organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-(2-Acetoxyphenyl)quinoxa­lin-2-yl]phenyl acetate

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
*Correspondence e-mail: chrc@zjut.edu.cn

(Received 25 March 2013; accepted 4 April 2013; online 20 April 2013)

The title compound, C24H18N2O4, crystallizes as a syn-conformer, with dihedral angles between the quinoxaline moiety and the acet­oxy-substituted benzene rings of 53.46 (3)° and 54.78 (3)°. In the crystal, the mol­ecules form chains along [100] via C—H⋯O inter­actions.

Related literature

For general background to quinoxaline derivatives, see: Brasche & Buchwald (2008[Brasche, G. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed. 47, 1932-1934.]); Do & Daugulis (2008[Do, H.-Q. & Daugulis, O. (2008). J. Am. Chem. Soc. 130, 1128-1129.]); He et al. (2003[He, W., Meyers, M. R., Hanney, B., Sapada, A., Blider, G., Galzeinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]); Kim et al. (2004[Kim, Y. B., Kim, Y. H., Park, J. Y. & Kim, S. K. (2004). Bioorg. Med. Chem. Lett. 14, 541-544.]); Lyons & Sanford (2010[Lyons, T. W. & Sanford, M. S. (2010). Chem. Rev. 110, 1147-1169.]). For quinoxaline-directed C—H activation, see: Reddy et al. (2011[Reddy, B. V. S., Ramesh, K. & Yadav, J. S. (2011). Synlett, 2, 169-172.]). For a related structure, see: Rajnikant et al. (2006[Rajnikant, Dinesh,, Deshmukh, M. B., Jadhav, S. & Kanwal, P. (2006). Acta Cryst. E62, o2356-o2357.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2O4

  • Mr = 398.40

  • Monoclinic, P 21 /c

  • a = 9.5723 (5) Å

  • b = 16.7309 (8) Å

  • c = 13.0555 (6) Å

  • β = 92.929 (2)°

  • V = 2088.15 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.48 × 0.46 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.959, Tmax = 0.983

  • 15632 measured reflections

  • 3646 independent reflections

  • 2553 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.117

  • S = 1.00

  • 3646 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O4i 0.93 2.43 3.329 (2) 164
Symmetry code: (i) x-1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Quinoxaline derivatives have received considerable interest from chemists because of their pharmacological properties such as antiviral, antibacterial, anti-inflammatory, and antiprotozoal activities, and as kinase inhibitors. C—H activation is a versatile approach for the direct functionalization of aromatic C—H bonds using transition metal catalysis. Palladium complexes are particularly attractive catalysts for such transformations. The molecular structure of the title compound is presented on Fig. 1. The plane of the quinoxaline moiety makes angles of 53.46 (3)°, 54.78 (3)° with the planes of phenyl rings. The torsion angle C9—C1—C8—C17 is 4.91 (3)°.

Related literature top

For general background to quinoxaline derivatives, see: Brasche & Buchwald (2008); Do & Daugulis (2008); He et al. (2003); Kim et al. (2004); Lyons & Sanford (2010). For quinoxaline-directed C—H activation, see: Reddy et al. (2011). For a related structure, see: Rajnikant et al. (2006).

Experimental top

A mixture of 2,3-diphenylquinoxaline (282 mg,1.0 mmol), phenyliodine diacetate (805 mg, 2.5 mmol), and Palladium acetate (34 mg, 0.15 mmol) in acetic acid-acetic anhydride (3.0 ml-3.0 ml) was stirred at room temperature for 10 min, then the resulting mixture was heated to 120 degrees for 4hr. After completion of reaction as indicated by TLC, the reaction mixture was filtered, diluted with water and extracted with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate salt, concentrated in vacuo, and purified by column chromatography on silica gel (eluent:petroleum ether-ethyl acetate) to afford pure product with a 90 percent yield. Suitable crystals were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were placed in calculated position with C—H ranging from 0.93 Å to 0.98 Å. All H atoms included in the final cycles of refinement as riding mode, with Uiso(H)=1.2Ueq of the carrier atoms. Positions of hydrogens of the methyl groups awere optimized rotationally.

Structure description top

Quinoxaline derivatives have received considerable interest from chemists because of their pharmacological properties such as antiviral, antibacterial, anti-inflammatory, and antiprotozoal activities, and as kinase inhibitors. C—H activation is a versatile approach for the direct functionalization of aromatic C—H bonds using transition metal catalysis. Palladium complexes are particularly attractive catalysts for such transformations. The molecular structure of the title compound is presented on Fig. 1. The plane of the quinoxaline moiety makes angles of 53.46 (3)°, 54.78 (3)° with the planes of phenyl rings. The torsion angle C9—C1—C8—C17 is 4.91 (3)°.

For general background to quinoxaline derivatives, see: Brasche & Buchwald (2008); Do & Daugulis (2008); He et al. (2003); Kim et al. (2004); Lyons & Sanford (2010). For quinoxaline-directed C—H activation, see: Reddy et al. (2011). For a related structure, see: Rajnikant et al. (2006).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.
2-[3-(2-Acetoxyphenyl)quinoxalin-2-yl]phenyl acetate top
Crystal data top
C24H18N2O4F(000) = 832
Mr = 398.40Dx = 1.267 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11299 reflections
a = 9.5723 (5) Åθ = 3.1–27.4°
b = 16.7309 (8) ŵ = 0.09 mm1
c = 13.0555 (6) ÅT = 296 K
β = 92.929 (2)°Platelet, yellow
V = 2088.15 (18) Å30.48 × 0.46 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3646 independent reflections
Radiation source: rotating anode2553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.959, Tmax = 0.983l = 1515
15632 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.045P)2 + 0.7545P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
3646 reflectionsΔρmax = 0.17 e Å3
274 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (2)
Crystal data top
C24H18N2O4V = 2088.15 (18) Å3
Mr = 398.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5723 (5) ŵ = 0.09 mm1
b = 16.7309 (8) ÅT = 296 K
c = 13.0555 (6) Å0.48 × 0.46 × 0.20 mm
β = 92.929 (2)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3646 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2553 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.983Rint = 0.043
15632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
3646 reflectionsΔρmin = 0.20 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57616 (19)0.12138 (11)0.27152 (13)0.0401 (4)
C20.7311 (2)0.02174 (11)0.31884 (15)0.0467 (5)
C30.7625 (3)0.04950 (13)0.37296 (19)0.0678 (6)
H30.69400.07470.40930.081*
C40.8934 (3)0.08127 (15)0.3718 (2)0.0778 (7)
H40.91410.12800.40800.093*
C50.9964 (3)0.04432 (15)0.3169 (2)0.0783 (7)
H51.08500.06710.31660.094*
C60.9699 (2)0.02435 (14)0.2639 (2)0.0704 (7)
H61.03940.04800.22700.085*
C70.8360 (2)0.05939 (12)0.26533 (15)0.0494 (5)
C80.68513 (19)0.16210 (11)0.22108 (14)0.0429 (5)
C90.43173 (19)0.15473 (11)0.27655 (14)0.0438 (5)
C100.3759 (2)0.16739 (13)0.37183 (17)0.0586 (6)
H100.42900.15450.43120.070*
C110.2436 (3)0.19857 (15)0.3797 (2)0.0714 (7)
H110.20830.20680.44390.086*
C120.1641 (2)0.21744 (15)0.2926 (2)0.0731 (7)
H120.07510.23890.29800.088*
C130.2152 (2)0.20474 (14)0.19734 (19)0.0628 (6)
H130.16100.21710.13830.075*
C140.3478 (2)0.17335 (12)0.19050 (15)0.0473 (5)
C150.3570 (3)0.09580 (15)0.04113 (19)0.0727 (7)
C160.4121 (3)0.09362 (19)0.0632 (2)0.0940 (9)
H16A0.38710.04380.09560.141*
H16B0.51210.09870.05810.141*
H16C0.37270.13690.10330.141*
C170.66704 (19)0.24376 (11)0.17661 (15)0.0432 (5)
C180.6188 (2)0.30646 (12)0.23494 (17)0.0537 (5)
H180.59300.29670.30150.064*
C190.6084 (2)0.38308 (13)0.19573 (19)0.0622 (6)
H190.57550.42440.23570.075*
C200.6466 (2)0.39806 (14)0.09761 (19)0.0650 (6)
H200.63900.44950.07100.078*
C210.6961 (2)0.33717 (13)0.03828 (17)0.0577 (6)
H210.72310.34750.02790.069*
C220.70544 (19)0.26088 (11)0.07788 (15)0.0448 (5)
C230.8838 (2)0.19247 (13)0.00467 (16)0.0554 (5)
C240.9139 (3)0.11638 (17)0.0569 (2)0.0940 (9)
H24A1.00920.11640.07650.141*
H24B0.85240.11080.11690.141*
H24C0.89970.07260.01110.141*
N10.59936 (17)0.05326 (9)0.32027 (12)0.0467 (4)
N20.81105 (17)0.13064 (10)0.21658 (13)0.0513 (4)
O10.40006 (15)0.16132 (9)0.09276 (10)0.0569 (4)
O20.2849 (3)0.04774 (14)0.0780 (2)0.1502 (12)
O30.74576 (14)0.19711 (8)0.01622 (10)0.0536 (4)
O40.96565 (16)0.24378 (10)0.01729 (13)0.0718 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0399 (11)0.0407 (10)0.0397 (9)0.0011 (8)0.0016 (8)0.0007 (8)
C20.0485 (12)0.0394 (11)0.0519 (11)0.0026 (9)0.0016 (9)0.0003 (8)
C30.0670 (16)0.0531 (13)0.0834 (16)0.0067 (11)0.0054 (12)0.0188 (12)
C40.0777 (19)0.0577 (15)0.0972 (19)0.0184 (13)0.0026 (15)0.0172 (13)
C50.0593 (16)0.0675 (16)0.108 (2)0.0249 (13)0.0009 (14)0.0111 (14)
C60.0494 (14)0.0646 (15)0.0979 (18)0.0147 (11)0.0098 (12)0.0115 (13)
C70.0457 (12)0.0445 (11)0.0580 (12)0.0051 (9)0.0015 (9)0.0023 (9)
C80.0384 (11)0.0427 (11)0.0477 (11)0.0002 (8)0.0036 (8)0.0007 (8)
C90.0381 (11)0.0445 (11)0.0492 (11)0.0024 (8)0.0060 (9)0.0029 (8)
C100.0454 (13)0.0746 (15)0.0564 (12)0.0038 (11)0.0086 (10)0.0019 (10)
C110.0522 (15)0.0910 (18)0.0725 (16)0.0059 (13)0.0183 (12)0.0046 (13)
C120.0405 (13)0.0788 (17)0.101 (2)0.0113 (11)0.0109 (13)0.0055 (14)
C130.0432 (13)0.0661 (15)0.0781 (16)0.0040 (10)0.0068 (11)0.0070 (11)
C140.0409 (12)0.0490 (12)0.0520 (11)0.0037 (9)0.0017 (9)0.0033 (9)
C150.0844 (18)0.0636 (15)0.0710 (16)0.0143 (14)0.0131 (14)0.0085 (12)
C160.115 (2)0.103 (2)0.0653 (16)0.0082 (18)0.0090 (16)0.0149 (15)
C170.0332 (10)0.0432 (11)0.0529 (11)0.0009 (8)0.0005 (8)0.0054 (8)
C180.0493 (13)0.0485 (12)0.0640 (13)0.0034 (9)0.0088 (10)0.0036 (10)
C190.0546 (14)0.0455 (13)0.0865 (17)0.0056 (10)0.0044 (12)0.0014 (11)
C200.0543 (14)0.0490 (13)0.0905 (17)0.0007 (11)0.0080 (12)0.0190 (12)
C210.0513 (13)0.0609 (14)0.0600 (13)0.0052 (10)0.0063 (10)0.0185 (11)
C220.0328 (10)0.0477 (11)0.0531 (11)0.0055 (8)0.0048 (8)0.0040 (9)
C230.0490 (13)0.0624 (14)0.0552 (12)0.0057 (11)0.0080 (10)0.0018 (10)
C240.0787 (19)0.088 (2)0.118 (2)0.0099 (15)0.0290 (17)0.0343 (17)
N10.0458 (10)0.0428 (9)0.0517 (9)0.0007 (7)0.0033 (7)0.0048 (7)
N20.0399 (10)0.0489 (10)0.0656 (11)0.0035 (7)0.0075 (8)0.0065 (8)
O10.0542 (9)0.0661 (10)0.0501 (8)0.0107 (7)0.0014 (7)0.0030 (7)
O20.218 (3)0.0990 (16)0.142 (2)0.0865 (18)0.092 (2)0.0508 (14)
O30.0461 (8)0.0589 (9)0.0562 (8)0.0123 (6)0.0052 (6)0.0055 (6)
O40.0485 (10)0.0730 (11)0.0944 (12)0.0164 (8)0.0085 (8)0.0079 (9)
Geometric parameters (Å, º) top
C1—N11.319 (2)C13—H130.9300
C1—C81.434 (2)C14—O11.409 (2)
C1—C91.495 (3)C15—O21.178 (3)
C2—N11.368 (2)C15—O11.341 (3)
C2—C71.401 (3)C15—C161.486 (3)
C2—C31.410 (3)C16—H16A0.9600
C3—C41.362 (3)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C4—C51.393 (4)C17—C221.388 (3)
C4—H40.9300C17—C181.389 (3)
C5—C61.359 (3)C18—C191.382 (3)
C5—H50.9300C18—H180.9300
C6—C71.410 (3)C19—C201.373 (3)
C6—H60.9300C19—H190.9300
C7—N21.367 (2)C20—C211.379 (3)
C8—N21.319 (2)C20—H200.9300
C8—C171.491 (3)C21—C221.378 (3)
C9—C141.383 (3)C21—H210.9300
C9—C101.395 (3)C22—O31.403 (2)
C10—C111.378 (3)C23—O41.188 (2)
C10—H100.9300C23—O31.365 (2)
C11—C121.372 (4)C23—C241.479 (3)
C11—H110.9300C24—H24A0.9600
C12—C131.376 (3)C24—H24B0.9600
C12—H120.9300C24—H24C0.9600
C13—C141.381 (3)
N1—C1—C8121.58 (17)C9—C14—O1119.04 (17)
N1—C1—C9115.76 (16)O2—C15—O1121.6 (2)
C8—C1—C9122.60 (16)O2—C15—C16126.9 (3)
N1—C2—C7121.18 (17)O1—C15—C16111.5 (2)
N1—C2—C3119.48 (18)C15—C16—H16A109.5
C7—C2—C3119.34 (19)C15—C16—H16B109.5
C4—C3—C2119.8 (2)H16A—C16—H16B109.5
C4—C3—H3120.1C15—C16—H16C109.5
C2—C3—H3120.1H16A—C16—H16C109.5
C3—C4—C5120.6 (2)H16B—C16—H16C109.5
C3—C4—H4119.7C22—C17—C18117.67 (18)
C5—C4—H4119.7C22—C17—C8121.31 (17)
C6—C5—C4121.2 (2)C18—C17—C8120.91 (17)
C6—C5—H5119.4C19—C18—C17121.1 (2)
C4—C5—H5119.4C19—C18—H18119.4
C5—C6—C7119.4 (2)C17—C18—H18119.4
C5—C6—H6120.3C20—C19—C18119.8 (2)
C7—C6—H6120.3C20—C19—H19120.1
N2—C7—C2120.79 (17)C18—C19—H19120.1
N2—C7—C6119.56 (19)C19—C20—C21120.3 (2)
C2—C7—C6119.63 (19)C19—C20—H20119.8
N2—C8—C1121.24 (17)C21—C20—H20119.8
N2—C8—C17115.87 (16)C22—C21—C20119.4 (2)
C1—C8—C17122.78 (16)C22—C21—H21120.3
C14—C9—C10117.21 (18)C20—C21—H21120.3
C14—C9—C1123.25 (17)C21—C22—C17121.62 (19)
C10—C9—C1119.53 (17)C21—C22—O3120.24 (18)
C11—C10—C9121.3 (2)C17—C22—O3118.01 (16)
C11—C10—H10119.4O4—C23—O3123.0 (2)
C9—C10—H10119.4O4—C23—C24126.2 (2)
C12—C11—C10119.9 (2)O3—C23—C24110.8 (2)
C12—C11—H11120.0C23—C24—H24A109.5
C10—C11—H11120.0C23—C24—H24B109.5
C11—C12—C13120.3 (2)H24A—C24—H24B109.5
C11—C12—H12119.8C23—C24—H24C109.5
C13—C12—H12119.8H24A—C24—H24C109.5
C12—C13—C14119.2 (2)H24B—C24—H24C109.5
C12—C13—H13120.4C1—N1—C2117.34 (16)
C14—C13—H13120.4C8—N2—C7117.73 (16)
C13—C14—C9122.07 (19)C15—O1—C14117.26 (16)
C13—C14—O1118.89 (18)C23—O3—C22117.10 (15)
N1—C2—C3—C4179.9 (2)C1—C8—C17—C22131.55 (19)
C7—C2—C3—C40.7 (3)N2—C8—C17—C18124.0 (2)
C2—C3—C4—C50.5 (4)C1—C8—C17—C1852.3 (3)
C3—C4—C5—C60.5 (4)C22—C17—C18—C190.5 (3)
C4—C5—C6—C70.7 (4)C8—C17—C18—C19176.78 (19)
N1—C2—C7—N22.8 (3)C17—C18—C19—C200.2 (3)
C3—C2—C7—N2176.6 (2)C18—C19—C20—C210.4 (3)
N1—C2—C7—C6178.78 (19)C19—C20—C21—C220.8 (3)
C3—C2—C7—C61.8 (3)C20—C21—C22—C170.5 (3)
C5—C6—C7—N2176.6 (2)C20—C21—C22—O3175.29 (18)
C5—C6—C7—C21.9 (4)C18—C17—C22—C210.1 (3)
N1—C1—C8—N23.9 (3)C8—C17—C22—C21176.41 (18)
C9—C1—C8—N2178.99 (17)C18—C17—C22—O3176.01 (17)
N1—C1—C8—C17172.21 (17)C8—C17—C22—O37.7 (3)
C9—C1—C8—C174.9 (3)C8—C1—N1—C21.5 (3)
N1—C1—C9—C14124.4 (2)C9—C1—N1—C2178.85 (16)
C8—C1—C9—C1458.4 (3)C7—C2—N1—C11.7 (3)
N1—C1—C9—C1054.9 (2)C3—C2—N1—C1177.72 (19)
C8—C1—C9—C10122.4 (2)C1—C8—N2—C72.7 (3)
C14—C9—C10—C111.2 (3)C17—C8—N2—C7173.69 (17)
C1—C9—C10—C11179.5 (2)C2—C7—N2—C80.5 (3)
C9—C10—C11—C120.3 (4)C6—C7—N2—C8178.93 (19)
C10—C11—C12—C130.6 (4)O2—C15—O1—C144.3 (4)
C11—C12—C13—C140.5 (4)C16—C15—O1—C14176.0 (2)
C12—C13—C14—C90.5 (3)C13—C14—O1—C1579.8 (3)
C12—C13—C14—O1179.3 (2)C9—C14—O1—C15101.3 (2)
C10—C9—C14—C131.3 (3)O4—C23—O3—C228.4 (3)
C1—C9—C14—C13179.44 (19)C24—C23—O3—C22171.6 (2)
C10—C9—C14—O1179.88 (17)C21—C22—O3—C2374.4 (2)
C1—C9—C14—O10.6 (3)C17—C22—O3—C23109.70 (19)
N2—C8—C17—C2252.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O4i0.932.433.329 (2)164
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC24H18N2O4
Mr398.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.5723 (5), 16.7309 (8), 13.0555 (6)
β (°) 92.929 (2)
V3)2088.15 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.46 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.959, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
15632, 3646, 2553
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.00
No. of reflections3646
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O4i0.932.433.329 (2)163.5
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank Professor Jian-Ming Gu of Zhejiang University for his help.

References

First citationBrasche, G. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed. 47, 1932–1934.  Web of Science CrossRef CAS Google Scholar
First citationDo, H.-Q. & Daugulis, O. (2008). J. Am. Chem. Soc. 130, 1128–1129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, W., Meyers, M. R., Hanney, B., Sapada, A., Blider, G., Galzeinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKim, Y. B., Kim, Y. H., Park, J. Y. & Kim, S. K. (2004). Bioorg. Med. Chem. Lett. 14, 541–544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLyons, T. W. & Sanford, M. S. (2010). Chem. Rev. 110, 1147–1169.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRajnikant, Dinesh,, Deshmukh, M. B., Jadhav, S. & Kanwal, P. (2006). Acta Cryst. E62, o2356–o2357.  Google Scholar
First citationReddy, B. V. S., Ramesh, K. & Yadav, J. S. (2011). Synlett, 2, 169–172.  Web of Science CrossRef Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds