organic compounds
2-[(2-Chloroquinolin-3-yl)(hydroxy)methyl]acrylonitrile
aPost Graduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com
In the title compound, C13H9ClN2O, the dihedral angle between the acrylonitrile C=C—CN plane and the quilonine ring system is 71.3 (2)°. In the crystal, molecules are linked by O—H⋯N hydrogen bonds, forming chains along [01-1]. The chains are linked into a three-dimensional network through C—H⋯N interactions.
Related literature
For the biological activity of quinoline and arcylonitrile compounds, see: Dutta et al. (2002); Ohsumi et al. (1998); Saczewski et al. (2004).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536813010155/is5260sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813010155/is5260Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813010155/is5260Isup3.cml
A mixture of 2-chloroquinoline-3-carbaldehyde (0.1 g, 0.52 mmol), acrylonitrile (0.051 ml, 0.78 mmol), and DABCO (0.017 g, 0.15 mmol), was kept at room temperature for 3 days. After completion of the reaction (indicated by TLC), the reaction mixture was extracted with ethylacetate (3 × 15 ml). The combined organic layer subsequently washed with dil.HCl and dried over anhydrous Na2SO4. Solvent was evaporated under reduced pressure, crude product was obtained and purified by
eluting with 8% ethylacetate in hexane afforded the alcohol 2-[(2-chloroquinolin-3-yl)(hydroxy)methyl]acrylonitrile as a colourless solid.Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.82 Å and C—H = 0.93 or 0.98 Å, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).
2-Chloro substituted quinolines are vital synthetic intermediates in the construction of a large number of linearly fusedtri- and tetra-cyclic quinolines studied for the DNA intercalating properties (Dutta et al., 2002). Acrylonitrile derivatives have been shown to possess antitubercular and antitumour activities (Ohsumi et al., 1998) and also in membranetechnology, synthesis and medicinal chemistry (Saczewski et al., 2004).
In the title compound, the acrylonitrile (C11–C13/N2) and 2-chloroquilonine (C1–C9/N1/Cl) make a dihedral angle of 71.3 (2)°. Both the units are essentially planar with r.m.s. deviations of 0.012 and 0.008 Å, respectively. The hydroxyl group is anti-periplanar with the 2-chloroquilonine [torsion angle of O1—C10—C9—C1 = -155.10 (16)°] and -syn clinal with the acrylonitrile [torsion angle of O1—C10—C11—C13 = -52.3 (2)°]. The
is stabilized by intermolecular C—H···N and O—H···N interactions (Table 1).For the biological activity of quinoline and arcylonitrile compounds, see: Dutta et al. (2002); Ohsumi et al. (1998); Saczewski et al. (2004).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C13H9ClN2O | F(000) = 504 |
Mr = 244.67 | Dx = 1.323 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2423 reflections |
a = 12.2879 (12) Å | θ = 2.7–28.3° |
b = 9.6422 (11) Å | µ = 0.30 mm−1 |
c = 10.3642 (12) Å | T = 293 K |
V = 1228.0 (2) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.15 × 0.10 mm |
Bruker SMART APEXII area-detector diffractometer | 2423 independent reflections |
Radiation source: fine-focus sealed tube | 2144 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω and φ scans | θmax = 28.3°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −15→16 |
Tmin = 0.943, Tmax = 0.971 | k = −12→11 |
6334 measured reflections | l = −13→11 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0445P)2 + 0.0827P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.090 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.14 e Å−3 |
2423 reflections | Δρmin = −0.14 e Å−3 |
156 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.015 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 819 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.02 (7) |
C13H9ClN2O | V = 1228.0 (2) Å3 |
Mr = 244.67 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 12.2879 (12) Å | µ = 0.30 mm−1 |
b = 9.6422 (11) Å | T = 293 K |
c = 10.3642 (12) Å | 0.20 × 0.15 × 0.10 mm |
Bruker SMART APEXII area-detector diffractometer | 2423 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2144 reflections with I > 2σ(I) |
Tmin = 0.943, Tmax = 0.971 | Rint = 0.031 |
6334 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.090 | Δρmax = 0.14 e Å−3 |
S = 1.02 | Δρmin = −0.14 e Å−3 |
2423 reflections | Absolute structure: Flack (1983), 819 Friedel pairs |
156 parameters | Absolute structure parameter: 0.02 (7) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.29993 (4) | 1.02688 (6) | 0.48433 (7) | 0.06601 (17) | |
O1 | 0.22815 (13) | 0.60309 (15) | 0.62021 (17) | 0.0682 (4) | |
H1 | 0.2656 | 0.5770 | 0.6811 | 0.102* | |
N1 | 0.16299 (12) | 0.95206 (16) | 0.30888 (16) | 0.0476 (3) | |
N2 | −0.02036 (17) | 0.7266 (3) | 0.7546 (3) | 0.0870 (7) | |
C1 | 0.20463 (12) | 0.91298 (18) | 0.41795 (18) | 0.0438 (4) | |
C2 | 0.08750 (12) | 0.86715 (18) | 0.25212 (17) | 0.0441 (4) | |
C3 | 0.04132 (16) | 0.9065 (2) | 0.1326 (2) | 0.0574 (5) | |
H3 | 0.0617 | 0.9897 | 0.0941 | 0.069* | |
C4 | −0.03276 (18) | 0.8230 (2) | 0.0741 (2) | 0.0643 (5) | |
H4 | −0.0628 | 0.8496 | −0.0045 | 0.077* | |
C5 | −0.06450 (18) | 0.6974 (3) | 0.1306 (2) | 0.0698 (6) | |
H5 | −0.1157 | 0.6418 | 0.0894 | 0.084* | |
C6 | −0.02145 (18) | 0.6556 (2) | 0.2451 (2) | 0.0637 (5) | |
H6 | −0.0428 | 0.5716 | 0.2813 | 0.076* | |
C7 | 0.05581 (13) | 0.73997 (18) | 0.30916 (19) | 0.0467 (4) | |
C8 | 0.10462 (14) | 0.70438 (18) | 0.42751 (19) | 0.0500 (4) | |
H8 | 0.0850 | 0.6219 | 0.4678 | 0.060* | |
C9 | 0.18017 (11) | 0.78848 (16) | 0.4845 (2) | 0.0427 (3) | |
C10 | 0.23288 (14) | 0.7498 (2) | 0.6112 (2) | 0.0499 (4) | |
H10 | 0.3091 | 0.7796 | 0.6106 | 0.060* | |
C11 | 0.17479 (15) | 0.8165 (2) | 0.7227 (2) | 0.0531 (4) | |
C12 | 0.06476 (15) | 0.7679 (2) | 0.7430 (2) | 0.0596 (5) | |
C13 | 0.2182 (2) | 0.9086 (3) | 0.8014 (3) | 0.0818 (8) | |
H13A | 0.1780 | 0.9428 | 0.8704 | 0.098* | |
H13B | 0.2890 | 0.9394 | 0.7878 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0630 (2) | 0.0706 (3) | 0.0645 (3) | −0.0222 (2) | −0.0026 (3) | 0.0007 (3) |
O1 | 0.0915 (10) | 0.0563 (8) | 0.0569 (9) | 0.0187 (7) | −0.0204 (8) | 0.0116 (7) |
N1 | 0.0539 (7) | 0.0462 (8) | 0.0426 (8) | −0.0018 (6) | 0.0047 (7) | 0.0098 (6) |
N2 | 0.0582 (10) | 0.1206 (18) | 0.0821 (17) | −0.0155 (11) | 0.0037 (10) | −0.0078 (14) |
C1 | 0.0430 (7) | 0.0452 (8) | 0.0432 (9) | −0.0038 (6) | 0.0047 (7) | 0.0019 (7) |
C2 | 0.0484 (7) | 0.0457 (8) | 0.0382 (9) | 0.0043 (6) | 0.0028 (7) | 0.0058 (7) |
C3 | 0.0692 (10) | 0.0596 (11) | 0.0433 (11) | 0.0076 (9) | 0.0002 (9) | 0.0132 (9) |
C4 | 0.0708 (11) | 0.0765 (14) | 0.0456 (11) | 0.0133 (10) | −0.0115 (10) | 0.0020 (10) |
C5 | 0.0709 (11) | 0.0768 (14) | 0.0616 (14) | −0.0064 (10) | −0.0156 (12) | −0.0068 (12) |
C6 | 0.0722 (11) | 0.0581 (11) | 0.0609 (14) | −0.0126 (9) | −0.0076 (11) | 0.0040 (10) |
C7 | 0.0521 (8) | 0.0450 (9) | 0.0430 (10) | 0.0008 (7) | −0.0004 (8) | 0.0041 (7) |
C8 | 0.0586 (8) | 0.0426 (8) | 0.0487 (10) | −0.0024 (7) | −0.0025 (8) | 0.0123 (7) |
C9 | 0.0456 (6) | 0.0449 (8) | 0.0376 (8) | 0.0054 (5) | −0.0010 (8) | 0.0059 (8) |
C10 | 0.0493 (8) | 0.0561 (10) | 0.0443 (9) | 0.0061 (7) | −0.0079 (8) | 0.0077 (8) |
C11 | 0.0526 (8) | 0.0632 (11) | 0.0436 (10) | −0.0009 (8) | −0.0064 (8) | 0.0053 (9) |
C12 | 0.0574 (10) | 0.0746 (13) | 0.0469 (11) | 0.0031 (9) | −0.0044 (9) | −0.0002 (9) |
C13 | 0.0761 (13) | 0.102 (2) | 0.0678 (16) | −0.0144 (13) | 0.0020 (13) | −0.0238 (16) |
Cl—C1 | 1.7466 (17) | C5—H5 | 0.9300 |
O1—C10 | 1.419 (3) | C6—C7 | 1.416 (3) |
O1—H1 | 0.8200 | C6—H6 | 0.9300 |
N1—C1 | 1.297 (2) | C7—C8 | 1.408 (3) |
N1—C2 | 1.370 (2) | C8—C9 | 1.367 (2) |
N2—C12 | 1.125 (3) | C8—H8 | 0.9300 |
C1—C9 | 1.417 (2) | C9—C10 | 1.511 (3) |
C2—C3 | 1.414 (3) | C10—C11 | 1.504 (3) |
C2—C7 | 1.416 (2) | C10—H10 | 0.9800 |
C3—C4 | 1.358 (3) | C11—C13 | 1.318 (3) |
C3—H3 | 0.9300 | C11—C12 | 1.447 (3) |
C4—C5 | 1.401 (4) | C13—H13A | 0.9300 |
C4—H4 | 0.9300 | C13—H13B | 0.9300 |
C5—C6 | 1.360 (3) | ||
C10—O1—H1 | 109.5 | C8—C7—C2 | 117.24 (16) |
C1—N1—C2 | 117.89 (15) | C6—C7—C2 | 119.12 (18) |
N1—C1—C9 | 125.93 (16) | C9—C8—C7 | 121.42 (16) |
N1—C1—Cl | 115.16 (13) | C9—C8—H8 | 119.3 |
C9—C1—Cl | 118.90 (14) | C7—C8—H8 | 119.3 |
N1—C2—C3 | 119.17 (16) | C8—C9—C1 | 115.88 (17) |
N1—C2—C7 | 121.64 (16) | C8—C9—C10 | 121.34 (16) |
C3—C2—C7 | 119.19 (17) | C1—C9—C10 | 122.78 (15) |
C4—C3—C2 | 120.07 (18) | O1—C10—C11 | 110.90 (18) |
C4—C3—H3 | 120.0 | O1—C10—C9 | 106.62 (16) |
C2—C3—H3 | 120.0 | C11—C10—C9 | 111.04 (14) |
C3—C4—C5 | 120.80 (19) | O1—C10—H10 | 109.4 |
C3—C4—H4 | 119.6 | C11—C10—H10 | 109.4 |
C5—C4—H4 | 119.6 | C9—C10—H10 | 109.4 |
C6—C5—C4 | 120.8 (2) | C13—C11—C12 | 120.5 (2) |
C6—C5—H5 | 119.6 | C13—C11—C10 | 124.89 (19) |
C4—C5—H5 | 119.6 | C12—C11—C10 | 114.60 (17) |
C5—C6—C7 | 120.0 (2) | N2—C12—C11 | 177.2 (3) |
C5—C6—H6 | 120.0 | C11—C13—H13A | 120.0 |
C7—C6—H6 | 120.0 | C11—C13—H13B | 120.0 |
C8—C7—C6 | 123.64 (17) | H13A—C13—H13B | 120.0 |
C2—N1—C1—C9 | 0.7 (3) | C2—C7—C8—C9 | −0.6 (3) |
C2—N1—C1—Cl | −179.85 (13) | C7—C8—C9—C1 | 0.7 (3) |
C1—N1—C2—C3 | −179.50 (16) | C7—C8—C9—C10 | −179.68 (17) |
C1—N1—C2—C7 | −0.5 (2) | N1—C1—C9—C8 | −0.8 (3) |
N1—C2—C3—C4 | 179.27 (18) | Cl—C1—C9—C8 | 179.74 (13) |
C7—C2—C3—C4 | 0.2 (3) | N1—C1—C9—C10 | 179.58 (17) |
C2—C3—C4—C5 | 0.0 (3) | Cl—C1—C9—C10 | 0.2 (2) |
C3—C4—C5—C6 | −0.4 (4) | C8—C9—C10—O1 | 25.3 (2) |
C4—C5—C6—C7 | 0.5 (4) | C1—C9—C10—O1 | −155.10 (16) |
C5—C6—C7—C8 | −179.8 (2) | C8—C9—C10—C11 | −95.6 (2) |
C5—C6—C7—C2 | −0.3 (3) | C1—C9—C10—C11 | 84.0 (2) |
N1—C2—C7—C8 | 0.4 (2) | O1—C10—C11—C13 | 125.4 (2) |
C3—C2—C7—C8 | 179.43 (17) | C9—C10—C11—C13 | −116.3 (3) |
N1—C2—C7—C6 | −179.12 (18) | O1—C10—C11—C12 | −52.3 (2) |
C3—C2—C7—C6 | −0.1 (3) | C9—C10—C11—C12 | 66.1 (2) |
C6—C7—C8—C9 | 178.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.82 | 1.99 | 2.781 (2) | 161 |
C10—H10···N2ii | 0.98 | 2.57 | 3.385 (3) | 140 |
Symmetry codes: (i) −x+1/2, y−1/2, z+1/2; (ii) x+1/2, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | C13H9ClN2O |
Mr | 244.67 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 293 |
a, b, c (Å) | 12.2879 (12), 9.6422 (11), 10.3642 (12) |
V (Å3) | 1228.0 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.943, 0.971 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6334, 2423, 2144 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.090, 1.02 |
No. of reflections | 2423 |
No. of parameters | 156 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.14 |
Absolute structure | Flack (1983), 819 Friedel pairs |
Absolute structure parameter | 0.02 (7) |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.82 | 1.99 | 2.781 (2) | 161 |
C10—H10···N2ii | 0.98 | 2.57 | 3.385 (3) | 140 |
Symmetry codes: (i) −x+1/2, y−1/2, z+1/2; (ii) x+1/2, −y+3/2, z. |
Acknowledgements
The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai 600 025, India, for the data collection.
References
Bruker (2004). SADABS. Bruker AXS Ins., Madison, Wisconsin, USA. Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA. Google Scholar
Dutta, N. J., Khunt, R. C. & Parikh, A. R. (2002). Indian J. Chem. Sect. B, 41, 433–435. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ohsumi, K., Nakagawa, R., Fukuda, Y., Hatanaka, T., Morinaga, Y., Nihei, Y., Ohishi, K., Suga, Y., Akiyama, Y. & Tsuji, T. (1998). J. Med. Chem. 41, 3022–3032. Web of Science CrossRef CAS PubMed Google Scholar
Saczewski, F., Reszka, P., Gdaniec, M., Grunert, R. & Bednarski, P. J. (2004). J. Med. Chem. 47, 3438–3449. Web of Science PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-Chloro substituted quinolines are vital synthetic intermediates in the construction of a large number of linearly fusedtri- and tetra-cyclic quinolines studied for the DNA intercalating properties (Dutta et al., 2002). Acrylonitrile derivatives have been shown to possess antitubercular and antitumour activities (Ohsumi et al., 1998) and also in membranetechnology, synthesis and medicinal chemistry (Saczewski et al., 2004).
In the title compound, the acrylonitrile (C11–C13/N2) and 2-chloroquilonine (C1–C9/N1/Cl) make a dihedral angle of 71.3 (2)°. Both the units are essentially planar with r.m.s. deviations of 0.012 and 0.008 Å, respectively. The hydroxyl group is anti-periplanar with the 2-chloroquilonine [torsion angle of O1—C10—C9—C1 = -155.10 (16)°] and -syn clinal with the acrylonitrile [torsion angle of O1—C10—C11—C13 = -52.3 (2)°]. The crystal structure is stabilized by intermolecular C—H···N and O—H···N interactions (Table 1).