organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S)-4-[(R)-Chloro­(4-nitro­phen­yl)meth­yl]-1,3-oxazolidin-2-one

aUMR 990, INSERM, Université d'Auvergne, Laboratoire de Chimie Physique, Faculté de Pharmacie, 63001 Clermont-Ferrand, France, bLaboratoire de Chimie Thérapeutique, Faculté de Pharmacie, Université d'Auvergne, 63001 Clermont-Ferrand, France, and cSamara State University, 433011 Samara, Russian Federation
*Correspondence e-mail: vincent.gaumet@udamail.fr

(Received 8 April 2013; accepted 16 April 2013; online 24 April 2013)

In the title compound, C10H9ClN2O4, the oxazolidinone ring adopts a near-planar conformation, with mean and maximum deviations of 0.0204 (8) and 0.0328 (8) Å, respectively. The nitro group is twisted slightly from the plane of the benzene ring, making a dihedral angle of 6.79 (3)°. The dihedral angle between the mean oxazolidinone plane and the benzene ring is 56.21 (3)°. In the crystal, N—H⋯O hydrogen bonds and N—O⋯π inter­actions [O⋯centroid distances = 3.478 (1) and 3.238 (1) Å] dominate the packing, forming infinite zigzag chains along the b-axis direction. Neighbouring chains are linked together through C—H⋯O and C—H⋯Cl inter­actions. The absolute configuration of the two stereogenic centres was determined using the anomalous dispersion of the Cl atom.

Related literature

For the biological activity of oxazolidinone derivatives, see: Michalska et al. (2012[Michalska, K., Karpiuk, I., Król, M. & Tyski, S. (2012). Bioorg. Med. Chem. 21, 577-591.]); Mathur et al. (2013[Mathur, T., Kalia, V., Barman, T. K., Singhal, S., Khan, S., Upadhyay, D. J., Rattan, A. & Raj, V. S. (2013). Int. J. Antimicrob. Agents, 41, 36-40.]); Jindal et al. (2013[Jindal, A., Mahesh, R. & Kumar, B. (2013). Prog. NeuroPsychopharmacol. Biol. Psychiatry, 40, 47-53.]). For related structures, see: Bach et al. (2001[Bach, T., Schlummer, B. & Harms, K. (2001). Chem. Eur. J. 7, 2581-2594.]); Tsui et al. (2013[Tsui, G. C., Ninnemann, N. M., Hosotani, A. & Lautens, M. (2013). Org. Lett. 15, 1064-1067.]). For detailed of the synthesis, see: Madesclaire et al. (2013[Madesclaire, M., Coudert, P., Leal, F., Tarrit, S., Zaitseva, J. V. & Zaitsev, V. P. (2013). Chem. Heterocycl. Compd. In preparation.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9ClN2O4

  • Mr = 256.64

  • Monoclinic, P 21

  • a = 7.2372 (1) Å

  • b = 6.6726 (1) Å

  • c = 11.7126 (2) Å

  • β = 106.715 (1)°

  • V = 541.71 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.52 × 0.49 × 0.34 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 1.000

  • 12895 measured reflections

  • 6114 independent reflections

  • 5384 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.06

  • 6114 reflections

  • 158 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2348 Friedel pairs

  • Flack parameter: −0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O15i 0.77 (2) 2.32 (2) 3.095 (1) 179 (2)
C6—H6⋯O16ii 0.98 2.46 3.309 (2) 145
C11—H11⋯Cl17iii 0.93 2.83 3.582 (1) 139
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Oxazolidinones are a new class of synthetic antimicrobial agents. Linezolid is the first oxazolidinone approved for human use in the treatment of multidrug-resistant gram-positive bacterial infections (Michalska et al., 2012; Mathur et al., 2013). Linezolid may also offer novel disease modifying and symptomatic therapeutic potential for the treatment of anxiety disorders (Jindal et al., 2013).

The molecular structure of the title compound (Fig. 1) reveals a planar oxazolidinone ring with a mean deviation of 0.0204 (8) Å, maximum deviation from planarity being 0.0328 (8) Å for atom C5. The dihedral angle between the mean oxazolidinone plane and the phenyl ring is 56.21 (3)°. The p-NO2 group form a interplanar angle of 6.79° with the benzene ring. In the crystal, molecules are linked through N3—H3···O15 hydrogen bonds into infinite zigzag chains extending along the b axis (Table 1, Fig. 2). In chains, molecules are regularly arranged in head-to-tail sequence allowing N—O···π stacking interactions which reinforce the chain cohesion (Fig. 2 and 3). These stacking forces are characterized by two N13—O15···Cgi, iv [symmetry code: i: -x + 1, y + 1/2, -z + 1; iv: -x + 1, y - 1/2, -z + 1] interactions with distances of 3.478 (1) Å and 3.238 (1) Å between the O15 atom and centroid, Cg, of the (C7—C12) aromatic rings. Adjacent chains build the three dimensional network via C6—H6···O16 and C11—H11···Cl17 interactions (Table 1).

The title coumpound exhibits structural similarities with related structures (Bach et al., 2001; Tsui et al., 2013).

Related literature top

For the biological activity of oxazolidinone derivatives, see: Michalska et al. (2012); Mathur et al. (2013); Jindal et al. (2013). For related structures, see: Bach et al. (2001); Tsui et al. (2013). For detailed of the synthesis, see: Madesclaire et al. (2013).

Experimental top

The title compound was obtained as a by-product from the reaction of 4-[hydroxy(4-nitrophenyl)methyl]-1,3-oxazolidin-2-one and benzenesulfonyl chloride with pyridine in chloroform. The synthesis process is described by Madesclaire et al. (2013). After isolation and purification by column chromatography, crystals suitable for X-ray analysis were obtained by slow evaporation from a mixture of ethyl acetate-cyclohexane (1:1 vol.) solution.

Refinement top

H atoms were all found in a difference map, but those bonded to C were refined using a riding model with Uiso(H) = 1.2 Ueq(C) and C—H = 0.93–0.98 Å. The H atom bonded to N was freely refined. The highest peak and the deepest hole in the difference Fourier map are located 0.70 and 1.02 Å, respectively from C11 and C8 atoms. The absolute structure was determined on the basis of 2348 Friedel pairs.

Structure description top

Oxazolidinones are a new class of synthetic antimicrobial agents. Linezolid is the first oxazolidinone approved for human use in the treatment of multidrug-resistant gram-positive bacterial infections (Michalska et al., 2012; Mathur et al., 2013). Linezolid may also offer novel disease modifying and symptomatic therapeutic potential for the treatment of anxiety disorders (Jindal et al., 2013).

The molecular structure of the title compound (Fig. 1) reveals a planar oxazolidinone ring with a mean deviation of 0.0204 (8) Å, maximum deviation from planarity being 0.0328 (8) Å for atom C5. The dihedral angle between the mean oxazolidinone plane and the phenyl ring is 56.21 (3)°. The p-NO2 group form a interplanar angle of 6.79° with the benzene ring. In the crystal, molecules are linked through N3—H3···O15 hydrogen bonds into infinite zigzag chains extending along the b axis (Table 1, Fig. 2). In chains, molecules are regularly arranged in head-to-tail sequence allowing N—O···π stacking interactions which reinforce the chain cohesion (Fig. 2 and 3). These stacking forces are characterized by two N13—O15···Cgi, iv [symmetry code: i: -x + 1, y + 1/2, -z + 1; iv: -x + 1, y - 1/2, -z + 1] interactions with distances of 3.478 (1) Å and 3.238 (1) Å between the O15 atom and centroid, Cg, of the (C7—C12) aromatic rings. Adjacent chains build the three dimensional network via C6—H6···O16 and C11—H11···Cl17 interactions (Table 1).

The title coumpound exhibits structural similarities with related structures (Bach et al., 2001; Tsui et al., 2013).

For the biological activity of oxazolidinone derivatives, see: Michalska et al. (2012); Mathur et al. (2013); Jindal et al. (2013). For related structures, see: Bach et al. (2001); Tsui et al. (2013). For detailed of the synthesis, see: Madesclaire et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure showing the atom labelling scheme and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Projection along a axis, showing zigzag chain of C10H9ClN2O4 molecules connected by N—H···O hydrogen bonds and N—O···π interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. Projection along b axis, showing shift between adjacent chains. N—H···O hydrogen bonds and N—O···π interactions are represented as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
(4S)-4-[(R)-Chloro(4-nitrophenyl)methyl]-1,3-oxazolidin-2-one top
Crystal data top
C10H9ClN2O4F(000) = 264
Mr = 256.64Dx = 1.573 Mg m3
Monoclinic, P21Melting point: 414 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 7.2372 (1) ÅCell parameters from 6817 reflections
b = 6.6726 (1) Åθ = 4.0–39.2°
c = 11.7126 (2) ŵ = 0.36 mm1
β = 106.715 (1)°T = 296 K
V = 541.71 (1) Å3Block prism, colourless
Z = 20.52 × 0.49 × 0.34 mm
Data collection top
Bruker APEXII CCD
diffractometer
6114 independent reflections
Radiation source: fine-focus sealed tube5384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 41.1°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1113
Tmin = 0.915, Tmax = 1.000k = 1210
12895 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.0254P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
6114 reflectionsΔρmax = 0.33 e Å3
158 parametersΔρmin = 0.44 e Å3
1 restraintAbsolute structure: Flack (1983), 2348 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
C10H9ClN2O4V = 541.71 (1) Å3
Mr = 256.64Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.2372 (1) ŵ = 0.36 mm1
b = 6.6726 (1) ÅT = 296 K
c = 11.7126 (2) Å0.52 × 0.49 × 0.34 mm
β = 106.715 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6114 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
5384 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 1.000Rint = 0.014
12895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.33 e Å3
S = 1.06Δρmin = 0.44 e Å3
6114 reflectionsAbsolute structure: Flack (1983), 2348 Friedel pairs
158 parametersAbsolute structure parameter: 0.03 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27342 (14)1.09892 (14)0.00860 (7)0.04046 (18)
C20.09939 (17)1.16003 (16)0.07729 (9)0.03409 (18)
N30.04803 (15)1.04959 (14)0.17795 (9)0.0379 (2)
H30.035 (3)1.073 (4)0.234 (2)0.064 (7)*
C40.18727 (13)0.89934 (14)0.18369 (8)0.02872 (15)
H40.24380.92930.24840.034*
C50.33823 (17)0.9297 (2)0.06159 (11)0.0423 (2)
H5A0.34600.81160.01210.051*
H5B0.46460.95530.07160.051*
C60.09944 (12)0.68917 (13)0.19899 (7)0.02377 (12)
H60.05740.65640.12880.029*
C70.07040 (11)0.67131 (13)0.30890 (7)0.02336 (12)
C80.04894 (13)0.68896 (17)0.42314 (7)0.02948 (16)
H80.07360.70540.43230.035*
C90.20770 (14)0.68227 (17)0.52297 (7)0.03020 (16)
H90.19360.69310.59920.036*
C100.38832 (12)0.65896 (14)0.50598 (7)0.02706 (14)
C110.41443 (13)0.64207 (18)0.39412 (9)0.03193 (17)
H110.53740.62700.38550.038*
C120.25405 (13)0.64796 (18)0.29494 (8)0.02991 (16)
H120.26910.63630.21900.036*
N130.55799 (13)0.64956 (14)0.61094 (8)0.03406 (16)
O140.53442 (16)0.6452 (3)0.70939 (8)0.0556 (3)
O150.71821 (13)0.6472 (2)0.59423 (9)0.0488 (2)
O160.0129 (2)1.29556 (17)0.04888 (10)0.0528 (3)
Cl170.28820 (3)0.51760 (4)0.20713 (2)0.03492 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0460 (4)0.0391 (4)0.0291 (3)0.0070 (3)0.0005 (3)0.0078 (3)
C20.0433 (5)0.0272 (4)0.0324 (4)0.0033 (4)0.0119 (4)0.0008 (3)
N30.0380 (4)0.0299 (4)0.0352 (4)0.0064 (3)0.0062 (3)0.0051 (3)
C40.0271 (4)0.0286 (3)0.0258 (3)0.0025 (3)0.0002 (3)0.0024 (3)
C50.0337 (5)0.0426 (5)0.0383 (5)0.0012 (4)0.0092 (4)0.0089 (4)
C60.0232 (3)0.0272 (3)0.0201 (3)0.0001 (2)0.0049 (2)0.0002 (2)
C70.0223 (3)0.0262 (3)0.0209 (3)0.0023 (2)0.0051 (2)0.0020 (2)
C80.0229 (3)0.0433 (5)0.0221 (3)0.0036 (3)0.0063 (2)0.0017 (3)
C90.0285 (4)0.0399 (4)0.0210 (3)0.0030 (3)0.0052 (3)0.0024 (3)
C100.0248 (3)0.0277 (3)0.0250 (3)0.0037 (3)0.0013 (2)0.0025 (3)
C110.0225 (3)0.0415 (5)0.0311 (4)0.0062 (3)0.0067 (3)0.0010 (3)
C120.0256 (3)0.0409 (4)0.0239 (3)0.0057 (3)0.0083 (2)0.0008 (3)
N130.0301 (3)0.0315 (3)0.0330 (4)0.0043 (3)0.0029 (3)0.0024 (3)
O140.0484 (5)0.0801 (8)0.0293 (4)0.0045 (5)0.0032 (3)0.0063 (5)
O150.0270 (3)0.0631 (6)0.0483 (5)0.0074 (4)0.0018 (3)0.0020 (5)
O160.0723 (7)0.0370 (4)0.0576 (6)0.0051 (4)0.0321 (5)0.0057 (4)
Cl170.03212 (10)0.03645 (11)0.03473 (10)0.00833 (9)0.00727 (7)0.00087 (8)
Geometric parameters (Å, º) top
O1—C21.3480 (15)C7—C121.3938 (12)
O1—C51.4310 (16)C7—C81.3956 (11)
C2—O161.2004 (15)C8—C91.3844 (13)
C2—N31.3487 (14)C8—H80.9300
N3—C41.4367 (14)C9—C101.3863 (13)
N3—H30.77 (2)C9—H90.9300
C4—C61.5288 (12)C10—C111.3811 (13)
C4—C51.5431 (13)C10—N131.4679 (11)
C4—H40.9800C11—C121.3866 (13)
C5—H5A0.9700C11—H110.9300
C5—H5B0.9700C12—H120.9300
C6—C71.5073 (11)N13—O141.2136 (14)
C6—Cl171.8058 (9)N13—O151.2303 (13)
C6—H60.9800
C2—O1—C5110.26 (8)C4—C6—H6109.0
O16—C2—O1122.33 (11)Cl17—C6—H6109.0
O16—C2—N3128.27 (12)C12—C7—C8119.65 (7)
O1—C2—N3109.38 (9)C12—C7—C6118.66 (7)
C2—N3—C4113.67 (9)C8—C7—C6121.59 (7)
C2—N3—H3126.1 (18)C9—C8—C7120.85 (8)
C4—N3—H3119.1 (18)C9—C8—H8119.6
N3—C4—C6111.84 (8)C7—C8—H8119.6
N3—C4—C5100.62 (8)C8—C9—C10118.05 (8)
C6—C4—C5112.87 (8)C8—C9—H9121.0
N3—C4—H4110.4C10—C9—H9121.0
C6—C4—H4110.4C11—C10—C9122.49 (8)
C5—C4—H4110.4C11—C10—N13118.76 (8)
O1—C5—C4105.81 (9)C9—C10—N13118.74 (8)
O1—C5—H5A110.6C10—C11—C12118.85 (8)
C4—C5—H5A110.6C10—C11—H11120.6
O1—C5—H5B110.6C12—C11—H11120.6
C4—C5—H5B110.6C11—C12—C7120.10 (8)
H5A—C5—H5B108.7C11—C12—H12119.9
C7—C6—C4112.46 (7)C7—C12—H12119.9
C7—C6—Cl17110.38 (6)O14—N13—O15123.18 (10)
C4—C6—Cl17107.00 (6)O14—N13—C10118.97 (9)
C7—C6—H6109.0O15—N13—C10117.84 (9)
C5—O1—C2—O16177.34 (12)Cl17—C6—C7—C853.58 (10)
C5—O1—C2—N33.94 (14)C12—C7—C8—C90.42 (15)
O16—C2—N3—C4179.45 (12)C6—C7—C8—C9176.72 (9)
O1—C2—N3—C40.83 (14)C7—C8—C9—C100.44 (15)
C2—N3—C4—C6122.37 (10)C8—C9—C10—C110.12 (16)
C2—N3—C4—C52.29 (13)C8—C9—C10—N13179.40 (9)
C2—O1—C5—C45.25 (13)C9—C10—C11—C120.22 (17)
N3—C4—C5—O14.35 (12)N13—C10—C11—C12179.06 (10)
C6—C4—C5—O1123.69 (10)C10—C11—C12—C70.23 (17)
N3—C4—C6—C757.76 (10)C8—C7—C12—C110.08 (16)
C5—C4—C6—C7170.37 (8)C6—C7—C12—C11176.48 (10)
N3—C4—C6—Cl17179.12 (6)C11—C10—N13—O14173.10 (13)
C5—C4—C6—Cl1768.26 (9)C9—C10—N13—O146.21 (16)
C4—C6—C7—C12110.50 (10)C11—C10—N13—O157.17 (15)
Cl17—C6—C7—C12130.09 (8)C9—C10—N13—O15173.52 (11)
C4—C6—C7—C865.84 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O15i0.77 (2)2.32 (2)3.095 (1)179 (2)
C6—H6···O16ii0.982.463.309 (2)145
C11—H11···Cl17iii0.932.833.582 (1)139
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H9ClN2O4
Mr256.64
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.2372 (1), 6.6726 (1), 11.7126 (2)
β (°) 106.715 (1)
V3)541.71 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.52 × 0.49 × 0.34
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.915, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12895, 6114, 5384
Rint0.014
(sin θ/λ)max1)0.925
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.06
No. of reflections6114
No. of parameters158
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.44
Absolute structureFlack (1983), 2348 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O15i0.77 (2)2.32 (2)3.095 (1)179 (2)
C6—H6···O16ii0.982.463.309 (2)145
C11—H11···Cl17iii0.932.833.582 (1)139
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y, z.
 

References

First citationBach, T., Schlummer, B. & Harms, K. (2001). Chem. Eur. J. 7, 2581–2594.  CrossRef PubMed CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJindal, A., Mahesh, R. & Kumar, B. (2013). Prog. NeuroPsychopharmacol. Biol. Psychiatry, 40, 47–53.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMadesclaire, M., Coudert, P., Leal, F., Tarrit, S., Zaitseva, J. V. & Zaitsev, V. P. (2013). Chem. Heterocycl. Compd. In preparation.  Google Scholar
First citationMathur, T., Kalia, V., Barman, T. K., Singhal, S., Khan, S., Upadhyay, D. J., Rattan, A. & Raj, V. S. (2013). Int. J. Antimicrob. Agents, 41, 36–40.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMichalska, K., Karpiuk, I., Król, M. & Tyski, S. (2012). Bioorg. Med. Chem. 21, 577–591.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsui, G. C., Ninnemann, N. M., Hosotani, A. & Lautens, M. (2013). Org. Lett. 15, 1064–1067.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds