metal-organic compounds
Tris(μ4-azepane-1-carbodithioato)bis(μ3-azepane-1-carbodithioato)-μ9-bromido-tetra-μ2-bromido-octacopper(I)copper(II)
aDepartment of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan, and bPRESTO, Japan Science and Technology Agency (JST), Japan
*Correspondence e-mail: okubo_t@chem.kindai.ac.jp
The reaction of Cu(Hm-dtc)2 (H2m-dtc is azepane-1-carbodithioic acid), CuBr2 and methyl isothiocyanate yielded the title mixed-valence nonanuclear CuI/CuII compound, [Cu9Br5(C7H12NS2)5] or [CuI8CuIIBr5(Hm-dtc)5], encapsulating a bromide anion in the center of the Cu9Br4S10 cluster cage. The cage consists of a mononuclear CuII unit [Cu(Hm-dtc)2], three μ4-bridging Hm-dtc− ligands, eight CuI ions with distorted tetrahedral or trigonal pyramidal coordination geometries and four μ2-bridging bromide anions. The incorporated central bromide anion interacts with nine Cu ions with shorter Cu—Br separations than the sum of the van der Waals radii for Cu and Br.
Related literature
For copper clusters with dithiocarbamate ligands, see: Cardell et al. (2006); Okubo, Kuwamoto et al. (2011); Liao et al. (2012). For coordination polymers with dithiocarbamate ligands, see: Golding et al. (1974); Hendrickson et al. (1975); Okubo et al. (2010); Okubo, Tanaka et al. (2011). For pmononuclear copper complexes with dithiocarbamate ligands, see: Jian et al. (1999); Ngo et al. (2003).
Experimental
Crystal data
|
|
Data collection: RAPID-AUTO (Rigaku, 2006); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.
Supporting information
https://doi.org/10.1107/S1600536813009938/is5263sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813009938/is5263Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813009938/is5263Isup3.tif
Supporting information file. DOI: https://doi.org/10.1107/S1600536813009938/is5263Isup4.cdx
A CHCl3 solution (20 ml) of Cu(Hm-dtc)2 (0.1 mmol) was placed in a 50 ml glass vessel with a screw type cap, and a mixed-solvent (10 ml) of CHCl3 and MeOH was slowly added on the solution. Then, a MeOH solution (20 ml) of CuBr2 (0.2 mmol) and methylisothiocyanate (1.0 mmol) was slowly added on the solution making the layers of the solutions. By the slow diffusion of the solutions, black plate-shaped single crystals were obtained after a few days standing at room temperature.
All H atoms were placed in calculated positions and refined as riding, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).
Dithiocarbamate (dtc) derivatives are good candidates for ligands in polynuclear metal complexes. This is because ligands that contain dithiocarboxyl groups have the ability not only to bridge metal ions by sulfur atoms, which have large atomic orbitals, in the ligands but also to stabilize Cu complexes in a wide range of oxidation states such as Cu(I), Cu(II), and Cu(III). To date, several metal clusters (Cardell et al., 2006; Okubo, Kuwamoto et al., 2011; Liao et al., 2012) and coordination polymers (Golding et al., 1974; Hendrickson et al., 1975; Okubo et al., 2010; Okubo, Tanaka et al., 2011) have been synthesized from dithiocarbamate derivatives.
Single-crystal X-ray analysis reveals the formation of a new mixed -valence Cu(I)/Cu(II) cluster of formula [CuI8CuIIBr5(Hm-dtc)5]. This complex has a cage structure consisting of a mononuclear Cu(Hm-dtc)2 unit, eight Cu ions, four Br anions and bridging µ-Hm-dtc- ligands, and the Br1 is incorporated in the center of the cage through bonding to the Cu3 ion. The Cu1 ion of the mononuclear units has distorted square-planar coordination geometries in which the Hm-dtc- ligands coordinate with the Cu1 ion in four-membered chelate rings. The Cu3 ion forms a tetrahedral S2Br2 coordination geometry. The other Cu ions, Cu2, Cu4, Cu5, Cu6, Cu7 and Cu8, have trigonal pyramidal S2Br1 coordination geometries, where the Br1 ion is located close to the Cu ions, thereby forming a pseudo tetrahedral geometry for the Cu ions; the Cu2—Br1, Cu4—Br1, Cu5—Br1, Cu6—Br1, Cu7—Br1, Cu8—Br1 and Cu9—Br1 separations are 2.9054 (6), 2.8672 (6), 2.7825 (8), 2.9319 (6), 2.9262 (8), 2.9563 (7) and 2.9013 (7) Å, respectively; these separations are slightly larger than the Cu3—Br1 distance [2.6912 (8) Å] and smaller than that of the sum of the van der Waals radii for Cu and Br (3.25 Å). In addition, the incorporated Br1 ion is also located close to the Cu1 ion of the mononuclear Cu(Hm-dtc)2 unit with the separation of 2.9650 (6) Å. Usually, the oxidation states of Cu complexes with dithiocarbamate ligands can be determined by the Cu—S distances. In the mononuclear Cu(Hm-dtc)2 unit, the average Cu—S distance is 2.3185 (13) Å, which is similar to the typical Cu(II)—S distances for Cu(II) -dithiocarbamate complexes such as CuII(Et2dtc)2 [av. 2.312 (1) Å], CuII(i-Pr2dtc)2 [av. 2.2884 (7) Å] and CuII(n-Bu2dtc)2 [av. 2.308 (1) Å] (Jian et al., 1999; Ngo et al., 2003). Based on its charge neutrality, it is concluded that this complex is in the mixed-valence state with formula [CuI8CuIIBr5(Hm-dtc)5], in which the square-planar Cu1 is divalent and the other Cu ions of Cu2—Cu9 with distorted tetrahedral or trigonal pyramidal coordination geometries are monovalent.
For copper clusters with dithiocarbamate ligands, see; Cardell et al. (2006); Okubo, Kuwamoto et al. (2011); Liao et al. (2012). For coordination polymers with dithiocarbamate ligands, see; Golding et al. (1974); Hendrickson et al. (1975); Okubo et al. (2010); Okubo, Tanaka et al. (2011). For mononulcear copper complexes with dithiocarbamate ligands, see; Jian et al. (1999); Ngo et al. (2003).
Data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).[Cu9Br5(C7H12NS2)5] | F(000) = 3604.00 |
Mr = 1842.93 | Dx = 2.262 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ybc | Cell parameters from 39225 reflections |
a = 12.5728 (6) Å | θ = 3.0–27.5° |
b = 19.5997 (7) Å | µ = 7.59 mm−1 |
c = 22.9708 (8) Å | T = 296 K |
β = 107.0411 (12)° | Platelet, black |
V = 5412.0 (4) Å3 | 0.90 × 0.60 × 0.10 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 10468 reflections with F2 > 2.0σ(F2) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.078 |
ω scans | θmax = 27.4° |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | h = −16→16 |
Tmin = 0.241, Tmax = 0.468 | k = −24→25 |
50620 measured reflections | l = −29→29 |
12284 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0718P)2] where P = (Fo2 + 2Fc2)/3 |
12284 reflections | (Δ/σ)max = 0.001 |
577 parameters | Δρmax = 2.35 e Å−3 |
0 restraints | Δρmin = −1.54 e Å−3 |
Primary atom site location: structure-invariant direct methods |
[Cu9Br5(C7H12NS2)5] | V = 5412.0 (4) Å3 |
Mr = 1842.93 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.5728 (6) Å | µ = 7.59 mm−1 |
b = 19.5997 (7) Å | T = 296 K |
c = 22.9708 (8) Å | 0.90 × 0.60 × 0.10 mm |
β = 107.0411 (12)° |
Rigaku R-AXIS RAPID diffractometer | 12284 independent reflections |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | 10468 reflections with F2 > 2.0σ(F2) |
Tmin = 0.241, Tmax = 0.468 | Rint = 0.078 |
50620 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.03 | Δρmax = 2.35 e Å−3 |
12284 reflections | Δρmin = −1.54 e Å−3 |
577 parameters |
Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.83480 (3) | 0.752744 (17) | 0.342115 (17) | 0.01264 (10) | |
Br2 | 1.05003 (4) | 0.73843 (2) | 0.510018 (18) | 0.01870 (11) | |
Br3 | 0.71501 (4) | 0.70024 (2) | 0.480276 (17) | 0.01870 (11) | |
Br4 | 0.97088 (4) | 0.73887 (2) | 0.205891 (19) | 0.02023 (11) | |
Br5 | 0.64700 (4) | 0.69961 (2) | 0.176201 (17) | 0.01830 (11) | |
Cu1 | 0.78873 (4) | 0.90125 (2) | 0.33960 (2) | 0.01269 (11) | |
Cu2 | 1.01895 (5) | 0.81987 (3) | 0.43023 (2) | 0.01939 (13) | |
Cu3 | 0.66494 (5) | 0.77014 (2) | 0.38973 (2) | 0.01642 (12) | |
Cu4 | 0.62624 (5) | 0.77669 (2) | 0.25165 (2) | 0.01925 (13) | |
Cu5 | 0.97677 (5) | 0.81648 (3) | 0.28617 (2) | 0.01810 (12) | |
Cu6 | 1.01363 (5) | 0.66851 (2) | 0.41946 (2) | 0.01943 (13) | |
Cu7 | 0.74807 (5) | 0.63882 (3) | 0.39690 (2) | 0.01997 (13) | |
Cu8 | 0.72960 (5) | 0.63493 (3) | 0.26670 (2) | 0.02182 (13) | |
Cu9 | 0.98315 (5) | 0.66960 (2) | 0.29596 (2) | 0.01854 (12) | |
S1 | 0.92264 (9) | 0.91814 (5) | 0.43167 (4) | 0.01244 (19) | |
S2 | 0.68894 (9) | 0.88625 (5) | 0.40913 (4) | 0.0141 (2) | |
S3 | 0.65022 (9) | 0.89096 (5) | 0.24809 (4) | 0.0129 (2) | |
S4 | 0.88384 (9) | 0.91962 (5) | 0.26776 (4) | 0.01251 (19) | |
S5 | 1.12696 (9) | 0.82925 (4) | 0.36730 (4) | 0.0144 (2) | |
S6 | 1.14812 (9) | 0.67241 (5) | 0.37109 (5) | 0.0157 (2) | |
S7 | 0.51331 (9) | 0.75009 (4) | 0.30896 (4) | 0.0137 (2) | |
S8 | 0.60532 (9) | 0.60369 (5) | 0.31834 (5) | 0.0171 (2) | |
S9 | 0.90727 (9) | 0.57583 (5) | 0.41897 (4) | 0.0140 (2) | |
S10 | 0.88493 (9) | 0.57066 (5) | 0.28136 (4) | 0.0132 (2) | |
N1 | 0.8337 (3) | 0.88817 (16) | 0.52277 (14) | 0.0139 (7) | |
N2 | 0.7410 (3) | 0.89371 (16) | 0.15547 (14) | 0.0135 (7) | |
N3 | 1.3153 (3) | 0.76012 (15) | 0.39905 (15) | 0.0134 (7) | |
N4 | 0.3988 (3) | 0.64004 (16) | 0.25959 (15) | 0.0171 (8) | |
N5 | 0.8811 (3) | 0.46334 (16) | 0.35098 (14) | 0.0139 (7) | |
C1 | 0.8178 (4) | 0.89505 (18) | 0.46438 (17) | 0.0125 (8) | |
C2 | 0.9448 (4) | 0.8977 (2) | 0.56747 (18) | 0.0186 (9) | |
C3 | 0.9389 (4) | 0.9327 (2) | 0.62605 (17) | 0.0183 (9) | |
C4 | 0.8612 (4) | 0.9946 (2) | 0.61714 (19) | 0.0193 (9) | |
C5 | 0.7404 (4) | 0.9761 (2) | 0.61338 (18) | 0.0194 (9) | |
C6 | 0.6780 (4) | 0.9350 (2) | 0.55694 (18) | 0.0194 (9) | |
C7 | 0.7390 (4) | 0.8710 (2) | 0.54670 (18) | 0.0172 (9) | |
C8 | 0.7573 (4) | 0.89973 (17) | 0.21465 (17) | 0.0120 (8) | |
C9 | 0.6298 (4) | 0.88212 (19) | 0.11373 (18) | 0.0154 (8) | |
C10 | 0.5613 (4) | 0.9483 (2) | 0.09793 (18) | 0.0180 (9) | |
C11 | 0.6279 (4) | 1.0095 (2) | 0.0873 (2) | 0.0235 (10) | |
C12 | 0.7159 (4) | 0.9948 (3) | 0.0551 (2) | 0.0235 (10) | |
C13 | 0.8288 (4) | 0.9721 (2) | 0.09796 (19) | 0.0223 (10) | |
C14 | 0.8315 (4) | 0.9021 (2) | 0.12698 (17) | 0.0160 (9) | |
C15 | 1.2051 (4) | 0.75410 (18) | 0.38024 (17) | 0.0130 (8) | |
C16 | 1.3719 (4) | 0.82783 (19) | 0.40894 (18) | 0.0153 (8) | |
C17 | 1.3890 (4) | 0.8540 (2) | 0.47292 (19) | 0.0198 (9) | |
C18 | 1.4519 (4) | 0.8041 (3) | 0.52339 (18) | 0.0203 (9) | |
C19 | 1.3852 (4) | 0.7392 (2) | 0.52702 (19) | 0.0211 (10) | |
C20 | 1.3974 (4) | 0.6808 (2) | 0.48579 (19) | 0.0203 (9) | |
C21 | 1.3894 (4) | 0.70183 (19) | 0.42054 (18) | 0.0156 (9) | |
C22 | 0.4969 (4) | 0.66228 (19) | 0.29298 (17) | 0.0149 (8) | |
C23 | 0.3016 (4) | 0.6857 (2) | 0.2356 (2) | 0.0216 (9) | |
C24 | 0.2269 (4) | 0.6666 (3) | 0.1720 (2) | 0.0255 (10) | |
C25 | 0.2884 (5) | 0.6504 (3) | 0.1262 (2) | 0.0271 (11) | |
C26 | 0.3245 (5) | 0.5751 (3) | 0.1259 (2) | 0.0278 (11) | |
C27 | 0.4119 (4) | 0.5524 (2) | 0.18354 (19) | 0.0216 (10) | |
C28 | 0.3801 (4) | 0.5675 (2) | 0.24224 (18) | 0.0200 (9) | |
C29 | 0.8906 (4) | 0.53089 (18) | 0.35076 (17) | 0.0126 (8) | |
C30 | 0.8775 (4) | 0.4242 (2) | 0.40606 (19) | 0.0208 (10) | |
C31 | 0.7587 (5) | 0.4085 (3) | 0.4052 (2) | 0.0251 (10) | |
C32 | 0.6872 (4) | 0.3695 (2) | 0.3490 (2) | 0.0251 (10) | |
C33 | 0.6583 (4) | 0.4116 (3) | 0.2902 (2) | 0.0255 (10) | |
C34 | 0.7465 (4) | 0.4142 (3) | 0.2566 (2) | 0.0235 (10) | |
C35 | 0.8653 (4) | 0.42096 (19) | 0.29607 (18) | 0.0173 (9) | |
H2A | 0.9906 | 0.9249 | 0.5490 | 0.0223* | |
H2B | 0.9801 | 0.8535 | 0.5776 | 0.0223* | |
H3A | 1.0133 | 0.9473 | 0.6487 | 0.0219* | |
H3B | 0.9150 | 0.8994 | 0.6508 | 0.0219* | |
H4A | 0.8617 | 1.0179 | 0.5800 | 0.0232* | |
H4B | 0.8898 | 1.0259 | 0.6508 | 0.0232* | |
H5A | 0.7408 | 0.9500 | 0.6493 | 0.0233* | |
H5B | 0.6997 | 1.0179 | 0.6141 | 0.0233* | |
H6A | 0.6060 | 0.9219 | 0.5608 | 0.0233* | |
H6B | 0.6651 | 0.9641 | 0.5214 | 0.0233* | |
H7A | 0.7666 | 0.8465 | 0.5848 | 0.0207* | |
H7B | 0.6874 | 0.8414 | 0.5180 | 0.0207* | |
H9A | 0.5905 | 0.8500 | 0.1321 | 0.0184* | |
H9B | 0.6367 | 0.8618 | 0.0765 | 0.0184* | |
H10A | 0.4997 | 0.9406 | 0.0616 | 0.0216* | |
H10B | 0.5302 | 0.9589 | 0.1309 | 0.0216* | |
H11A | 0.6645 | 1.0301 | 0.1265 | 0.0282* | |
H11B | 0.5763 | 1.0429 | 0.0635 | 0.0282* | |
H12A | 0.7269 | 1.0356 | 0.0337 | 0.0282* | |
H12B | 0.6882 | 0.9594 | 0.0249 | 0.0282* | |
H13A | 0.8828 | 0.9725 | 0.0753 | 0.0268* | |
H13B | 0.8525 | 1.0056 | 0.1303 | 0.0268* | |
H14A | 0.8245 | 0.8672 | 0.0961 | 0.0192* | |
H14B | 0.9025 | 0.8958 | 0.1576 | 0.0192* | |
H16A | 1.3275 | 0.8604 | 0.3801 | 0.0184* | |
H16B | 1.4435 | 0.8239 | 0.4013 | 0.0184* | |
H17A | 1.3169 | 0.8638 | 0.4784 | 0.0238* | |
H17B | 1.4301 | 0.8965 | 0.4777 | 0.0238* | |
H18A | 1.5213 | 0.7911 | 0.5160 | 0.0244* | |
H18B | 1.4700 | 0.8275 | 0.5623 | 0.0244* | |
H19A | 1.4081 | 0.7230 | 0.5688 | 0.0253* | |
H19B | 1.3071 | 0.7513 | 0.5170 | 0.0253* | |
H20A | 1.3400 | 0.6472 | 0.4845 | 0.0243* | |
H20B | 1.4687 | 0.6589 | 0.5036 | 0.0243* | |
H21A | 1.4632 | 0.7133 | 0.4183 | 0.0187* | |
H21B | 1.3627 | 0.6634 | 0.3937 | 0.0187* | |
H23A | 0.3284 | 0.7319 | 0.2343 | 0.0260* | |
H23B | 0.2571 | 0.6852 | 0.2637 | 0.0260* | |
H24A | 0.1825 | 0.6272 | 0.1757 | 0.0306* | |
H24B | 0.1762 | 0.7041 | 0.1565 | 0.0306* | |
H25A | 0.3541 | 0.6791 | 0.1346 | 0.0325* | |
H25B | 0.2410 | 0.6621 | 0.0858 | 0.0325* | |
H26A | 0.2593 | 0.5463 | 0.1199 | 0.0333* | |
H26B | 0.3533 | 0.5680 | 0.0916 | 0.0333* | |
H27A | 0.4814 | 0.5753 | 0.1858 | 0.0259* | |
H27B | 0.4239 | 0.5037 | 0.1811 | 0.0259* | |
H28A | 0.3024 | 0.5563 | 0.2359 | 0.0239* | |
H28B | 0.4243 | 0.5392 | 0.2751 | 0.0239* | |
H30A | 0.9138 | 0.4504 | 0.4422 | 0.0250* | |
H30B | 0.9181 | 0.3818 | 0.4079 | 0.0250* | |
H31A | 0.7217 | 0.4513 | 0.4081 | 0.0301* | |
H31B | 0.7610 | 0.3821 | 0.4413 | 0.0301* | |
H32A | 0.7269 | 0.3288 | 0.3433 | 0.0301* | |
H32B | 0.6187 | 0.3550 | 0.3566 | 0.0301* | |
H33A | 0.5905 | 0.3933 | 0.2626 | 0.0306* | |
H33B | 0.6427 | 0.4580 | 0.2999 | 0.0306* | |
H34A | 0.7404 | 0.3730 | 0.2325 | 0.0282* | |
H34B | 0.7298 | 0.4525 | 0.2286 | 0.0282* | |
H35A | 0.8943 | 0.3757 | 0.3086 | 0.0207* | |
H35B | 0.9092 | 0.4403 | 0.2717 | 0.0207* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0174 (3) | 0.00951 (18) | 0.01128 (19) | 0.00006 (13) | 0.00471 (15) | 0.00048 (14) |
Br2 | 0.0293 (3) | 0.01343 (19) | 0.01172 (19) | −0.00048 (15) | 0.00343 (17) | −0.00034 (15) |
Br3 | 0.0282 (3) | 0.0187 (2) | 0.01104 (19) | 0.00405 (16) | 0.00865 (17) | 0.00271 (16) |
Br4 | 0.0350 (3) | 0.01384 (19) | 0.0145 (2) | −0.00169 (16) | 0.01144 (18) | −0.00015 (16) |
Br5 | 0.0282 (3) | 0.0159 (2) | 0.00980 (19) | 0.00432 (16) | 0.00411 (17) | 0.00000 (15) |
Cu1 | 0.0197 (3) | 0.0114 (3) | 0.0073 (3) | −0.00001 (18) | 0.00432 (19) | 0.00032 (18) |
Cu2 | 0.0265 (4) | 0.0157 (3) | 0.0181 (3) | 0.0045 (2) | 0.0097 (3) | 0.0026 (2) |
Cu3 | 0.0230 (3) | 0.0123 (3) | 0.0128 (3) | −0.00221 (19) | 0.0036 (2) | −0.0005 (2) |
Cu4 | 0.0317 (4) | 0.0116 (3) | 0.0184 (3) | −0.0037 (2) | 0.0134 (3) | −0.0013 (2) |
Cu5 | 0.0231 (4) | 0.0148 (3) | 0.0150 (3) | 0.00341 (19) | 0.0032 (2) | 0.0006 (2) |
Cu6 | 0.0284 (4) | 0.0151 (3) | 0.0152 (3) | −0.0063 (2) | 0.0071 (3) | −0.0027 (2) |
Cu7 | 0.0246 (4) | 0.0201 (3) | 0.0144 (3) | 0.0040 (2) | 0.0045 (3) | −0.0023 (2) |
Cu8 | 0.0275 (4) | 0.0225 (3) | 0.0154 (3) | 0.0082 (3) | 0.0061 (3) | 0.0050 (3) |
Cu9 | 0.0263 (4) | 0.0143 (3) | 0.0142 (3) | −0.0048 (2) | 0.0046 (3) | 0.0009 (2) |
S1 | 0.0184 (6) | 0.0112 (4) | 0.0087 (4) | −0.0014 (4) | 0.0054 (4) | −0.0004 (4) |
S2 | 0.0217 (6) | 0.0119 (5) | 0.0091 (5) | −0.0024 (4) | 0.0053 (4) | −0.0025 (4) |
S3 | 0.0179 (6) | 0.0106 (5) | 0.0107 (5) | 0.0002 (4) | 0.0049 (4) | 0.0003 (4) |
S4 | 0.0168 (6) | 0.0119 (5) | 0.0082 (4) | −0.0002 (4) | 0.0027 (4) | 0.0006 (4) |
S5 | 0.0184 (6) | 0.0092 (4) | 0.0148 (5) | 0.0013 (4) | 0.0039 (4) | 0.0010 (4) |
S6 | 0.0195 (6) | 0.0083 (4) | 0.0187 (5) | −0.0003 (4) | 0.0046 (4) | −0.0000 (4) |
S7 | 0.0191 (6) | 0.0107 (5) | 0.0118 (5) | −0.0022 (4) | 0.0053 (4) | −0.0016 (4) |
S8 | 0.0222 (6) | 0.0112 (5) | 0.0164 (5) | 0.0003 (4) | 0.0033 (4) | −0.0002 (4) |
S9 | 0.0218 (6) | 0.0100 (5) | 0.0098 (5) | −0.0004 (4) | 0.0040 (4) | 0.0007 (4) |
S10 | 0.0214 (6) | 0.0094 (4) | 0.0088 (4) | −0.0008 (4) | 0.0045 (4) | 0.0006 (4) |
N1 | 0.019 (2) | 0.0132 (16) | 0.0097 (15) | −0.0025 (13) | 0.0047 (14) | −0.0031 (14) |
N2 | 0.020 (2) | 0.0120 (15) | 0.0074 (15) | −0.0017 (13) | 0.0027 (13) | 0.0004 (13) |
N3 | 0.019 (2) | 0.0095 (15) | 0.0112 (16) | 0.0008 (13) | 0.0035 (14) | 0.0007 (13) |
N4 | 0.021 (2) | 0.0126 (16) | 0.0169 (17) | −0.0010 (14) | 0.0039 (15) | 0.0018 (14) |
N5 | 0.023 (2) | 0.0096 (15) | 0.0112 (16) | −0.0014 (13) | 0.0076 (14) | 0.0015 (13) |
C1 | 0.018 (3) | 0.0065 (16) | 0.0125 (18) | −0.0024 (14) | 0.0045 (16) | 0.0000 (15) |
C2 | 0.022 (3) | 0.018 (2) | 0.0137 (19) | 0.0001 (16) | 0.0022 (17) | −0.0035 (17) |
C3 | 0.026 (3) | 0.0157 (19) | 0.0099 (18) | 0.0033 (17) | −0.0000 (17) | 0.0032 (17) |
C4 | 0.027 (3) | 0.0121 (18) | 0.017 (2) | −0.0009 (16) | 0.0033 (18) | −0.0022 (17) |
C5 | 0.033 (3) | 0.0133 (19) | 0.0126 (19) | 0.0028 (17) | 0.0086 (18) | −0.0007 (17) |
C6 | 0.024 (3) | 0.021 (2) | 0.0142 (19) | −0.0019 (17) | 0.0076 (18) | −0.0027 (18) |
C7 | 0.024 (3) | 0.019 (2) | 0.0106 (18) | −0.0104 (17) | 0.0080 (17) | −0.0049 (17) |
C8 | 0.019 (3) | 0.0054 (16) | 0.0132 (18) | 0.0021 (14) | 0.0064 (16) | 0.0031 (15) |
C9 | 0.022 (3) | 0.0118 (18) | 0.0116 (18) | −0.0032 (15) | 0.0031 (16) | −0.0021 (16) |
C10 | 0.024 (3) | 0.0154 (19) | 0.0126 (19) | 0.0032 (16) | 0.0018 (17) | −0.0017 (17) |
C11 | 0.035 (3) | 0.015 (2) | 0.019 (2) | 0.0040 (18) | 0.0064 (19) | 0.0022 (18) |
C12 | 0.032 (3) | 0.018 (2) | 0.020 (2) | 0.0007 (18) | 0.007 (2) | 0.0111 (19) |
C13 | 0.029 (3) | 0.022 (3) | 0.018 (2) | −0.0056 (18) | 0.0105 (19) | 0.0029 (19) |
C14 | 0.019 (3) | 0.019 (2) | 0.0111 (18) | −0.0005 (16) | 0.0063 (16) | 0.0013 (17) |
C15 | 0.020 (3) | 0.0127 (18) | 0.0073 (17) | 0.0001 (15) | 0.0059 (16) | −0.0012 (15) |
C16 | 0.017 (3) | 0.0118 (18) | 0.0164 (19) | −0.0028 (15) | 0.0036 (16) | 0.0018 (16) |
C17 | 0.019 (3) | 0.017 (2) | 0.022 (3) | −0.0053 (16) | 0.0039 (18) | −0.0028 (18) |
C18 | 0.025 (3) | 0.025 (3) | 0.0105 (18) | −0.0027 (18) | 0.0035 (17) | −0.0032 (18) |
C19 | 0.028 (3) | 0.022 (2) | 0.013 (2) | −0.0021 (18) | 0.0049 (18) | 0.0077 (18) |
C20 | 0.023 (3) | 0.018 (2) | 0.020 (2) | 0.0014 (17) | 0.0077 (18) | 0.0070 (18) |
C21 | 0.019 (3) | 0.0129 (18) | 0.0137 (19) | 0.0032 (15) | 0.0026 (16) | 0.0030 (16) |
C22 | 0.025 (3) | 0.0121 (18) | 0.0085 (17) | −0.0014 (16) | 0.0067 (16) | 0.0002 (16) |
C23 | 0.018 (3) | 0.020 (2) | 0.023 (3) | 0.0019 (17) | 0.0006 (18) | −0.0031 (19) |
C24 | 0.022 (3) | 0.022 (3) | 0.030 (3) | 0.0026 (18) | 0.004 (2) | −0.001 (2) |
C25 | 0.041 (4) | 0.021 (3) | 0.020 (3) | 0.006 (2) | 0.010 (2) | 0.008 (2) |
C26 | 0.041 (4) | 0.024 (3) | 0.018 (3) | −0.002 (2) | 0.008 (2) | −0.0019 (19) |
C27 | 0.032 (3) | 0.0128 (19) | 0.021 (2) | −0.0058 (17) | 0.0090 (19) | −0.0019 (18) |
C28 | 0.029 (3) | 0.014 (2) | 0.0150 (19) | −0.0082 (17) | 0.0045 (18) | −0.0005 (17) |
C29 | 0.016 (3) | 0.0099 (17) | 0.0108 (18) | 0.0029 (14) | 0.0017 (15) | 0.0038 (15) |
C30 | 0.033 (3) | 0.0113 (19) | 0.018 (2) | −0.0003 (17) | 0.0071 (19) | 0.0049 (17) |
C31 | 0.041 (4) | 0.019 (2) | 0.022 (3) | 0.0034 (19) | 0.019 (2) | 0.0047 (19) |
C32 | 0.032 (3) | 0.0117 (19) | 0.036 (3) | −0.0049 (18) | 0.017 (3) | 0.003 (2) |
C33 | 0.024 (3) | 0.023 (3) | 0.031 (3) | −0.0039 (19) | 0.011 (2) | −0.006 (2) |
C34 | 0.028 (3) | 0.022 (3) | 0.021 (2) | −0.0044 (18) | 0.009 (2) | −0.0034 (19) |
C35 | 0.026 (3) | 0.0103 (18) | 0.020 (2) | 0.0008 (16) | 0.0124 (18) | −0.0024 (17) |
Br1—Cu3 | 2.6912 (8) | C24—C25 | 1.511 (8) |
Br2—Cu2 | 2.3748 (7) | C25—C26 | 1.546 (7) |
Br2—Cu6 | 2.4201 (6) | C26—C27 | 1.518 (6) |
Br3—Cu3 | 2.4149 (6) | C27—C28 | 1.543 (7) |
Br3—Cu7 | 2.3993 (7) | C30—C31 | 1.520 (8) |
Br4—Cu5 | 2.3748 (7) | C31—C32 | 1.544 (6) |
Br4—Cu9 | 2.4414 (7) | C32—C33 | 1.534 (7) |
Br5—Cu4 | 2.3705 (7) | C33—C34 | 1.525 (8) |
Br5—Cu8 | 2.3962 (6) | C34—C35 | 1.510 (6) |
Cu1—S1 | 2.3087 (10) | C2—H2A | 0.970 |
Cu1—S2 | 2.3208 (13) | C2—H2B | 0.970 |
Cu1—S3 | 2.3122 (10) | C3—H3A | 0.970 |
Cu1—S4 | 2.3322 (13) | C3—H3B | 0.970 |
Cu2—S1 | 2.2805 (12) | C4—H4A | 0.970 |
Cu2—S5 | 2.2623 (14) | C4—H4B | 0.970 |
Cu3—S2 | 2.3216 (11) | C5—H5A | 0.970 |
Cu3—S7 | 2.2711 (10) | C5—H5B | 0.970 |
Cu4—S3 | 2.2645 (11) | C6—H6A | 0.970 |
Cu4—S7 | 2.2619 (14) | C6—H6B | 0.970 |
Cu5—S4 | 2.3110 (12) | C7—H7A | 0.970 |
Cu5—S5 | 2.2447 (10) | C7—H7B | 0.970 |
Cu6—S6 | 2.2805 (15) | C9—H9A | 0.970 |
Cu6—S9 | 2.2537 (12) | C9—H9B | 0.970 |
Cu7—S8 | 2.2480 (11) | C10—H10A | 0.970 |
Cu7—S9 | 2.2788 (13) | C10—H10B | 0.970 |
Cu8—S8 | 2.3043 (15) | C11—H11A | 0.970 |
Cu8—S10 | 2.2647 (13) | C11—H11B | 0.970 |
Cu9—S6 | 2.2771 (11) | C12—H12A | 0.970 |
Cu9—S10 | 2.2705 (12) | C12—H12B | 0.970 |
S1—C1 | 1.757 (5) | C13—H13A | 0.970 |
S2—C1 | 1.749 (4) | C13—H13B | 0.970 |
S3—C8 | 1.744 (5) | C14—H14A | 0.970 |
S4—C8 | 1.741 (4) | C14—H14B | 0.970 |
S5—C15 | 1.747 (4) | C16—H16A | 0.970 |
S6—C15 | 1.741 (4) | C16—H16B | 0.970 |
S7—C22 | 1.759 (4) | C17—H17A | 0.970 |
S8—C22 | 1.747 (4) | C17—H17B | 0.970 |
S9—C29 | 1.756 (4) | C18—H18A | 0.970 |
S10—C29 | 1.757 (4) | C18—H18B | 0.970 |
N1—C1 | 1.304 (5) | C19—H19A | 0.970 |
N1—C2 | 1.483 (5) | C19—H19B | 0.970 |
N1—C7 | 1.489 (7) | C20—H20A | 0.970 |
N2—C8 | 1.319 (5) | C20—H20B | 0.970 |
N2—C9 | 1.462 (5) | C21—H21A | 0.970 |
N2—C14 | 1.478 (7) | C21—H21B | 0.970 |
N3—C15 | 1.330 (6) | C23—H23A | 0.970 |
N3—C16 | 1.491 (5) | C23—H23B | 0.970 |
N3—C21 | 1.465 (5) | C24—H24A | 0.970 |
N4—C22 | 1.321 (5) | C24—H24B | 0.970 |
N4—C23 | 1.484 (6) | C25—H25A | 0.970 |
N4—C28 | 1.476 (5) | C25—H25B | 0.970 |
N5—C29 | 1.330 (5) | C26—H26A | 0.970 |
N5—C30 | 1.492 (6) | C26—H26B | 0.970 |
N5—C35 | 1.474 (6) | C27—H27A | 0.970 |
C2—C3 | 1.531 (6) | C27—H27B | 0.970 |
C3—C4 | 1.532 (6) | C28—H28A | 0.970 |
C4—C5 | 1.539 (7) | C28—H28B | 0.970 |
C5—C6 | 1.532 (6) | C30—H30A | 0.970 |
C6—C7 | 1.524 (7) | C30—H30B | 0.970 |
C9—C10 | 1.541 (6) | C31—H31A | 0.970 |
C10—C11 | 1.521 (7) | C31—H31B | 0.970 |
C11—C12 | 1.530 (8) | C32—H32A | 0.970 |
C12—C13 | 1.537 (6) | C32—H32B | 0.970 |
C13—C14 | 1.521 (6) | C33—H33A | 0.970 |
C16—C17 | 1.511 (6) | C33—H33B | 0.970 |
C17—C18 | 1.545 (6) | C34—H34A | 0.970 |
C18—C19 | 1.540 (7) | C34—H34B | 0.970 |
C19—C20 | 1.522 (7) | C35—H35A | 0.970 |
C20—C21 | 1.529 (7) | C35—H35B | 0.970 |
C23—C24 | 1.533 (6) | ||
Br1···Cu1 | 2.9650 (6) | Br1···Cu6 | 2.9319 (6) |
Br1···Cu2 | 2.9054 (6) | Br1···Cu7 | 2.9262 (8) |
Br1···Cu4 | 2.8672 (6) | Br1···Cu8 | 2.9563 (7) |
Br1···Cu5 | 2.7825 (8) | Br1···Cu9 | 2.9013 (7) |
Cu2—Br2—Cu6 | 76.72 (2) | C5—C4—H4A | 108.819 |
Cu3—Br3—Cu7 | 70.10 (2) | C5—C4—H4B | 108.819 |
Cu5—Br4—Cu9 | 73.64 (2) | H4A—C4—H4B | 107.701 |
Cu4—Br5—Cu8 | 79.37 (2) | C4—C5—H5A | 108.513 |
S1—Cu1—S2 | 77.52 (4) | C4—C5—H5B | 108.501 |
S1—Cu1—S3 | 176.43 (5) | C6—C5—H5A | 108.516 |
S1—Cu1—S4 | 103.80 (5) | C6—C5—H5B | 108.508 |
S2—Cu1—S3 | 101.51 (5) | H5A—C5—H5B | 107.511 |
S2—Cu1—S4 | 177.71 (4) | C5—C6—H6A | 108.758 |
S3—Cu1—S4 | 77.05 (4) | C5—C6—H6B | 108.755 |
Br2—Cu2—S1 | 121.63 (4) | C7—C6—H6A | 108.737 |
Br2—Cu2—S5 | 123.64 (4) | C7—C6—H6B | 108.758 |
S1—Cu2—S5 | 111.18 (5) | H6A—C6—H6B | 107.645 |
Br1—Cu3—Br3 | 103.92 (3) | N1—C7—H7A | 109.362 |
Br1—Cu3—S2 | 97.37 (4) | N1—C7—H7B | 109.360 |
Br1—Cu3—S7 | 102.84 (4) | C6—C7—H7A | 109.374 |
Br3—Cu3—S2 | 113.85 (3) | C6—C7—H7B | 109.362 |
Br3—Cu3—S7 | 123.37 (4) | H7A—C7—H7B | 108.003 |
S2—Cu3—S7 | 110.93 (4) | N2—C9—H9A | 109.069 |
Br5—Cu4—S3 | 124.02 (4) | N2—C9—H9B | 109.070 |
Br5—Cu4—S7 | 120.07 (3) | C10—C9—H9A | 109.074 |
S3—Cu4—S7 | 111.22 (5) | C10—C9—H9B | 109.065 |
Br4—Cu5—S4 | 121.27 (3) | H9A—C9—H9B | 107.827 |
Br4—Cu5—S5 | 122.91 (4) | C9—C10—H10A | 108.785 |
S4—Cu5—S5 | 108.15 (4) | C9—C10—H10B | 108.778 |
Br2—Cu6—S6 | 114.79 (4) | C11—C10—H10A | 108.791 |
Br2—Cu6—S9 | 115.04 (4) | C11—C10—H10B | 108.785 |
S6—Cu6—S9 | 123.24 (5) | H10A—C10—H10B | 107.654 |
Br3—Cu7—S8 | 120.67 (5) | C10—C11—H11A | 108.265 |
Br3—Cu7—S9 | 116.14 (3) | C10—C11—H11B | 108.266 |
S8—Cu7—S9 | 117.08 (5) | C12—C11—H11A | 108.266 |
Br5—Cu8—S8 | 113.60 (4) | C12—C11—H11B | 108.267 |
Br5—Cu8—S10 | 123.98 (4) | H11A—C11—H11B | 107.374 |
S8—Cu8—S10 | 117.45 (5) | C11—C12—H12A | 108.747 |
Br4—Cu9—S6 | 116.49 (4) | C11—C12—H12B | 108.749 |
Br4—Cu9—S10 | 116.95 (3) | C13—C12—H12A | 108.747 |
S6—Cu9—S10 | 117.89 (4) | C13—C12—H12B | 108.751 |
Cu1—S1—Cu2 | 96.51 (4) | H12A—C12—H12B | 107.652 |
Cu1—S1—C1 | 85.28 (12) | C12—C13—H13A | 108.268 |
Cu2—S1—C1 | 104.88 (13) | C12—C13—H13B | 108.264 |
Cu1—S2—Cu3 | 93.33 (5) | C14—C13—H13A | 108.277 |
Cu1—S2—C1 | 85.09 (16) | C14—C13—H13B | 108.266 |
Cu3—S2—C1 | 106.06 (13) | H13A—C13—H13B | 107.380 |
Cu1—S3—Cu4 | 97.25 (4) | N2—C14—H14A | 109.231 |
Cu1—S3—C8 | 85.34 (12) | N2—C14—H14B | 109.225 |
Cu4—S3—C8 | 103.98 (13) | C13—C14—H14A | 109.230 |
Cu1—S4—Cu5 | 94.13 (4) | C13—C14—H14B | 109.240 |
Cu1—S4—C8 | 84.77 (16) | H14A—C14—H14B | 107.919 |
Cu5—S4—C8 | 103.96 (13) | N3—C16—H16A | 109.193 |
Cu2—S5—Cu5 | 90.29 (5) | N3—C16—H16B | 109.197 |
Cu2—S5—C15 | 103.63 (16) | C17—C16—H16A | 109.191 |
Cu5—S5—C15 | 109.97 (13) | C17—C16—H16B | 109.193 |
Cu6—S6—Cu9 | 74.20 (4) | H16A—C16—H16B | 107.907 |
Cu6—S6—C15 | 108.03 (17) | C16—C17—H17A | 108.709 |
Cu9—S6—C15 | 111.40 (13) | C16—C17—H17B | 108.701 |
Cu3—S7—Cu4 | 85.17 (5) | C18—C17—H17A | 108.695 |
Cu3—S7—C22 | 111.02 (13) | C18—C17—H17B | 108.693 |
Cu4—S7—C22 | 99.16 (17) | H17A—C17—H17B | 107.617 |
Cu7—S8—Cu8 | 80.19 (4) | C17—C18—H18A | 108.907 |
Cu7—S8—C22 | 115.33 (13) | C17—C18—H18B | 108.907 |
Cu8—S8—C22 | 103.55 (16) | C19—C18—H18A | 108.898 |
Cu6—S9—Cu7 | 92.62 (5) | C19—C18—H18B | 108.903 |
Cu6—S9—C29 | 108.91 (15) | H18A—C18—H18B | 107.720 |
Cu7—S9—C29 | 101.90 (13) | C18—C19—H19A | 108.367 |
Cu8—S10—Cu9 | 87.41 (4) | C18—C19—H19B | 108.359 |
Cu8—S10—C29 | 100.71 (15) | C20—C19—H19A | 108.367 |
Cu9—S10—C29 | 111.66 (13) | C20—C19—H19B | 108.377 |
C1—N1—C2 | 121.9 (4) | H19A—C19—H19B | 107.437 |
C1—N1—C7 | 120.4 (4) | C19—C20—H20A | 108.597 |
C2—N1—C7 | 117.8 (4) | C19—C20—H20B | 108.600 |
C8—N2—C9 | 121.3 (4) | C21—C20—H20A | 108.602 |
C8—N2—C14 | 122.6 (4) | C21—C20—H20B | 108.596 |
C9—N2—C14 | 116.0 (4) | H20A—C20—H20B | 107.574 |
C15—N3—C16 | 122.2 (4) | N3—C21—H21A | 108.939 |
C15—N3—C21 | 122.6 (4) | N3—C21—H21B | 108.946 |
C16—N3—C21 | 114.5 (4) | C20—C21—H21A | 108.952 |
C22—N4—C23 | 122.9 (4) | C20—C21—H21B | 108.944 |
C22—N4—C28 | 121.5 (4) | H21A—C21—H21B | 107.761 |
C23—N4—C28 | 115.6 (3) | N4—C23—H23A | 108.639 |
C29—N5—C30 | 122.7 (4) | N4—C23—H23B | 108.631 |
C29—N5—C35 | 123.2 (4) | C24—C23—H23A | 108.634 |
C30—N5—C35 | 113.9 (3) | C24—C23—H23B | 108.638 |
S1—C1—S2 | 111.5 (3) | H23A—C23—H23B | 107.575 |
S1—C1—N1 | 124.0 (3) | C23—C24—H24A | 108.572 |
S2—C1—N1 | 124.5 (4) | C23—C24—H24B | 108.572 |
N1—C2—C3 | 112.8 (4) | C25—C24—H24A | 108.571 |
C2—C3—C4 | 115.5 (4) | C25—C24—H24B | 108.586 |
C3—C4—C5 | 113.7 (4) | H24A—C24—H24B | 107.546 |
C4—C5—C6 | 115.0 (4) | C24—C25—H25A | 108.648 |
C5—C6—C7 | 114.0 (4) | C24—C25—H25B | 108.654 |
N1—C7—C6 | 111.3 (4) | C26—C25—H25A | 108.645 |
S3—C8—S4 | 112.2 (3) | C26—C25—H25B | 108.651 |
S3—C8—N2 | 122.5 (3) | H25A—C25—H25B | 107.601 |
S4—C8—N2 | 125.2 (4) | C25—C26—H26A | 108.637 |
N2—C9—C10 | 112.6 (3) | C25—C26—H26B | 108.637 |
C9—C10—C11 | 113.9 (4) | C27—C26—H26A | 108.636 |
C10—C11—C12 | 116.1 (4) | C27—C26—H26B | 108.641 |
C11—C12—C13 | 114.0 (4) | H26A—C26—H26B | 107.586 |
C12—C13—C14 | 116.1 (4) | C26—C27—H27A | 108.864 |
N2—C14—C13 | 111.9 (4) | C26—C27—H27B | 108.865 |
S5—C15—S6 | 124.3 (3) | C28—C27—H27A | 108.874 |
S5—C15—N3 | 117.4 (3) | C28—C27—H27B | 108.863 |
S6—C15—N3 | 118.2 (3) | H27A—C27—H27B | 107.713 |
N3—C16—C17 | 112.1 (4) | N4—C28—H28A | 109.421 |
C16—C17—C18 | 114.2 (4) | N4—C28—H28B | 109.410 |
C17—C18—C19 | 113.4 (4) | C27—C28—H28A | 109.439 |
C18—C19—C20 | 115.7 (5) | C27—C28—H28B | 109.430 |
C19—C20—C21 | 114.7 (4) | H28A—C28—H28B | 108.022 |
N3—C21—C20 | 113.2 (4) | N5—C30—H30A | 109.320 |
S7—C22—S8 | 122.8 (3) | N5—C30—H30B | 109.321 |
S7—C22—N4 | 118.4 (3) | C31—C30—H30A | 109.322 |
S8—C22—N4 | 118.8 (3) | C31—C30—H30B | 109.321 |
N4—C23—C24 | 114.5 (4) | H30A—C30—H30B | 107.964 |
C23—C24—C25 | 114.8 (4) | C30—C31—H31A | 108.259 |
C24—C25—C26 | 114.4 (4) | C30—C31—H31B | 108.272 |
C25—C26—C27 | 114.5 (4) | C32—C31—H31A | 108.268 |
C26—C27—C28 | 113.5 (4) | C32—C31—H31B | 108.263 |
N4—C28—C27 | 111.1 (4) | H31A—C31—H31B | 107.388 |
S9—C29—S10 | 123.3 (2) | C31—C32—H32A | 108.853 |
S9—C29—N5 | 118.9 (3) | C31—C32—H32B | 108.856 |
S10—C29—N5 | 117.7 (3) | C33—C32—H32A | 108.868 |
N5—C30—C31 | 111.5 (4) | C33—C32—H32B | 108.857 |
C30—C31—C32 | 116.1 (5) | H32A—C32—H32B | 107.714 |
C31—C32—C33 | 113.5 (4) | C32—C33—H33A | 108.188 |
C32—C33—C34 | 116.4 (4) | C32—C33—H33B | 108.191 |
C33—C34—C35 | 115.9 (4) | C34—C33—H33A | 108.201 |
N5—C35—C34 | 115.1 (4) | C34—C33—H33B | 108.204 |
N1—C2—H2A | 109.037 | H33A—C33—H33B | 107.360 |
N1—C2—H2B | 109.040 | C33—C34—H34A | 108.309 |
C3—C2—H2A | 109.036 | C33—C34—H34B | 108.295 |
C3—C2—H2B | 109.026 | C35—C34—H34A | 108.294 |
H2A—C2—H2B | 107.815 | C35—C34—H34B | 108.291 |
C2—C3—H3A | 108.402 | H34A—C34—H34B | 107.397 |
C2—C3—H3B | 108.411 | N5—C35—H35A | 108.497 |
C4—C3—H3A | 108.405 | N5—C35—H35B | 108.489 |
C4—C3—H3B | 108.417 | C34—C35—H35A | 108.499 |
H3A—C3—H3B | 107.470 | C34—C35—H35B | 108.512 |
C3—C4—H4A | 108.830 | H35A—C35—H35B | 107.511 |
C3—C4—H4B | 108.820 | ||
Cu2—Br2—Cu6—S6 | 68.46 (3) | Cu2—S1—C1—S2 | −102.52 (18) |
Cu2—Br2—Cu6—S9 | −139.63 (3) | Cu2—S1—C1—N1 | 80.1 (3) |
Cu6—Br2—Cu2—S1 | 140.97 (4) | Cu1—S2—C1—S1 | 6.99 (17) |
Cu6—Br2—Cu2—S5 | −62.17 (3) | Cu1—S2—C1—N1 | −175.7 (3) |
Cu3—Br3—Cu7—S8 | −69.04 (3) | Cu3—S2—C1—S1 | 99.05 (18) |
Cu3—Br3—Cu7—S9 | 139.23 (4) | Cu3—S2—C1—N1 | −83.6 (3) |
Cu7—Br3—Cu3—Br1 | −44.60 (2) | Cu1—S3—C8—S4 | −7.11 (16) |
Cu7—Br3—Cu3—S2 | −149.31 (4) | Cu1—S3—C8—N2 | 174.8 (3) |
Cu7—Br3—Cu3—S7 | 71.33 (3) | Cu4—S3—C8—S4 | −103.43 (17) |
Cu5—Br4—Cu9—S6 | −70.08 (3) | Cu4—S3—C8—N2 | 78.5 (3) |
Cu5—Br4—Cu9—S10 | 142.80 (4) | Cu1—S4—C8—S3 | 7.05 (16) |
Cu9—Br4—Cu5—S4 | −147.38 (4) | Cu1—S4—C8—N2 | −174.9 (3) |
Cu9—Br4—Cu5—S5 | 66.80 (4) | Cu5—S4—C8—S3 | 100.02 (17) |
Cu4—Br5—Cu8—S8 | 65.76 (3) | Cu5—S4—C8—N2 | −82.0 (3) |
Cu4—Br5—Cu8—S10 | −139.95 (4) | Cu2—S5—C15—S6 | 57.3 (3) |
Cu8—Br5—Cu4—S3 | 140.59 (4) | Cu2—S5—C15—N3 | −121.8 (3) |
Cu8—Br5—Cu4—S7 | −65.85 (3) | Cu5—S5—C15—S6 | −38.0 (4) |
S1—Cu1—S2—Cu3 | −110.91 (4) | Cu5—S5—C15—N3 | 142.9 (3) |
S1—Cu1—S2—C1 | −5.06 (4) | Cu6—S6—C15—S5 | −48.2 (3) |
S2—Cu1—S1—Cu2 | 109.51 (5) | Cu6—S6—C15—N3 | 130.9 (3) |
S2—Cu1—S1—C1 | 5.04 (4) | Cu9—S6—C15—S5 | 31.4 (4) |
S1—Cu1—S4—Cu5 | 74.84 (4) | Cu9—S6—C15—N3 | −149.4 (3) |
S1—Cu1—S4—C8 | 178.51 (4) | Cu3—S7—C22—S8 | −19.7 (4) |
S4—Cu1—S1—Cu2 | −72.42 (5) | Cu3—S7—C22—N4 | 161.4 (3) |
S4—Cu1—S1—C1 | −176.89 (4) | Cu4—S7—C22—S8 | 68.7 (3) |
S2—Cu1—S3—Cu4 | −73.27 (5) | Cu4—S7—C22—N4 | −110.3 (3) |
S2—Cu1—S3—C8 | −176.80 (4) | Cu7—S8—C22—S7 | 19.6 (4) |
S3—Cu1—S2—Cu3 | 72.60 (4) | Cu7—S8—C22—N4 | −161.5 (3) |
S3—Cu1—S2—C1 | 178.45 (4) | Cu8—S8—C22—S7 | −65.8 (3) |
S3—Cu1—S4—Cu5 | −108.71 (4) | Cu8—S8—C22—N4 | 113.1 (3) |
S3—Cu1—S4—C8 | −5.04 (4) | Cu6—S9—C29—S10 | −32.7 (3) |
S4—Cu1—S3—Cu4 | 108.57 (5) | Cu6—S9—C29—N5 | 147.7 (3) |
S4—Cu1—S3—C8 | 5.03 (4) | Cu7—S9—C29—S10 | 64.2 (3) |
Br2—Cu2—S1—Cu1 | −123.10 (4) | Cu7—S9—C29—N5 | −115.3 (3) |
Br2—Cu2—S1—C1 | −36.28 (6) | Cu8—S10—C29—S9 | −62.7 (3) |
Br2—Cu2—S5—Cu5 | 124.46 (4) | Cu8—S10—C29—N5 | 116.9 (3) |
Br2—Cu2—S5—C15 | 13.81 (6) | Cu9—S10—C29—S9 | 28.8 (4) |
S1—Cu2—S5—Cu5 | −76.56 (4) | Cu9—S10—C29—N5 | −151.7 (3) |
S1—Cu2—S5—C15 | 172.78 (4) | C1—N1—C2—C3 | 142.5 (4) |
S5—Cu2—S1—Cu1 | 77.44 (5) | C2—N1—C1—S1 | −1.7 (6) |
S5—Cu2—S1—C1 | 164.26 (4) | C2—N1—C1—S2 | −178.7 (3) |
Br1—Cu3—S2—Cu1 | 20.96 (3) | C1—N1—C7—C6 | −87.0 (4) |
Br1—Cu3—S2—C1 | −64.88 (5) | C7—N1—C1—S1 | 177.7 (3) |
Br1—Cu3—S7—Cu4 | −22.61 (3) | C7—N1—C1—S2 | 0.6 (5) |
Br1—Cu3—S7—C22 | 75.36 (6) | C2—N1—C7—C6 | 92.4 (4) |
Br3—Cu3—S2—Cu1 | 129.77 (4) | C7—N1—C2—C3 | −36.9 (5) |
Br3—Cu3—S2—C1 | 43.92 (7) | C8—N2—C9—C10 | 80.9 (5) |
Br3—Cu3—S7—Cu4 | −139.06 (4) | C9—N2—C8—S3 | 2.7 (5) |
Br3—Cu3—S7—C22 | −41.09 (8) | C9—N2—C8—S4 | −175.1 (3) |
S2—Cu3—S7—Cu4 | 80.56 (5) | C8—N2—C14—C13 | −100.8 (4) |
S2—Cu3—S7—C22 | 178.54 (6) | C14—N2—C8—S3 | 179.1 (3) |
S7—Cu3—S2—Cu1 | −85.86 (5) | C14—N2—C8—S4 | 1.3 (5) |
S7—Cu3—S2—C1 | −171.70 (5) | C9—N2—C14—C13 | 75.8 (4) |
Br5—Cu4—S3—Cu1 | −121.92 (4) | C14—N2—C9—C10 | −95.8 (4) |
Br5—Cu4—S3—C8 | −34.94 (6) | C15—N3—C16—C17 | 88.8 (4) |
Br5—Cu4—S7—Cu3 | 125.75 (3) | C16—N3—C15—S5 | −0.1 (6) |
Br5—Cu4—S7—C22 | 15.20 (5) | C16—N3—C15—S6 | −179.3 (3) |
S3—Cu4—S7—Cu3 | −77.57 (4) | C15—N3—C21—C20 | −78.5 (5) |
S3—Cu4—S7—C22 | 171.88 (4) | C21—N3—C15—S5 | 170.2 (3) |
S7—Cu4—S3—Cu1 | 82.50 (5) | C21—N3—C15—S6 | −9.0 (6) |
S7—Cu4—S3—C8 | 169.47 (4) | C16—N3—C21—C20 | 92.5 (4) |
Br4—Cu5—S4—Cu1 | 126.53 (4) | C21—N3—C16—C17 | −82.2 (5) |
Br4—Cu5—S4—C8 | 40.90 (7) | C22—N4—C23—C24 | 143.7 (4) |
Br4—Cu5—S5—Cu2 | −131.24 (4) | C23—N4—C22—S7 | −0.7 (6) |
Br4—Cu5—S5—C15 | −26.61 (8) | C23—N4—C22—S8 | −179.7 (4) |
S4—Cu5—S5—Cu2 | 79.11 (5) | C22—N4—C28—C27 | −86.1 (5) |
S4—Cu5—S5—C15 | −176.26 (6) | C28—N4—C22—S7 | 177.5 (4) |
S5—Cu5—S4—Cu1 | −83.23 (5) | C28—N4—C22—S8 | −1.5 (6) |
S5—Cu5—S4—C8 | −168.86 (5) | C23—N4—C28—C27 | 92.2 (5) |
Br2—Cu6—S6—Cu9 | −141.13 (3) | C28—N4—C23—C24 | −34.6 (6) |
Br2—Cu6—S6—C15 | −33.28 (6) | C29—N5—C30—C31 | 96.8 (4) |
Br2—Cu6—S9—Cu7 | 77.08 (4) | C30—N5—C29—S9 | 3.5 (6) |
Br2—Cu6—S9—C29 | −179.40 (4) | C30—N5—C29—S10 | −176.1 (4) |
S6—Cu6—S9—Cu7 | −133.66 (5) | C29—N5—C35—C34 | −84.5 (5) |
S6—Cu6—S9—C29 | −30.14 (7) | C35—N5—C29—S9 | 179.2 (4) |
S9—Cu6—S6—Cu9 | 69.54 (5) | C35—N5—C29—S10 | −0.4 (6) |
S9—Cu6—S6—C15 | 177.39 (4) | C30—N5—C35—C34 | 91.5 (4) |
Br3—Cu7—S8—Cu8 | 141.88 (4) | C35—N5—C30—C31 | −79.3 (4) |
Br3—Cu7—S8—C22 | 41.45 (8) | N1—C2—C3—C4 | −44.5 (5) |
Br3—Cu7—S9—Cu6 | −77.95 (5) | C2—C3—C4—C5 | 88.1 (5) |
Br3—Cu7—S9—C29 | 172.10 (4) | C3—C4—C5—C6 | −67.0 (4) |
S8—Cu7—S9—Cu6 | 129.28 (5) | C4—C5—C6—C7 | 52.6 (5) |
S8—Cu7—S9—C29 | 19.33 (7) | C5—C6—C7—N1 | −75.0 (5) |
S9—Cu7—S8—Cu8 | −66.64 (5) | N2—C9—C10—C11 | 40.9 (5) |
S9—Cu7—S8—C22 | −167.08 (6) | C9—C10—C11—C12 | 36.9 (5) |
Br5—Cu8—S8—Cu7 | −135.47 (3) | C10—C11—C12—C13 | −85.7 (4) |
Br5—Cu8—S8—C22 | −21.58 (6) | C11—C12—C13—C14 | 68.9 (5) |
Br5—Cu8—S10—Cu9 | 74.61 (4) | C12—C13—C14—N2 | −50.2 (5) |
Br5—Cu8—S10—C29 | −173.83 (4) | N3—C16—C17—C18 | 54.9 (5) |
S8—Cu8—S10—Cu9 | −132.00 (4) | C16—C17—C18—C19 | −67.9 (5) |
S8—Cu8—S10—C29 | −20.44 (6) | C17—C18—C19—C20 | 87.2 (5) |
S10—Cu8—S8—Cu7 | 68.45 (5) | C18—C19—C20—C21 | −45.3 (5) |
S10—Cu8—S8—C22 | −177.67 (4) | C19—C20—C21—N3 | −31.7 (5) |
Br4—Cu9—S6—Cu6 | 142.29 (3) | N4—C23—C24—C25 | −45.9 (5) |
Br4—Cu9—S6—C15 | 38.72 (8) | C23—C24—C25—C26 | 87.6 (5) |
Br4—Cu9—S10—Cu8 | −73.53 (5) | C24—C25—C26—C27 | −66.5 (6) |
Br4—Cu9—S10—C29 | −174.03 (5) | C25—C26—C27—C28 | 52.9 (6) |
S6—Cu9—S10—Cu8 | 139.82 (5) | C26—C27—C28—N4 | −78.4 (5) |
S6—Cu9—S10—C29 | 39.32 (8) | N5—C30—C31—C32 | 56.5 (5) |
S10—Cu9—S6—Cu6 | −70.91 (5) | C30—C31—C32—C33 | −69.0 (5) |
S10—Cu9—S6—C15 | −174.48 (6) | C31—C32—C33—C34 | 82.9 (5) |
Cu1—S1—C1—S2 | −7.02 (17) | C32—C33—C34—C35 | −40.4 (5) |
Cu1—S1—C1—N1 | 175.6 (3) | C33—C34—C35—N5 | −35.4 (5) |
Experimental details
Crystal data | |
Chemical formula | [Cu9Br5(C7H12NS2)5] |
Mr | 1842.93 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 12.5728 (6), 19.5997 (7), 22.9708 (8) |
β (°) | 107.0411 (12) |
V (Å3) | 5412.0 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.59 |
Crystal size (mm) | 0.90 × 0.60 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Multi-scan (ABSCOR; Rigaku, 1995) |
Tmin, Tmax | 0.241, 0.468 |
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections | 50620, 12284, 10468 |
Rint | 0.078 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.122, 1.03 |
No. of reflections | 12284 |
No. of parameters | 577 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.35, −1.54 |
Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).
Br1—Cu3 | 2.6912 (8) | Cu3—S2 | 2.3216 (11) |
Br2—Cu2 | 2.3748 (7) | Cu3—S7 | 2.2711 (10) |
Br2—Cu6 | 2.4201 (6) | Cu4—S3 | 2.2645 (11) |
Br3—Cu3 | 2.4149 (6) | Cu4—S7 | 2.2619 (14) |
Br3—Cu7 | 2.3993 (7) | Cu5—S4 | 2.3110 (12) |
Br4—Cu5 | 2.3748 (7) | Cu5—S5 | 2.2447 (10) |
Br4—Cu9 | 2.4414 (7) | Cu6—S6 | 2.2805 (15) |
Br5—Cu4 | 2.3705 (7) | Cu6—S9 | 2.2537 (12) |
Br5—Cu8 | 2.3962 (6) | Cu7—S8 | 2.2480 (11) |
Cu1—S1 | 2.3087 (10) | Cu7—S9 | 2.2788 (13) |
Cu1—S2 | 2.3208 (13) | Cu8—S8 | 2.3043 (15) |
Cu1—S3 | 2.3122 (10) | Cu8—S10 | 2.2647 (13) |
Cu1—S4 | 2.3322 (13) | Cu9—S6 | 2.2771 (11) |
Cu2—S1 | 2.2805 (12) | Cu9—S10 | 2.2705 (12) |
Cu2—S5 | 2.2623 (14) |
Acknowledgements
This work was partly supported by a Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
References
Cardell, D., Hogarth, G. & Faulkner, S. (2006). Inorg. Chim. Acta, 359, 1321–1324. Web of Science CSD CrossRef CAS Google Scholar
Golding, R. M., Rae, A. D. & Sulligoi, L. (1974). Inorg. Chem. 13, 2499–2504. CSD CrossRef CAS Web of Science Google Scholar
Hendrickson, A. R., Martin, R. L. & Taylor, D. (1975). J. Chem. Soc. Chem. Commun. pp. 843–844. CrossRef Web of Science Google Scholar
Jian, F., Wang, Z., Bai, Z., You, X., Fun, H.-K., Chinnakali, K. & Razak, I. R. (1999). Polyhedron, 18, 3401–3406. Web of Science CSD CrossRef CAS Google Scholar
Liao, P. K., Fang, C. S., Edwards, A. J., Kahlal, S., Saillard, J. Y. & Liu, C. W. (2012). Inorg. Chem. 51, 6577–6591. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ngo, S. C., Banger, K. K., DelaRosa, M. J., Toscano, P. J. & Welch, J. T. (2003). Polyhedron, 22, 1575–1583. Web of Science CSD CrossRef CAS Google Scholar
Okubo, T., Kuwamoto, H., Kim, K. H., Hayami, S., Yamano, A., Shiro, M., Maekawa, M. & Kuroda-Sowa, T. (2011). Inorg. Chem. 50, 2708–2710. Web of Science CSD CrossRef CAS PubMed Google Scholar
Okubo, T., Tanaka, N., Kim, K. H., Anma, H., Seki, S., Saeki, A., Maekawa, M. & Kuroda-Sowa, T. (2011). Dalton Trans. 40, 2218–2224. Web of Science CSD CrossRef CAS PubMed Google Scholar
Okubo, T., Tanaka, N., Kim, K. H., Yone, H., Maekawa, M. & Kuroda-Sowa, T. (2010). Inorg. Chem. 49, 3700–3702. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dithiocarbamate (dtc) derivatives are good candidates for ligands in polynuclear metal complexes. This is because ligands that contain dithiocarboxyl groups have the ability not only to bridge metal ions by sulfur atoms, which have large atomic orbitals, in the ligands but also to stabilize Cu complexes in a wide range of oxidation states such as Cu(I), Cu(II), and Cu(III). To date, several metal clusters (Cardell et al., 2006; Okubo, Kuwamoto et al., 2011; Liao et al., 2012) and coordination polymers (Golding et al., 1974; Hendrickson et al., 1975; Okubo et al., 2010; Okubo, Tanaka et al., 2011) have been synthesized from dithiocarbamate derivatives.
Single-crystal X-ray analysis reveals the formation of a new mixed -valence Cu(I)/Cu(II) cluster of formula [CuI8CuIIBr5(Hm-dtc)5]. This complex has a cage structure consisting of a mononuclear Cu(Hm-dtc)2 unit, eight Cu ions, four Br anions and bridging µ-Hm-dtc- ligands, and the Br1 is incorporated in the center of the cage through bonding to the Cu3 ion. The Cu1 ion of the mononuclear units has distorted square-planar coordination geometries in which the Hm-dtc- ligands coordinate with the Cu1 ion in four-membered chelate rings. The Cu3 ion forms a tetrahedral S2Br2 coordination geometry. The other Cu ions, Cu2, Cu4, Cu5, Cu6, Cu7 and Cu8, have trigonal pyramidal S2Br1 coordination geometries, where the Br1 ion is located close to the Cu ions, thereby forming a pseudo tetrahedral geometry for the Cu ions; the Cu2—Br1, Cu4—Br1, Cu5—Br1, Cu6—Br1, Cu7—Br1, Cu8—Br1 and Cu9—Br1 separations are 2.9054 (6), 2.8672 (6), 2.7825 (8), 2.9319 (6), 2.9262 (8), 2.9563 (7) and 2.9013 (7) Å, respectively; these separations are slightly larger than the Cu3—Br1 distance [2.6912 (8) Å] and smaller than that of the sum of the van der Waals radii for Cu and Br (3.25 Å). In addition, the incorporated Br1 ion is also located close to the Cu1 ion of the mononuclear Cu(Hm-dtc)2 unit with the separation of 2.9650 (6) Å. Usually, the oxidation states of Cu complexes with dithiocarbamate ligands can be determined by the Cu—S distances. In the mononuclear Cu(Hm-dtc)2 unit, the average Cu—S distance is 2.3185 (13) Å, which is similar to the typical Cu(II)—S distances for Cu(II) -dithiocarbamate complexes such as CuII(Et2dtc)2 [av. 2.312 (1) Å], CuII(i-Pr2dtc)2 [av. 2.2884 (7) Å] and CuII(n-Bu2dtc)2 [av. 2.308 (1) Å] (Jian et al., 1999; Ngo et al., 2003). Based on its charge neutrality, it is concluded that this complex is in the mixed-valence state with formula [CuI8CuIIBr5(Hm-dtc)5], in which the square-planar Cu1 is divalent and the other Cu ions of Cu2—Cu9 with distorted tetrahedral or trigonal pyramidal coordination geometries are monovalent.