21120.38 (16)
C4—C5—C6—N1177.60 (16)C14—C13—C20—C211.5 (2)
C6—C1—C8—C17102.75 (17)C19—C20—C21—N2128.70 (18)
C2—C1—C8—C1771.1 (2)C13—C20—C21—N252.1 (2)
C6—C1—C8—C15140.73 (15)O7—C24—C25—O6106.6 (3)
C2—C1—C8—C1545.4 (2)O8—C24—C25—O670.8 (3)
C6—C1—C8—C715.96 (18)O7—C24—C25—O568.1 (3)
C2—C1—C8—C7170.16 (17)O8—C24—C25—O5114.5 (2)
N1—C7—C8—C116.91 (15)O3—C9—N1—C620.4 (3)
C12—C7—C8—C1100.19 (15)C10—C9—N1—C6161.06 (17)
N1—C7—C8—C17102.36 (14)O3—C9—N1—C7172.66 (18)
C12—C7—C8—C17140.54 (14)C10—C9—N1—C78.8 (2)
N1—C7—C8—C15142.87 (13)C1—C6—N1—C9157.88 (17)
C12—C7—C8—C1525.77 (19)C5—C6—N1—C921.4 (3)
O3—C9—C10—C11141.4 (2)C1—C6—N1—C73.42 (19)
N1—C9—C10—C1140.0 (3)C5—C6—N1—C7175.81 (16)
C9—C10—C11—O4135.72 (18)C12—C7—N1—C945.57 (19)
C9—C10—C11—C1212.1 (2)C8—C7—N1—C9169.70 (15)
N1—C7—C12—C13157.39 (12)C12—C7—N1—C6110.93 (14)
C8—C7—C12—C1341.30 (18)C8—C7—N1—C613.20 (17)
N1—C7—C12—C1170.77 (15)C20—C21—N2—C1678.03 (17)
C8—C7—C12—C11173.15 (13)C20—C21—N2—C1544.60 (19)
O4—C11—C12—C775.91 (18)C17—C16—N2—C21140.63 (14)
C10—C11—C12—C741.01 (19)C17—C16—N2—C1514.89 (18)
O4—C11—C12—C1352.9 (2)C14—C15—N2—C2110.95 (19)
C10—C11—C12—C13169.84 (15)C8—C15—N2—C21114.17 (15)
C7—C12—C13—C2059.13 (18)C14—C15—N2—C16135.90 (15)
C11—C12—C13—C2067.24 (19)C8—C15—N2—C1610.78 (17)
C7—C12—C13—C1461.65 (17)C5—C4—O1—C2310.6 (3)
C11—C12—C13—C14171.98 (14)C3—C4—O1—C23170.48 (19)
C20—C13—C14—C1555.45 (18)C2—C3—O2—C2223.2 (3)
C12—C13—C14—C1568.45 (17)C4—C3—O2—C22156.72 (17)
C13—C14—C15—N262.41 (18)C12—C11—O4—C1864.4 (2)
C13—C14—C15—C856.03 (18)C10—C11—O4—C18175.37 (16)
C1—C8—C15—C1484.91 (17)C19—C18—O4—C1188.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O80.88 (1)1.87 (1)2.712 (2)159 (2)
O5—H5A···O7i0.83 (1)1.83 (1)2.652 (2)170 (4)
O9—H9A···O3ii0.85 (1)2.04 (2)2.832 (3)155 (5)
O9—H9B···O100.84 (1)2.40 (3)3.161 (4)151 (5)
O10—H10D···O80.82 (1)2.04 (1)2.854 (3)173 (5)
C7—H7···O9iii0.982.503.456 (3)166
C11—H11···O9iv0.982.563.519 (3)168
C17—H17A···O1ii0.972.563.518 (2)168
C21—H21A···O6v0.972.433.188 (3)135
C21—H21B···O5vi0.972.593.293 (3)130
C14—H14B···O1vii0.972.493.291 (2)139
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x, y1, z; (iv) x+1, y1, z; (v) x+2, y1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC23H27N2O4+·C2HO4·2H2O
Mr520.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)7.6110 (2), 10.7375 (3), 29.4990 (7)
V3)2410.75 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
13171, 5805, 5363
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.05
No. of reflections5805
No. of parameters354
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.32

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O80.880 (10)1.872 (13)2.712 (2)159 (2)
O5—H5A···O7i0.833 (10)1.827 (12)2.652 (2)170 (4)
O9—H9A···O3ii0.850 (10)2.04 (2)2.832 (3)155 (5)
O9—H9B···O100.836 (10)2.40 (3)3.161 (4)151 (5)
O10—H10D···O80.824 (10)2.035 (12)2.854 (3)173 (5)
C7—H7···O9iii0.982.503.456 (3)166
C11—H11···O9iv0.982.563.519 (3)168
C17—H17A···O1ii0.972.563.518 (2)168
C21—H21A···O6v0.972.433.188 (3)135
C21—H21B···O5vi0.972.593.293 (3)130
C14—H14B···O1vii0.972.493.291 (2)139
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x, y1, z; (iv) x+1, y1, z; (v) x+2, y1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C., Young, D. J. & White, J. M. (2005). Acta Cryst. E61, o2646–o2648.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o1553–o1555.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds