organic compounds
2-[3-(Pyridin-1-ium-2-yl)-1H-pyrazol-1-yl]-6-[3-(pyridin-2-yl)-1H-pyrazol-1-yl]pyridinium sulfate methanol monosolvate
aSchool of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
*Correspondence e-mail: mhshu@sjtu.edu.cn
The title solvated salt, C21H17N72+·SO42−·CH3OH, was obtained when we attempted to prepare the complex of ferrous sulfate and 2,6-bis[3-(pyridin-2-yl)-1H-pyrazol-1-yl]pyridine in methanol. The dihedral angles between adjacent pyridine and pyrazole rings range from 3.8 (1) to 13.4 (1)°. An intramolecular N—H⋯N hydrogen bond occurs. In the crystal, N—H⋯O and O—H⋯N hydrogen bonds between solvent methanol molecules and the cations generate zigzag chains along [110].
Related literature
For general background to the chemistry of oligapyridine ligands, see: Constable et al. (1988, 1992, 1997); Fu, Li et al. (1996); Fu, Sun et al. (1996). For the synthesis of the ligand, see: Jameson & Goldsby (1990).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536813008647/kj2223sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813008647/kj2223Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813008647/kj2223Isup4.mol
Supporting information file. DOI: https://doi.org/10.1107/S1600536813008647/kj2223Isup4.cml
2,6-Di[3-(2-pyridyl)-1H-pyrazol-1-yl]-pyridine was prepared using methods described in the literature (Jameson & Goldsby, 1990). A solution of 2-(1H-pyrazol-3-yl)-pyridine (11.76 g, 81 mmol) in 100 ml of anhydrous 2-methoxyethyl ether was stirred with potassium (6.0 g, 153 mmol) at 70 ° C under argon until the metal dissolved. To this solution was aadded 2,6-dibromopyridine (5.90 g, 24.8 mmol) in one portion. The mixture was stirred at 110 ° C for 4 days. The crude product was washed with hot water twice, and recrystallized from dichloromethane-hexane, 2,6-di[3- (2-pyridyl)-1H-pyrazol-1-yl]-pyridine was obtained as light yellow powder (yield 60%).
2,6-Di[3-(2-pyridyl)-1H-pyrazol-1-yl]-pyridine (18.3 mg, 0.05 mmol) and FeSO4.4H2O (14 mg, 0.05 mmol) were mixed in methanol (3 ml) in a vial, the vial was covered and heated to 60 ° C for 48 h. After cooling, the title compound was obtained as yellow crystals suitable for X-ray structure analysis.
H atoms bonded to O atoms were located in a difference map. Other H atoms were positioned geometrically and refined using a riding model with N—H = 0.86 (aromatic), C—H = 0.93 (aromatic) and C—H = 0.96 (CH3). All H atoms were refined with Uiso(H) = 1.2 times (1.5 for methyl groups) Ueq(C). The four oxygen atoms in sulfate anion are disordered over two positions. The site occupancy factors of these disordered oxygen atoms were refined by free variable to 0.782 (10) for O1, O2, O3 and O4, and 0.218 (10) for O1', O2', O3'and O4', respectively, with distances restraints of S—O = 1.44 (1) Å and angles restraints of O—S—O = 109.5°. Only the major component O atoms were refined with anisotropic displacement parameters.
Helicates can be obtained by the self assembly of oligopyridine ligands with transition metal ions (Constable, 1992). 2,6':2',6":2",6'":2'",6""-Quinquepyridine reacts with AgI ions to give a mononuclear single-stranded helical complex (Constable et al. 1988). MnII single-stranded helicates bridged by Cl- (Fu, Li et al. 1996) and AgI dinuclear double-stranded helicates (Fu, Sun et al. 1996) were obtained from the quinquepyridine when methyl groups were introduced at the 6 and 6"" positions. The presence of
bound to the 4 and 4' positions of quaterpyridine leads to the complete formation of the head-to-head conformer over the head-to-tail conformer (Constable et al. 1997). This encouraged us to investigate the coordination chemistry of transition metal ions with a new ligand containing a N5 donor set. In this work, 2,6-di[3-(2-pyridyl)-1H-pyrazol-1-yl]-pyridine (Jameson & Goldsby, 1990) was used to react with ferrous sulfate in methanol, and the title compoud was obtained as yellow crystals.In the structure, dihedral angles between the pyrazole and the pyridine rings (the rings are defined by the nitrogen atoms) are as follows: N1/N2N3 = 3.8 (1), N2N3/N4 = 4.3 (1), N4/N5N6 = 13.4 (1), N5N6/N7 =4.3 (1) °. Intramolecular N—H···N hydrogen bond and intermolecular N—H···O, and O—H···N hydrogen bonds were observed in the crystal. The intermolecular N—H···O and O—H···N hydrogen bonds between solvent methanol molecules and the organic molecules generate zigzag hydrogen bond chains running in the [110] direction.
For general background to the chemistry of oligapyridine ligands, see: Constable et al. (1988, 1992, 1997); Fu, Li et al. (1996); Fu, Sun et al. (1996). For the synthesis of the ligand, see: Jameson & Goldsby (1990).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C21H17N72+·SO42−·CH4O | Z = 2 |
Mr = 495.52 | F(000) = 516 |
Triclinic, P1 | Dx = 1.439 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2575 (5) Å | Cell parameters from 2589 reflections |
b = 12.1707 (7) Å | θ = 3.3–29.3° |
c = 12.1991 (7) Å | µ = 0.19 mm−1 |
α = 112.786 (6)° | T = 293 K |
β = 100.997 (5)° | Block, yellow |
γ = 106.363 (5)° | 0.26 × 0.23 × 0.20 mm |
V = 1143.90 (11) Å3 |
Bruker APEX CCD area-detector diffractometer | 4192 independent reflections |
Radiation source: fine-focus sealed tube | 2629 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 10.3592 pixels mm-1 | θmax = 25.4°, θmin = 3.3° |
phi and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −12→14 |
Tmin = 0.952, Tmax = 0.963 | l = −14→14 |
7326 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.163 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.092P)2 + 0.0074P] where P = (Fo2 + 2Fc2)/3 |
4192 reflections | (Δ/σ)max < 0.001 |
334 parameters | Δρmax = 0.28 e Å−3 |
21 restraints | Δρmin = −0.39 e Å−3 |
C21H17N72+·SO42−·CH4O | γ = 106.363 (5)° |
Mr = 495.52 | V = 1143.90 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.2575 (5) Å | Mo Kα radiation |
b = 12.1707 (7) Å | µ = 0.19 mm−1 |
c = 12.1991 (7) Å | T = 293 K |
α = 112.786 (6)° | 0.26 × 0.23 × 0.20 mm |
β = 100.997 (5)° |
Bruker APEX CCD area-detector diffractometer | 4192 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2629 reflections with I > 2σ(I) |
Tmin = 0.952, Tmax = 0.963 | Rint = 0.027 |
7326 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 21 restraints |
wR(F2) = 0.163 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.28 e Å−3 |
4192 reflections | Δρmin = −0.39 e Å−3 |
334 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.08891 (9) | 0.24309 (9) | 0.39262 (8) | 0.0688 (3) | |
O1 | −0.0316 (7) | 0.2731 (8) | 0.3422 (6) | 0.143 (2) | 0.782 (10) |
O2 | 0.1501 (6) | 0.1801 (6) | 0.2961 (4) | 0.123 (2) | 0.782 (10) |
O3 | 0.0335 (7) | 0.1588 (5) | 0.4409 (6) | 0.146 (2) | 0.782 (10) |
O4 | 0.2181 (6) | 0.3518 (4) | 0.4819 (6) | 0.145 (3) | 0.782 (10) |
O1' | −0.034 (3) | 0.262 (3) | 0.320 (3) | 0.177 (7)* | 0.218 (10) |
O2' | 0.033 (3) | 0.1150 (12) | 0.373 (2) | 0.177 (7)* | 0.218 (10) |
O3' | 0.127 (3) | 0.3358 (19) | 0.5232 (11) | 0.177 (7)* | 0.218 (10) |
O4' | 0.231 (2) | 0.281 (3) | 0.366 (3) | 0.177 (7)* | 0.218 (10) |
O5 | −0.0119 (3) | 0.2807 (3) | 0.8003 (2) | 0.0970 (9) | |
H5 | 0.042 (5) | 0.344 (3) | 0.875 (2) | 0.146* | |
N1 | 0.2107 (3) | 0.4485 (2) | 1.0422 (2) | 0.0633 (7) | |
N2 | 0.4816 (3) | 0.7105 (2) | 1.01850 (19) | 0.0505 (6) | |
N3 | 0.4380 (3) | 0.7522 (2) | 0.9335 (2) | 0.0510 (6) | |
N4 | 0.4932 (3) | 0.8909 (2) | 0.84709 (19) | 0.0498 (6) | |
H4A | 0.3947 | 0.8512 | 0.7984 | 0.060* | |
N5 | 0.5238 (3) | 1.0240 (2) | 0.7534 (2) | 0.0501 (6) | |
N6 | 0.6192 (3) | 1.1068 (2) | 0.7231 (2) | 0.0510 (6) | |
N7 | 0.7420 (3) | 1.2708 (2) | 0.6334 (2) | 0.0594 (6) | |
H7 | 0.7990 | 1.2619 | 0.6913 | 0.071* | |
C1 | 0.2076 (4) | 0.3868 (3) | 1.1128 (3) | 0.0732 (9) | |
H1 | 0.1124 | 0.3195 | 1.0930 | 0.088* | |
C2 | 0.3357 (4) | 0.4170 (3) | 1.2119 (3) | 0.0681 (9) | |
H2 | 0.3274 | 0.3722 | 1.2587 | 0.082* | |
C3 | 0.4761 (4) | 0.5147 (3) | 1.2404 (3) | 0.0653 (9) | |
H3 | 0.5660 | 0.5361 | 1.3062 | 0.078* | |
C4 | 0.4840 (3) | 0.5811 (3) | 1.1715 (2) | 0.0552 (7) | |
H4 | 0.5789 | 0.6482 | 1.1902 | 0.066* | |
C5 | 0.3484 (3) | 0.5469 (3) | 1.0735 (2) | 0.0481 (7) | |
C6 | 0.3476 (3) | 0.6161 (3) | 0.9981 (2) | 0.0506 (7) | |
C7 | 0.2185 (3) | 0.5979 (3) | 0.9010 (3) | 0.0622 (8) | |
H7A | 0.1134 | 0.5383 | 0.8700 | 0.075* | |
C8 | 0.2800 (4) | 0.6859 (3) | 0.8621 (3) | 0.0611 (8) | |
H8 | 0.2247 | 0.6984 | 0.7988 | 0.073* | |
C9 | 0.5506 (3) | 0.8563 (3) | 0.9304 (2) | 0.0477 (6) | |
C10 | 0.7073 (3) | 0.9165 (3) | 1.0114 (3) | 0.0572 (7) | |
H10 | 0.7430 | 0.8894 | 1.0690 | 0.069* | |
C11 | 0.8084 (4) | 1.0183 (3) | 1.0032 (3) | 0.0636 (8) | |
H11 | 0.9147 | 1.0614 | 1.0560 | 0.076* | |
C12 | 0.7519 (3) | 1.0566 (3) | 0.9164 (3) | 0.0581 (7) | |
H12 | 0.8182 | 1.1247 | 0.9090 | 0.070* | |
C13 | 0.5926 (3) | 0.9889 (3) | 0.8413 (2) | 0.0477 (6) | |
C14 | 0.3652 (3) | 0.9869 (3) | 0.6920 (3) | 0.0565 (7) | |
H14 | 0.2790 | 0.9308 | 0.6982 | 0.068* | |
C15 | 0.3582 (3) | 1.0485 (3) | 0.6199 (3) | 0.0584 (7) | |
H15 | 0.2669 | 1.0431 | 0.5669 | 0.070* | |
C16 | 0.5178 (3) | 1.1216 (3) | 0.6422 (2) | 0.0507 (7) | |
C17 | 0.5826 (3) | 1.2052 (3) | 0.5893 (2) | 0.0515 (7) | |
C18 | 0.4928 (4) | 1.2218 (3) | 0.4983 (3) | 0.0623 (8) | |
H18 | 0.3822 | 1.1775 | 0.4658 | 0.075* | |
C19 | 0.5648 (5) | 1.3030 (4) | 0.4550 (3) | 0.0745 (10) | |
H19 | 0.5028 | 1.3145 | 0.3941 | 0.089* | |
C20 | 0.7278 (5) | 1.3675 (3) | 0.5008 (3) | 0.0786 (10) | |
H20 | 0.7773 | 1.4223 | 0.4711 | 0.094* | |
C21 | 0.8167 (4) | 1.3495 (3) | 0.5917 (3) | 0.0729 (9) | |
H21 | 0.9276 | 1.3917 | 0.6238 | 0.087* | |
C22 | 0.0440 (5) | 0.1814 (5) | 0.7471 (4) | 0.1141 (14) | |
H22A | 0.0433 | 0.1681 | 0.6641 | 0.171* | |
H22B | −0.0246 | 0.1024 | 0.7417 | 0.171* | |
H22C | 0.1511 | 0.2066 | 0.7997 | 0.171* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0483 (5) | 0.0784 (6) | 0.0764 (6) | 0.0165 (4) | 0.0085 (4) | 0.0448 (5) |
O1 | 0.090 (3) | 0.216 (6) | 0.144 (4) | 0.085 (3) | 0.009 (3) | 0.102 (4) |
O2 | 0.119 (4) | 0.146 (5) | 0.108 (3) | 0.061 (4) | 0.046 (3) | 0.053 (3) |
O3 | 0.193 (5) | 0.137 (4) | 0.151 (5) | 0.051 (4) | 0.087 (4) | 0.105 (4) |
O4 | 0.112 (3) | 0.080 (3) | 0.146 (4) | 0.014 (2) | −0.060 (3) | 0.025 (3) |
O5 | 0.0841 (17) | 0.0708 (18) | 0.0880 (18) | 0.0114 (15) | −0.0245 (14) | 0.0295 (15) |
N1 | 0.0612 (16) | 0.0629 (17) | 0.0612 (15) | 0.0157 (14) | 0.0120 (13) | 0.0350 (14) |
N2 | 0.0603 (15) | 0.0498 (14) | 0.0427 (12) | 0.0229 (13) | 0.0153 (11) | 0.0231 (11) |
N3 | 0.0574 (14) | 0.0456 (14) | 0.0464 (12) | 0.0191 (12) | 0.0135 (11) | 0.0208 (11) |
N4 | 0.0498 (13) | 0.0459 (14) | 0.0433 (12) | 0.0162 (12) | 0.0099 (10) | 0.0156 (11) |
N5 | 0.0551 (14) | 0.0462 (14) | 0.0478 (13) | 0.0199 (12) | 0.0161 (11) | 0.0217 (12) |
N6 | 0.0549 (13) | 0.0464 (14) | 0.0482 (13) | 0.0182 (12) | 0.0130 (11) | 0.0220 (11) |
N7 | 0.0757 (18) | 0.0522 (15) | 0.0476 (13) | 0.0229 (14) | 0.0098 (12) | 0.0276 (12) |
C1 | 0.075 (2) | 0.071 (2) | 0.079 (2) | 0.0189 (18) | 0.0226 (18) | 0.048 (2) |
C2 | 0.079 (2) | 0.078 (2) | 0.0627 (19) | 0.035 (2) | 0.0237 (18) | 0.0445 (19) |
C3 | 0.082 (2) | 0.076 (2) | 0.0429 (16) | 0.044 (2) | 0.0162 (16) | 0.0251 (17) |
C4 | 0.0577 (17) | 0.0513 (18) | 0.0465 (15) | 0.0196 (15) | 0.0112 (14) | 0.0177 (14) |
C5 | 0.0535 (16) | 0.0457 (17) | 0.0437 (14) | 0.0205 (14) | 0.0167 (13) | 0.0187 (13) |
C6 | 0.0558 (17) | 0.0440 (16) | 0.0458 (15) | 0.0196 (14) | 0.0134 (13) | 0.0170 (13) |
C7 | 0.0514 (17) | 0.0538 (19) | 0.0665 (18) | 0.0087 (15) | 0.0031 (15) | 0.0301 (16) |
C8 | 0.0600 (19) | 0.0566 (19) | 0.0597 (18) | 0.0196 (16) | 0.0044 (15) | 0.0303 (16) |
C9 | 0.0535 (16) | 0.0453 (16) | 0.0424 (14) | 0.0215 (14) | 0.0165 (13) | 0.0173 (13) |
C10 | 0.0591 (18) | 0.063 (2) | 0.0544 (17) | 0.0257 (16) | 0.0172 (15) | 0.0314 (16) |
C11 | 0.0526 (17) | 0.073 (2) | 0.0581 (18) | 0.0192 (17) | 0.0113 (14) | 0.0305 (17) |
C12 | 0.0539 (17) | 0.0571 (19) | 0.0592 (17) | 0.0154 (15) | 0.0172 (15) | 0.0287 (16) |
C13 | 0.0545 (16) | 0.0451 (17) | 0.0427 (14) | 0.0208 (14) | 0.0166 (13) | 0.0188 (13) |
C14 | 0.0522 (17) | 0.0539 (18) | 0.0522 (16) | 0.0184 (15) | 0.0122 (14) | 0.0185 (15) |
C15 | 0.0560 (18) | 0.0578 (19) | 0.0530 (16) | 0.0247 (16) | 0.0103 (14) | 0.0202 (15) |
C16 | 0.0635 (18) | 0.0450 (17) | 0.0409 (14) | 0.0263 (15) | 0.0137 (13) | 0.0160 (13) |
C17 | 0.0630 (19) | 0.0444 (16) | 0.0431 (15) | 0.0258 (15) | 0.0129 (14) | 0.0157 (13) |
C18 | 0.076 (2) | 0.068 (2) | 0.0525 (16) | 0.0421 (18) | 0.0160 (15) | 0.0295 (17) |
C19 | 0.108 (3) | 0.080 (2) | 0.0595 (19) | 0.057 (2) | 0.028 (2) | 0.0413 (19) |
C20 | 0.119 (3) | 0.068 (2) | 0.066 (2) | 0.042 (2) | 0.036 (2) | 0.041 (2) |
C21 | 0.085 (2) | 0.060 (2) | 0.0634 (19) | 0.0145 (19) | 0.0183 (18) | 0.0320 (18) |
C22 | 0.105 (3) | 0.122 (4) | 0.106 (3) | 0.047 (3) | 0.019 (3) | 0.051 (3) |
S1—O4 | 1.365 (3) | C3—H3 | 0.9300 |
S1—O1 | 1.378 (3) | C4—C5 | 1.387 (4) |
S1—O3 | 1.396 (3) | C4—H4 | 0.9300 |
S1—O2' | 1.400 (9) | C5—C6 | 1.469 (4) |
S1—O4' | 1.403 (9) | C6—C7 | 1.411 (4) |
S1—O1' | 1.432 (9) | C7—C8 | 1.359 (4) |
S1—O2 | 1.448 (4) | C7—H7A | 0.9300 |
S1—O3' | 1.451 (9) | C8—H8 | 0.9300 |
O5—C22 | 1.422 (5) | C9—C10 | 1.382 (4) |
O5—H5 | 0.863 (11) | C10—C11 | 1.378 (4) |
N1—C1 | 1.342 (4) | C10—H10 | 0.9300 |
N1—C5 | 1.344 (3) | C11—C12 | 1.385 (4) |
N2—C6 | 1.334 (3) | C11—H11 | 0.9300 |
N2—N3 | 1.363 (3) | C12—C13 | 1.381 (4) |
N3—C8 | 1.362 (4) | C12—H12 | 0.9300 |
N3—C9 | 1.415 (3) | C14—C15 | 1.362 (4) |
N4—C9 | 1.321 (3) | C14—H14 | 0.9300 |
N4—C13 | 1.321 (3) | C15—C16 | 1.402 (4) |
N4—H4A | 0.8600 | C15—H15 | 0.9300 |
N5—N6 | 1.357 (3) | C16—C17 | 1.458 (4) |
N5—C14 | 1.366 (3) | C17—C18 | 1.372 (4) |
N5—C13 | 1.410 (3) | C18—C19 | 1.366 (5) |
N6—C16 | 1.329 (3) | C18—H18 | 0.9300 |
N7—C21 | 1.339 (4) | C19—C20 | 1.370 (5) |
N7—C17 | 1.343 (4) | C19—H19 | 0.9300 |
N7—H7 | 0.8600 | C20—C21 | 1.377 (4) |
C1—C2 | 1.367 (4) | C20—H20 | 0.9300 |
C1—H1 | 0.9300 | C21—H21 | 0.9300 |
C2—C3 | 1.364 (4) | C22—H22A | 0.9600 |
C2—H2 | 0.9300 | C22—H22B | 0.9600 |
C3—C4 | 1.372 (4) | C22—H22C | 0.9600 |
O4—S1—O1 | 111.7 (4) | N1—C5—C6 | 116.3 (2) |
O4—S1—O3 | 111.2 (3) | C4—C5—C6 | 121.8 (3) |
O1—S1—O3 | 111.2 (4) | N2—C6—C7 | 111.2 (2) |
O4—S1—O2' | 132.2 (10) | N2—C6—C5 | 120.1 (2) |
O1—S1—O2' | 112.3 (12) | C7—C6—C5 | 128.6 (3) |
O3—S1—O2' | 33.1 (10) | C8—C7—C6 | 105.5 (3) |
O4—S1—O4' | 60.1 (10) | C8—C7—H7A | 127.2 |
O1—S1—O4' | 116.2 (10) | C6—C7—H7A | 127.2 |
O3—S1—O4' | 131.3 (9) | C7—C8—N3 | 106.9 (2) |
O2'—S1—O4' | 113.6 (11) | C7—C8—H8 | 126.6 |
O4—S1—O1' | 116.8 (13) | N3—C8—H8 | 126.6 |
O1—S1—O1' | 9.8 (16) | N4—C9—C10 | 124.0 (3) |
O3—S1—O1' | 114.6 (14) | N4—C9—N3 | 114.9 (2) |
O2'—S1—O1' | 109.6 (12) | C10—C9—N3 | 121.0 (2) |
O4'—S1—O1' | 110.6 (13) | C11—C10—C9 | 117.2 (3) |
O4—S1—O2 | 104.5 (3) | C11—C10—H10 | 121.4 |
O1—S1—O2 | 110.1 (3) | C9—C10—H10 | 121.4 |
O3—S1—O2 | 107.8 (3) | C10—C11—C12 | 120.2 (3) |
O2'—S1—O2 | 77.0 (10) | C10—C11—H11 | 119.9 |
O4'—S1—O2 | 45.5 (11) | C12—C11—H11 | 119.9 |
O1'—S1—O2 | 100.4 (13) | C13—C12—C11 | 116.9 (3) |
O4—S1—O3' | 44.6 (9) | C13—C12—H12 | 121.5 |
O1—S1—O3' | 96.3 (11) | C11—C12—H12 | 121.5 |
O3—S1—O3' | 79.9 (9) | N4—C13—C12 | 124.2 (2) |
O2'—S1—O3' | 112.3 (11) | N4—C13—N5 | 115.0 (2) |
O4'—S1—O3' | 104.6 (11) | C12—C13—N5 | 120.7 (3) |
O1'—S1—O3' | 105.8 (12) | C15—C14—N5 | 106.4 (3) |
O2—S1—O3' | 146.4 (10) | C15—C14—H14 | 126.8 |
C22—O5—H5 | 120 (3) | N5—C14—H14 | 126.8 |
C1—N1—C5 | 117.1 (3) | C14—C15—C16 | 105.5 (2) |
C6—N2—N3 | 104.5 (2) | C14—C15—H15 | 127.2 |
C8—N3—N2 | 111.9 (2) | C16—C15—H15 | 127.2 |
C8—N3—C9 | 127.6 (2) | N6—C16—C15 | 111.6 (2) |
N2—N3—C9 | 120.4 (2) | N6—C16—C17 | 118.6 (3) |
C9—N4—C13 | 117.5 (2) | C15—C16—C17 | 129.8 (2) |
C9—N4—H4A | 121.3 | N7—C17—C18 | 117.8 (3) |
C13—N4—H4A | 121.3 | N7—C17—C16 | 117.4 (2) |
N6—N5—C14 | 112.0 (2) | C18—C17—C16 | 124.8 (3) |
N6—N5—C13 | 119.9 (2) | C19—C18—C17 | 120.4 (3) |
C14—N5—C13 | 128.1 (2) | C19—C18—H18 | 119.8 |
C16—N6—N5 | 104.4 (2) | C17—C18—H18 | 119.8 |
C21—N7—C17 | 123.3 (3) | C18—C19—C20 | 120.4 (3) |
C21—N7—H7 | 118.3 | C18—C19—H19 | 119.8 |
C17—N7—H7 | 118.3 | C20—C19—H19 | 119.8 |
N1—C1—C2 | 124.0 (3) | C19—C20—C21 | 118.7 (3) |
N1—C1—H1 | 118.0 | C19—C20—H20 | 120.7 |
C2—C1—H1 | 118.0 | C21—C20—H20 | 120.7 |
C3—C2—C1 | 118.3 (3) | N7—C21—C20 | 119.4 (3) |
C3—C2—H2 | 120.9 | N7—C21—H21 | 120.3 |
C1—C2—H2 | 120.9 | C20—C21—H21 | 120.3 |
C2—C3—C4 | 119.6 (3) | O5—C22—H22A | 109.5 |
C2—C3—H3 | 120.2 | O5—C22—H22B | 109.5 |
C4—C3—H3 | 120.2 | H22A—C22—H22B | 109.5 |
C3—C4—C5 | 119.0 (3) | O5—C22—H22C | 109.5 |
C3—C4—H4 | 120.5 | H22A—C22—H22C | 109.5 |
C5—C4—H4 | 120.5 | H22B—C22—H22C | 109.5 |
N1—C5—C4 | 121.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···N6 | 0.86 (1) | 2.35 (1) | 2.713 (10) | 106 (1) |
O5—H5···N1 | 0.86 (3) | 1.97 (3) | 2.79 (3) | 159 (4) |
N7—H7···O5i | 0.86 (1) | 1.88 (1) | 2.690 (10) | 156 (1) |
Symmetry code: (i) x+1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C21H17N72+·SO42−·CH4O |
Mr | 495.52 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.2575 (5), 12.1707 (7), 12.1991 (7) |
α, β, γ (°) | 112.786 (6), 100.997 (5), 106.363 (5) |
V (Å3) | 1143.90 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.19 |
Crystal size (mm) | 0.26 × 0.23 × 0.20 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.952, 0.963 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7326, 4192, 2629 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.163, 1.01 |
No. of reflections | 4192 |
No. of parameters | 334 |
No. of restraints | 21 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.39 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···N6 | 0.86 (1) | 2.35 (1) | 2.713 (10) | 106 (1) |
O5—H5···N1 | 0.86 (3) | 1.97 (3) | 2.786 (30) | 159 (4) |
N7—H7···O5i | 0.86 (1) | 1.88 (1) | 2.690 (10) | 156 (1) |
Symmetry code: (i) x+1, y+1, z. |
Acknowledgements
The authors acknowledge financial support by the Natural Science Foundation of China (grant No. 21271129).
References
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Constable, E. C. (1992). Tetrahedron, 48, 10013–10059. CrossRef CAS Web of Science Google Scholar
Constable, E. C., Drew, M. G. B., Forsyth, G. & Ward, M. D. (1988). J. Chem. Soc. Chem. Commun. pp. 1450–1451. CrossRef Web of Science Google Scholar
Constable, E. C., Heitzler, F., Neuburger, M. & Zehnder, M. (1997). J. Am. Chem. Soc. 119, 5606–5617. CSD CrossRef CAS Web of Science Google Scholar
Fu, Y., Li, Q., Zhou, Z., Wang, D., Wak, T. C. W., Hu, H. & Tang, W. (1996). Chem. Commun. pp. 1549–1550. CSD CrossRef Web of Science Google Scholar
Fu, Y., Sun, J., Li, Q., Chen, Y., Dai, W., Wang, D., Mak, T. C. W., Tang, W. & Hu, H. (1996). J. Chem. Soc. Dalton Trans. pp. 2309–2313. CSD CrossRef Web of Science Google Scholar
Jameson, D. L. & Goldsby, K. A. (1990). J. Org. Chem., 55, 4992–4994. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Ata Cryst. A64, 112–122. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Helicates can be obtained by the self assembly of oligopyridine ligands with transition metal ions (Constable, 1992). 2,6':2',6":2",6'":2'",6""-Quinquepyridine reacts with AgI ions to give a mononuclear single-stranded helical complex (Constable et al. 1988). MnII single-stranded helicates bridged by Cl- (Fu, Li et al. 1996) and AgI dinuclear double-stranded helicates (Fu, Sun et al. 1996) were obtained from the quinquepyridine when methyl groups were introduced at the 6 and 6"" positions. The presence of alkyl groups bound to the 4 and 4' positions of quaterpyridine leads to the complete formation of the head-to-head conformer over the head-to-tail conformer (Constable et al. 1997). This encouraged us to investigate the coordination chemistry of transition metal ions with a new ligand containing a N5 donor set. In this work, 2,6-di[3-(2-pyridyl)-1H-pyrazol-1-yl]-pyridine (Jameson & Goldsby, 1990) was used to react with ferrous sulfate in methanol, and the title compoud was obtained as yellow crystals.
In the structure, dihedral angles between the pyrazole and the pyridine rings (the rings are defined by the nitrogen atoms) are as follows: N1/N2N3 = 3.8 (1), N2N3/N4 = 4.3 (1), N4/N5N6 = 13.4 (1), N5N6/N7 =4.3 (1) °. Intramolecular N—H···N hydrogen bond and intermolecular N—H···O, and O—H···N hydrogen bonds were observed in the crystal. The intermolecular N—H···O and O—H···N hydrogen bonds between solvent methanol molecules and the organic molecules generate zigzag hydrogen bond chains running in the [110] direction.