organic compounds
(4S)-4-[(R)-Chloro(4-nitrophenyl)methyl]-1,3-oxazolidin-2-one
aUMR 990, INSERM, Université d'Auvergne, Laboratoire de Chimie Physique, Faculté de Pharmacie, 63001 Clermont-Ferrand, France, bLaboratoire de Chimie Thérapeutique, Faculté de Pharmacie, Université d'Auvergne, 63001 Clermont-Ferrand, France, and cSamara State University, 433011 Samara, Russian Federation
*Correspondence e-mail: vincent.gaumet@udamail.fr
In the title compound, C10H9ClN2O4, the oxazolidinone ring adopts a near-planar conformation, with mean and maximum deviations of 0.0204 (8) and 0.0328 (8) Å, respectively. The nitro group is twisted slightly from the plane of the benzene ring, making a dihedral angle of 6.79 (3)°. The dihedral angle between the mean oxazolidinone plane and the benzene ring is 56.21 (3)°. In the crystal, N—H⋯O hydrogen bonds and N—O⋯π interactions [O⋯centroid distances = 3.478 (1) and 3.238 (1) Å] dominate the packing, forming infinite zigzag chains along the b-axis direction. Neighbouring chains are linked together through C—H⋯O and C—H⋯Cl interactions. The of the two stereogenic centres was determined using the of the Cl atom.
Related literature
For the biological activity of oxazolidinone derivatives, see: Michalska et al. (2012); Mathur et al. (2013); Jindal et al. (2013). For related structures, see: Bach et al. (2001); Tsui et al. (2013). For detailed of the synthesis, see: Madesclaire et al. (2013).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2012); cell SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536813010398/kp2451sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813010398/kp2451Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813010398/kp2451Isup3.cml
The title compound was obtained as a by-product from the reaction of 4-[hydroxy(4-nitrophenyl)methyl]-1,3-oxazolidin-2-one and benzenesulfonyl chloride with pyridine in chloroform. The synthesis process is described by Madesclaire et al. (2013). After isolation and purification by
crystals suitable for X-ray analysis were obtained by slow evaporation from a mixture of ethyl acetate-cyclohexane (1:1 vol.) solution.H atoms were all found in a difference map, but those bonded to C were refined using a riding model with Uiso(H) = 1.2 Ueq(C) and C—H = 0.93–0.98 Å. The H atom bonded to N was freely refined. The highest peak and the deepest hole in the difference Fourier map are located 0.70 and 1.02 Å, respectively from C11 and C8 atoms. The
was determined on the basis of 2348 Friedel pairs.Oxazolidinones are a new class of synthetic antimicrobial agents. Linezolid is the first oxazolidinone approved for human use in the treatment of multidrug-resistant gram-positive bacterial infections (Michalska et al., 2012; Mathur et al., 2013). Linezolid may also offer novel disease modifying and symptomatic therapeutic potential for the treatment of anxiety disorders (Jindal et al., 2013).
The molecular structure of the title compound (Fig. 1) reveals a planar oxazolidinone ring with a mean deviation of 0.0204 (8) Å, maximum deviation from planarity being 0.0328 (8) Å for atom C5. The dihedral angle between the mean oxazolidinone plane and the phenyl ring is 56.21 (3)°. The p-NO2 group form a interplanar angle of 6.79° with the benzene ring. In the crystal, molecules are linked through N3—H3···O15 hydrogen bonds into infinite zigzag chains extending along the b axis (Table 1, Fig. 2). In chains, molecules are regularly arranged in head-to-tail sequence allowing N—O···π stacking interactions which reinforce the chain cohesion (Fig. 2 and 3). These stacking forces are characterized by two N13—O15···Cgi, iv [symmetry code: i: -x + 1, y + 1/2, -z + 1; iv: -x + 1, y - 1/2, -z + 1] interactions with distances of 3.478 (1) Å and 3.238 (1) Å between the O15 atom and centroid, Cg, of the (C7—C12) aromatic rings. Adjacent chains build the three dimensional network via C6—H6···O16 and C11—H11···Cl17 interactions (Table 1).
The title coumpound exhibits structural similarities with related structures (Bach et al., 2001; Tsui et al., 2013).
For the biological activity of oxazolidinone derivatives, see: Michalska et al. (2012); Mathur et al. (2013); Jindal et al. (2013). For related structures, see: Bach et al. (2001); Tsui et al. (2013). For detailed of the synthesis, see: Madesclaire et al. (2013).
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C10H9ClN2O4 | F(000) = 264 |
Mr = 256.64 | Dx = 1.573 Mg m−3 |
Monoclinic, P21 | Melting point: 414 K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2372 (1) Å | Cell parameters from 6817 reflections |
b = 6.6726 (1) Å | θ = 4.0–39.2° |
c = 11.7126 (2) Å | µ = 0.36 mm−1 |
β = 106.715 (1)° | T = 296 K |
V = 541.71 (1) Å3 | Block prism, colourless |
Z = 2 | 0.52 × 0.49 × 0.34 mm |
Bruker APEXII CCD diffractometer | 6114 independent reflections |
Radiation source: fine-focus sealed tube | 5384 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
φ and ω scans | θmax = 41.1°, θmin = 4.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −11→13 |
Tmin = 0.915, Tmax = 1.000 | k = −12→10 |
12895 measured reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0548P)2 + 0.0254P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
6114 reflections | Δρmax = 0.33 e Å−3 |
158 parameters | Δρmin = −0.44 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2348 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (3) |
C10H9ClN2O4 | V = 541.71 (1) Å3 |
Mr = 256.64 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.2372 (1) Å | µ = 0.36 mm−1 |
b = 6.6726 (1) Å | T = 296 K |
c = 11.7126 (2) Å | 0.52 × 0.49 × 0.34 mm |
β = 106.715 (1)° |
Bruker APEXII CCD diffractometer | 6114 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | 5384 reflections with I > 2σ(I) |
Tmin = 0.915, Tmax = 1.000 | Rint = 0.014 |
12895 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | Δρmax = 0.33 e Å−3 |
S = 1.06 | Δρmin = −0.44 e Å−3 |
6114 reflections | Absolute structure: Flack (1983), 2348 Friedel pairs |
158 parameters | Absolute structure parameter: −0.03 (3) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.27342 (14) | 1.09892 (14) | 0.00860 (7) | 0.04046 (18) | |
C2 | −0.09939 (17) | 1.16003 (16) | 0.07729 (9) | 0.03409 (18) | |
N3 | −0.04803 (15) | 1.04959 (14) | 0.17795 (9) | 0.0379 (2) | |
H3 | 0.035 (3) | 1.073 (4) | 0.234 (2) | 0.064 (7)* | |
C4 | −0.18727 (13) | 0.89934 (14) | 0.18369 (8) | 0.02872 (15) | |
H4 | −0.2438 | 0.9293 | 0.2484 | 0.034* | |
C5 | −0.33823 (17) | 0.9297 (2) | 0.06159 (11) | 0.0423 (2) | |
H5A | −0.3460 | 0.8116 | 0.0121 | 0.051* | |
H5B | −0.4646 | 0.9553 | 0.0716 | 0.051* | |
C6 | −0.09944 (12) | 0.68917 (13) | 0.19899 (7) | 0.02377 (12) | |
H6 | −0.0574 | 0.6564 | 0.1288 | 0.029* | |
C7 | 0.07040 (11) | 0.67131 (13) | 0.30890 (7) | 0.02336 (12) | |
C8 | 0.04894 (13) | 0.68896 (17) | 0.42314 (7) | 0.02948 (16) | |
H8 | −0.0736 | 0.7054 | 0.4323 | 0.035* | |
C9 | 0.20770 (14) | 0.68227 (17) | 0.52297 (7) | 0.03020 (16) | |
H9 | 0.1936 | 0.6931 | 0.5992 | 0.036* | |
C10 | 0.38832 (12) | 0.65896 (14) | 0.50598 (7) | 0.02706 (14) | |
C11 | 0.41443 (13) | 0.64207 (18) | 0.39412 (9) | 0.03193 (17) | |
H11 | 0.5374 | 0.6270 | 0.3855 | 0.038* | |
C12 | 0.25405 (13) | 0.64796 (18) | 0.29494 (8) | 0.02991 (16) | |
H12 | 0.2691 | 0.6363 | 0.2190 | 0.036* | |
N13 | 0.55799 (13) | 0.64956 (14) | 0.61094 (8) | 0.03406 (16) | |
O14 | 0.53442 (16) | 0.6452 (3) | 0.70939 (8) | 0.0556 (3) | |
O15 | 0.71821 (13) | 0.6472 (2) | 0.59423 (9) | 0.0488 (2) | |
O16 | −0.0129 (2) | 1.29556 (17) | 0.04888 (10) | 0.0528 (3) | |
Cl17 | −0.28820 (3) | 0.51760 (4) | 0.20713 (2) | 0.03492 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0460 (4) | 0.0391 (4) | 0.0291 (3) | 0.0070 (3) | −0.0005 (3) | 0.0078 (3) |
C2 | 0.0433 (5) | 0.0272 (4) | 0.0324 (4) | 0.0033 (4) | 0.0119 (4) | 0.0008 (3) |
N3 | 0.0380 (4) | 0.0299 (4) | 0.0352 (4) | −0.0064 (3) | −0.0062 (3) | 0.0051 (3) |
C4 | 0.0271 (4) | 0.0286 (3) | 0.0258 (3) | 0.0025 (3) | 0.0002 (3) | 0.0024 (3) |
C5 | 0.0337 (5) | 0.0426 (5) | 0.0383 (5) | −0.0012 (4) | −0.0092 (4) | 0.0089 (4) |
C6 | 0.0232 (3) | 0.0272 (3) | 0.0201 (3) | 0.0001 (2) | 0.0049 (2) | 0.0002 (2) |
C7 | 0.0223 (3) | 0.0262 (3) | 0.0209 (3) | 0.0023 (2) | 0.0051 (2) | 0.0020 (2) |
C8 | 0.0229 (3) | 0.0433 (5) | 0.0221 (3) | 0.0036 (3) | 0.0063 (2) | 0.0017 (3) |
C9 | 0.0285 (4) | 0.0399 (4) | 0.0210 (3) | 0.0030 (3) | 0.0052 (3) | 0.0024 (3) |
C10 | 0.0248 (3) | 0.0277 (3) | 0.0250 (3) | 0.0037 (3) | 0.0013 (2) | 0.0025 (3) |
C11 | 0.0225 (3) | 0.0415 (5) | 0.0311 (4) | 0.0062 (3) | 0.0067 (3) | 0.0010 (3) |
C12 | 0.0256 (3) | 0.0409 (4) | 0.0239 (3) | 0.0057 (3) | 0.0083 (2) | 0.0008 (3) |
N13 | 0.0301 (3) | 0.0315 (3) | 0.0330 (4) | 0.0043 (3) | −0.0029 (3) | 0.0024 (3) |
O14 | 0.0484 (5) | 0.0801 (8) | 0.0293 (4) | 0.0045 (5) | −0.0032 (3) | 0.0063 (5) |
O15 | 0.0270 (3) | 0.0631 (6) | 0.0483 (5) | 0.0074 (4) | −0.0018 (3) | 0.0020 (5) |
O16 | 0.0723 (7) | 0.0370 (4) | 0.0576 (6) | −0.0051 (4) | 0.0321 (5) | 0.0057 (4) |
Cl17 | 0.03212 (10) | 0.03645 (11) | 0.03473 (10) | −0.00833 (9) | 0.00727 (7) | −0.00087 (8) |
O1—C2 | 1.3480 (15) | C7—C12 | 1.3938 (12) |
O1—C5 | 1.4310 (16) | C7—C8 | 1.3956 (11) |
C2—O16 | 1.2004 (15) | C8—C9 | 1.3844 (13) |
C2—N3 | 1.3487 (14) | C8—H8 | 0.9300 |
N3—C4 | 1.4367 (14) | C9—C10 | 1.3863 (13) |
N3—H3 | 0.77 (2) | C9—H9 | 0.9300 |
C4—C6 | 1.5288 (12) | C10—C11 | 1.3811 (13) |
C4—C5 | 1.5431 (13) | C10—N13 | 1.4679 (11) |
C4—H4 | 0.9800 | C11—C12 | 1.3866 (13) |
C5—H5A | 0.9700 | C11—H11 | 0.9300 |
C5—H5B | 0.9700 | C12—H12 | 0.9300 |
C6—C7 | 1.5073 (11) | N13—O14 | 1.2136 (14) |
C6—Cl17 | 1.8058 (9) | N13—O15 | 1.2303 (13) |
C6—H6 | 0.9800 | ||
C2—O1—C5 | 110.26 (8) | C4—C6—H6 | 109.0 |
O16—C2—O1 | 122.33 (11) | Cl17—C6—H6 | 109.0 |
O16—C2—N3 | 128.27 (12) | C12—C7—C8 | 119.65 (7) |
O1—C2—N3 | 109.38 (9) | C12—C7—C6 | 118.66 (7) |
C2—N3—C4 | 113.67 (9) | C8—C7—C6 | 121.59 (7) |
C2—N3—H3 | 126.1 (18) | C9—C8—C7 | 120.85 (8) |
C4—N3—H3 | 119.1 (18) | C9—C8—H8 | 119.6 |
N3—C4—C6 | 111.84 (8) | C7—C8—H8 | 119.6 |
N3—C4—C5 | 100.62 (8) | C8—C9—C10 | 118.05 (8) |
C6—C4—C5 | 112.87 (8) | C8—C9—H9 | 121.0 |
N3—C4—H4 | 110.4 | C10—C9—H9 | 121.0 |
C6—C4—H4 | 110.4 | C11—C10—C9 | 122.49 (8) |
C5—C4—H4 | 110.4 | C11—C10—N13 | 118.76 (8) |
O1—C5—C4 | 105.81 (9) | C9—C10—N13 | 118.74 (8) |
O1—C5—H5A | 110.6 | C10—C11—C12 | 118.85 (8) |
C4—C5—H5A | 110.6 | C10—C11—H11 | 120.6 |
O1—C5—H5B | 110.6 | C12—C11—H11 | 120.6 |
C4—C5—H5B | 110.6 | C11—C12—C7 | 120.10 (8) |
H5A—C5—H5B | 108.7 | C11—C12—H12 | 119.9 |
C7—C6—C4 | 112.46 (7) | C7—C12—H12 | 119.9 |
C7—C6—Cl17 | 110.38 (6) | O14—N13—O15 | 123.18 (10) |
C4—C6—Cl17 | 107.00 (6) | O14—N13—C10 | 118.97 (9) |
C7—C6—H6 | 109.0 | O15—N13—C10 | 117.84 (9) |
C5—O1—C2—O16 | 177.34 (12) | Cl17—C6—C7—C8 | −53.58 (10) |
C5—O1—C2—N3 | −3.94 (14) | C12—C7—C8—C9 | −0.42 (15) |
O16—C2—N3—C4 | 179.45 (12) | C6—C7—C8—C9 | −176.72 (9) |
O1—C2—N3—C4 | 0.83 (14) | C7—C8—C9—C10 | 0.44 (15) |
C2—N3—C4—C6 | 122.37 (10) | C8—C9—C10—C11 | −0.12 (16) |
C2—N3—C4—C5 | 2.29 (13) | C8—C9—C10—N13 | −179.40 (9) |
C2—O1—C5—C4 | 5.25 (13) | C9—C10—C11—C12 | −0.22 (17) |
N3—C4—C5—O1 | −4.35 (12) | N13—C10—C11—C12 | 179.06 (10) |
C6—C4—C5—O1 | −123.69 (10) | C10—C11—C12—C7 | 0.23 (17) |
N3—C4—C6—C7 | 57.76 (10) | C8—C7—C12—C11 | 0.08 (16) |
C5—C4—C6—C7 | 170.37 (8) | C6—C7—C12—C11 | 176.48 (10) |
N3—C4—C6—Cl17 | 179.12 (6) | C11—C10—N13—O14 | −173.10 (13) |
C5—C4—C6—Cl17 | −68.26 (9) | C9—C10—N13—O14 | 6.21 (16) |
C4—C6—C7—C12 | −110.50 (10) | C11—C10—N13—O15 | 7.17 (15) |
Cl17—C6—C7—C12 | 130.09 (8) | C9—C10—N13—O15 | −173.52 (11) |
C4—C6—C7—C8 | 65.84 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O15i | 0.77 (2) | 2.32 (2) | 3.095 (1) | 179 (2) |
C6—H6···O16ii | 0.98 | 2.46 | 3.309 (2) | 145 |
C11—H11···Cl17iii | 0.93 | 2.83 | 3.582 (1) | 139 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x, y−1/2, −z; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C10H9ClN2O4 |
Mr | 256.64 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 296 |
a, b, c (Å) | 7.2372 (1), 6.6726 (1), 11.7126 (2) |
β (°) | 106.715 (1) |
V (Å3) | 541.71 (1) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.52 × 0.49 × 0.34 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2012) |
Tmin, Tmax | 0.915, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12895, 6114, 5384 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.925 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.098, 1.06 |
No. of reflections | 6114 |
No. of parameters | 158 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.44 |
Absolute structure | Flack (1983), 2348 Friedel pairs |
Absolute structure parameter | −0.03 (3) |
Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O15i | 0.77 (2) | 2.32 (2) | 3.095 (1) | 179 (2) |
C6—H6···O16ii | 0.98 | 2.46 | 3.309 (2) | 145 |
C11—H11···Cl17iii | 0.93 | 2.83 | 3.582 (1) | 139 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x, y−1/2, −z; (iii) x+1, y, z. |
References
Bach, T., Schlummer, B. & Harms, K. (2001). Chem. Eur. J. 7, 2581–2594. CrossRef PubMed CAS Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jindal, A., Mahesh, R. & Kumar, B. (2013). Prog. NeuroPsychopharmacol. Biol. Psychiatry, 40, 47–53. Web of Science CrossRef CAS PubMed Google Scholar
Madesclaire, M., Coudert, P., Leal, F., Tarrit, S., Zaitseva, J. V. & Zaitsev, V. P. (2013). Chem. Heterocycl. Compd. In preparation. Google Scholar
Mathur, T., Kalia, V., Barman, T. K., Singhal, S., Khan, S., Upadhyay, D. J., Rattan, A. & Raj, V. S. (2013). Int. J. Antimicrob. Agents, 41, 36–40. Web of Science CrossRef CAS PubMed Google Scholar
Michalska, K., Karpiuk, I., Król, M. & Tyski, S. (2012). Bioorg. Med. Chem. 21, 577–591. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsui, G. C., Ninnemann, N. M., Hosotani, A. & Lautens, M. (2013). Org. Lett. 15, 1064–1067. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxazolidinones are a new class of synthetic antimicrobial agents. Linezolid is the first oxazolidinone approved for human use in the treatment of multidrug-resistant gram-positive bacterial infections (Michalska et al., 2012; Mathur et al., 2013). Linezolid may also offer novel disease modifying and symptomatic therapeutic potential for the treatment of anxiety disorders (Jindal et al., 2013).
The molecular structure of the title compound (Fig. 1) reveals a planar oxazolidinone ring with a mean deviation of 0.0204 (8) Å, maximum deviation from planarity being 0.0328 (8) Å for atom C5. The dihedral angle between the mean oxazolidinone plane and the phenyl ring is 56.21 (3)°. The p-NO2 group form a interplanar angle of 6.79° with the benzene ring. In the crystal, molecules are linked through N3—H3···O15 hydrogen bonds into infinite zigzag chains extending along the b axis (Table 1, Fig. 2). In chains, molecules are regularly arranged in head-to-tail sequence allowing N—O···π stacking interactions which reinforce the chain cohesion (Fig. 2 and 3). These stacking forces are characterized by two N13—O15···Cgi, iv [symmetry code: i: -x + 1, y + 1/2, -z + 1; iv: -x + 1, y - 1/2, -z + 1] interactions with distances of 3.478 (1) Å and 3.238 (1) Å between the O15 atom and centroid, Cg, of the (C7—C12) aromatic rings. Adjacent chains build the three dimensional network via C6—H6···O16 and C11—H11···Cl17 interactions (Table 1).
The title coumpound exhibits structural similarities with related structures (Bach et al., 2001; Tsui et al., 2013).