organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(3,5-Di­meth­­oxy­phen­yl)-3-(3-meth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea, bJeonju Center, Korea Basic Science Center (KBSI), Jeonju 561-765, Republic of Korea, and cDivision of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

(Received 22 February 2013; accepted 2 April 2013; online 5 April 2013)

In the title mol­ecule, C18H18O4, the C=C bond of the central enone group adopts a trans conformation. The relative conformation of the C=O and C=C bonds is s-cisoid. The dihedral angle between the planes of the benzene rings is 29.49 (12)°. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into chains along [010].

Related literature

For the synthesis and biological properties of chalcone derivatives, see: Shenvi et al. (2013[Shenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435-442.]); Hsieh et al. (2012[Hsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen a, C.-T., Wua, S.-F., Wua, Y.-C. & Chang, F.-R. (2012). Bioorg. Med. Chem. Lett. 22, 3912-3915.]); Hwang et al. (2011[Hwang, D., Hyun, J., Jo, G., Koh, D. & Lim, Y. (2011). Magn. Reson. Chem. 49, 41-45.]); Jo et al. (2012[Jo, G., Sung, S. H., Lee, Y., Kim, B.-G., Yoon, J. W., Lee, H. K., Ji, S. Y., Koh, D., Ahn, J. H. & Lim, Y. (2012). Bull. Korean Chem. Soc. 33, 3841-3844.]); Sharma et al. (2012[Sharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343-6346.]); Sashidhara et al. (2011[Sashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480-4484.]). For related structures, see: Carvalho-Jr et al. (2011[Carvalho-Jr, P. S., Sallum, L. O., Cidade, A. F., Aquino, G. L. B. & Napolitano, H. B. (2011). Acta Cryst. E67, o2126.]); Wu et al. (2012[Wu, J., Qiu, J., Wu, X., Yang, S. & Liu, Y. (2012). Acta Cryst. E68, o154.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O4

  • Mr = 298.32

  • Triclinic, [P \overline 1]

  • a = 8.2402 (12) Å

  • b = 9.1449 (14) Å

  • c = 10.8876 (16) Å

  • α = 95.395 (3)°

  • β = 107.667 (3)°

  • γ = 102.837 (3)°

  • V = 750.61 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.33 × 0.26 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.989

  • 4383 measured reflections

  • 2619 independent reflections

  • 1531 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 0.98

  • 2619 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.95 2.55 3.405 (3) 151
C9—H9C⋯O1ii 0.98 2.50 3.388 (3) 150
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones are one of the secondary metabolites in plants and belong to a flavonoid class. They have shown diverse biological activities including anti-cancer (Shenvi et al. 2013), anti-microbial (Sharma et al. 2012), anti-diabetic (Hsieh et al. 2012) and anti-inflammatory (Sashidhara et al. 2011). As a part of our studies on the substituent effects of chalcones on structures and biological activities (Jo et al., 2012; Hwang et al., 2011), the title compound was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The trans configuration of C2C3 double bond is defined by the dihedral angle of -177.9 (2) Å for C1—C2—C3—C4. The relative conformation of two double bonds, O1C1 and C2C3, is s-cisoid with a torsion angle of -12.8 (4)° for O1—C1—C2—C3. The orientations of the three methoxy groups can be defined by the torsion angles C9—O2—C8—C10 [177.1 (3)°], C17—O4—C16—C15 [-1.8 (5)°] and C14—O3—C13—C15 [-172.2 (3)°]. The dihedral angle between the benzene rings is 29.49 (12)°. In the crystal, weak C—H···O hydrogen bonds links the molecules into chains along [010] (Fig. 2). Some examples of methoxy substituted chalcone structures have been published (Wu et al., 2012; Carvalho-Jr et al., 2011).

Related literature top

For the synthesis and biological properties of chalcone derivatives, see: Shenvi et al. (2013); Hsieh et al. (2012); Hwang et al. (2011); Jo et al. (2012); Sharma et al. (2012); Sashidhara et al. (2011). For related structures, see: Carvalho-Jr et al. (2011); Wu et al. (2012).

Experimental top

To a solution of 3-methoxybenzaldehyde (136 mg, 1 mmol) in 20 ml of ethanol was added 3,5-dimethoxyacetophenone (180 mg, 1 mmol) and the temperature was adjusted to around 276 K in an ice-bath. To the cooled reaction mixture was added 1 ml of 50% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 20 h. This mixture was poured into iced water (30 ml) was acidified (pH =3) with 3 N HCl solution to give a precipitate. Filtration and washing with water afforded crude solid of the title compound (240 mg, 79%). Recrystallization of the solid in ethanol gave pale yellow crystals which were suitable for X-ray diffraction (mp: 363–364 K).

Refinement top

H atoms were placed in calculated positions and refined as riding with C—H = 0.95–0.98 Å, and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). Four outliers were removed in the final refinement (4 2 8, -7 5 9, -7, -3, 10 and -7, -4, 9).

Structure description top

Chalcones are one of the secondary metabolites in plants and belong to a flavonoid class. They have shown diverse biological activities including anti-cancer (Shenvi et al. 2013), anti-microbial (Sharma et al. 2012), anti-diabetic (Hsieh et al. 2012) and anti-inflammatory (Sashidhara et al. 2011). As a part of our studies on the substituent effects of chalcones on structures and biological activities (Jo et al., 2012; Hwang et al., 2011), the title compound was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The trans configuration of C2C3 double bond is defined by the dihedral angle of -177.9 (2) Å for C1—C2—C3—C4. The relative conformation of two double bonds, O1C1 and C2C3, is s-cisoid with a torsion angle of -12.8 (4)° for O1—C1—C2—C3. The orientations of the three methoxy groups can be defined by the torsion angles C9—O2—C8—C10 [177.1 (3)°], C17—O4—C16—C15 [-1.8 (5)°] and C14—O3—C13—C15 [-172.2 (3)°]. The dihedral angle between the benzene rings is 29.49 (12)°. In the crystal, weak C—H···O hydrogen bonds links the molecules into chains along [010] (Fig. 2). Some examples of methoxy substituted chalcone structures have been published (Wu et al., 2012; Carvalho-Jr et al., 2011).

For the synthesis and biological properties of chalcone derivatives, see: Shenvi et al. (2013); Hsieh et al. (2012); Hwang et al. (2011); Jo et al. (2012); Sharma et al. (2012); Sashidhara et al. (2011). For related structures, see: Carvalho-Jr et al. (2011); Wu et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with weak intermolecular C—H···O hydrogen bonds shown as dashed lines.
(E)-1-(3,5-Dimethoxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H18O4Z = 2
Mr = 298.32F(000) = 316
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2402 (12) ÅCell parameters from 1553 reflections
b = 9.1449 (14) Åθ = 2.3–27.9°
c = 10.8876 (16) ŵ = 0.09 mm1
α = 95.395 (3)°T = 200 K
β = 107.667 (3)°Block, pale yellow
γ = 102.837 (3)°0.33 × 0.26 × 0.12 mm
V = 750.61 (19) Å3
Data collection top
Bruker SMART CCD
diffractometer
2619 independent reflections
Radiation source: fine-focus sealed tube1531 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 79
Tmin = 0.970, Tmax = 0.989k = 910
4383 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
2619 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H18O4γ = 102.837 (3)°
Mr = 298.32V = 750.61 (19) Å3
Triclinic, P1Z = 2
a = 8.2402 (12) ÅMo Kα radiation
b = 9.1449 (14) ŵ = 0.09 mm1
c = 10.8876 (16) ÅT = 200 K
α = 95.395 (3)°0.33 × 0.26 × 0.12 mm
β = 107.667 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2619 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1531 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.989Rint = 0.028
4383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.98Δρmax = 0.20 e Å3
2619 reflectionsΔρmin = 0.26 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0722 (3)0.0058 (3)0.7610 (2)0.0354 (6)
O10.0527 (2)0.06317 (18)0.65288 (16)0.0503 (5)
C20.0008 (3)0.1386 (3)0.7724 (2)0.0385 (6)
H20.00590.17710.85490.046*
C30.0595 (3)0.2054 (3)0.6708 (2)0.0355 (6)
H30.05600.16150.58930.043*
C40.1290 (3)0.3399 (2)0.6711 (2)0.0338 (6)
C50.1565 (3)0.4081 (3)0.7811 (2)0.0413 (6)
H50.13130.36650.85940.050*
C60.2199 (3)0.5353 (3)0.7760 (2)0.0435 (7)
H60.23970.57980.85080.052*
C70.2555 (3)0.6000 (3)0.6635 (2)0.0407 (6)
H70.29900.68790.66110.049*
C80.2268 (3)0.5343 (3)0.5553 (2)0.0359 (6)
O20.2555 (2)0.58787 (18)0.43929 (15)0.0456 (5)
C90.3268 (3)0.7168 (3)0.4271 (2)0.0462 (7)
H9A0.44360.69160.43710.069*
H9B0.33750.74440.34070.069*
H9C0.24810.80280.49520.069*
C100.1656 (3)0.4048 (2)0.5588 (2)0.0341 (6)
H100.14850.35970.48310.041*
C110.1748 (3)0.0419 (3)0.8812 (2)0.0325 (6)
C120.2212 (3)0.1790 (2)0.8674 (2)0.0323 (6)
H120.18000.24290.78420.039*
C130.3267 (3)0.2205 (2)0.9747 (2)0.0329 (6)
O30.3825 (2)0.35105 (17)0.97449 (15)0.0466 (5)
C140.3448 (4)0.4415 (3)0.8493 (2)0.0493 (7)
H14A0.21670.47940.80670.074*
H14B0.39700.52780.86110.074*
H14C0.39510.37910.79470.074*
C150.3874 (3)0.1279 (2)1.0980 (2)0.0342 (6)
H150.46040.15771.17180.041*
C160.3407 (3)0.0062 (3)1.1115 (2)0.0321 (6)
O40.3951 (2)0.10519 (17)1.22797 (15)0.0441 (5)
C170.5018 (4)0.0614 (3)1.3408 (2)0.0491 (7)
H17A0.43750.03621.35420.074*
H17B0.52950.13931.41770.074*
H17C0.61160.05101.32790.074*
C180.2335 (3)0.0503 (3)1.0033 (2)0.0349 (6)
H180.20080.14281.01310.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0339 (15)0.0363 (14)0.0369 (15)0.0102 (12)0.0112 (13)0.0105 (12)
O10.0648 (14)0.0511 (11)0.0357 (11)0.0269 (10)0.0094 (10)0.0079 (9)
C20.0385 (16)0.0407 (15)0.0398 (15)0.0142 (13)0.0146 (13)0.0088 (12)
C30.0323 (15)0.0366 (14)0.0396 (15)0.0115 (12)0.0115 (13)0.0117 (11)
C40.0272 (14)0.0336 (14)0.0406 (15)0.0078 (11)0.0114 (12)0.0069 (11)
C50.0418 (16)0.0444 (15)0.0401 (15)0.0131 (13)0.0146 (14)0.0118 (12)
C60.0485 (18)0.0438 (16)0.0443 (16)0.0163 (14)0.0213 (14)0.0069 (13)
C70.0427 (17)0.0354 (15)0.0482 (16)0.0174 (13)0.0158 (14)0.0078 (12)
C80.0330 (15)0.0375 (15)0.0388 (15)0.0129 (12)0.0102 (13)0.0113 (12)
O20.0589 (13)0.0466 (11)0.0424 (11)0.0297 (9)0.0186 (10)0.0166 (8)
C90.0516 (18)0.0417 (16)0.0501 (17)0.0249 (14)0.0123 (15)0.0168 (13)
C100.0353 (15)0.0354 (14)0.0342 (14)0.0126 (12)0.0123 (12)0.0081 (11)
C110.0292 (14)0.0365 (14)0.0313 (14)0.0071 (11)0.0101 (12)0.0063 (11)
C120.0325 (14)0.0287 (13)0.0342 (14)0.0077 (11)0.0096 (12)0.0040 (11)
C130.0361 (15)0.0306 (13)0.0360 (14)0.0148 (12)0.0117 (12)0.0110 (11)
O30.0637 (13)0.0386 (10)0.0405 (10)0.0267 (10)0.0127 (10)0.0056 (8)
C140.0572 (19)0.0384 (15)0.0497 (17)0.0190 (14)0.0129 (15)0.0035 (13)
C150.0348 (15)0.0396 (15)0.0300 (14)0.0115 (12)0.0107 (12)0.0112 (11)
C160.0325 (14)0.0352 (14)0.0297 (13)0.0101 (12)0.0110 (12)0.0051 (11)
O40.0544 (12)0.0433 (10)0.0340 (10)0.0195 (9)0.0105 (9)0.0016 (8)
C170.0529 (18)0.0585 (18)0.0314 (15)0.0178 (15)0.0069 (14)0.0031 (13)
C180.0347 (15)0.0342 (14)0.0412 (15)0.0135 (12)0.0158 (13)0.0113 (12)
Geometric parameters (Å, º) top
C1—O11.229 (2)C10—H100.9500
C1—C21.481 (3)C11—C181.390 (3)
C1—C111.489 (3)C11—C121.397 (3)
C2—C31.329 (3)C12—C131.371 (3)
C2—H20.9500C12—H120.9500
C3—C41.467 (3)C13—O31.371 (2)
C3—H30.9500C13—C151.400 (3)
C4—C101.389 (3)O3—C141.433 (2)
C4—C51.401 (3)C14—H14A0.9800
C5—C61.376 (3)C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C6—C71.390 (3)C15—C161.373 (3)
C6—H60.9500C15—H150.9500
C7—C81.379 (3)C16—O41.373 (2)
C7—H70.9500C16—C181.395 (3)
C8—O21.370 (2)O4—C171.426 (3)
C8—C101.385 (3)C17—H17A0.9800
O2—C91.429 (2)C17—H17B0.9800
C9—H9A0.9800C17—H17C0.9800
C9—H9B0.9800C18—H180.9500
C9—H9C0.9800
O1—C1—C2120.5 (2)C4—C10—H10119.4
O1—C1—C11119.6 (2)C18—C11—C12120.0 (2)
C2—C1—C11119.9 (2)C18—C11—C1121.7 (2)
C3—C2—C1122.0 (2)C12—C11—C1118.1 (2)
C3—C2—H2119.0C13—C12—C11119.5 (2)
C1—C2—H2119.0C13—C12—H12120.2
C2—C3—C4126.9 (2)C11—C12—H12120.2
C2—C3—H3116.6C12—C13—O3125.4 (2)
C4—C3—H3116.6C12—C13—C15120.8 (2)
C10—C4—C5118.3 (2)O3—C13—C15113.8 (2)
C10—C4—C3118.9 (2)C13—O3—C14116.83 (18)
C5—C4—C3122.7 (2)O3—C14—H14A109.5
C6—C5—C4120.1 (2)O3—C14—H14B109.5
C6—C5—H5120.0H14A—C14—H14B109.5
C4—C5—H5120.0O3—C14—H14C109.5
C5—C6—C7121.2 (2)H14A—C14—H14C109.5
C5—C6—H6119.4H14B—C14—H14C109.5
C7—C6—H6119.4C16—C15—C13119.6 (2)
C8—C7—C6118.9 (2)C16—C15—H15120.2
C8—C7—H7120.5C13—C15—H15120.2
C6—C7—H7120.5C15—C16—O4123.8 (2)
O2—C8—C7124.4 (2)C15—C16—C18120.3 (2)
O2—C8—C10115.29 (19)O4—C16—C18115.8 (2)
C7—C8—C10120.3 (2)C16—O4—C17117.02 (18)
C8—O2—C9118.08 (17)O4—C17—H17A109.5
O2—C9—H9A109.5O4—C17—H17B109.5
O2—C9—H9B109.5H17A—C17—H17B109.5
H9A—C9—H9B109.5O4—C17—H17C109.5
O2—C9—H9C109.5H17A—C17—H17C109.5
H9A—C9—H9C109.5H17B—C17—H17C109.5
H9B—C9—H9C109.5C11—C18—C16119.7 (2)
C8—C10—C4121.2 (2)C11—C18—H18120.2
C8—C10—H10119.4C16—C18—H18120.2
O1—C1—C2—C312.8 (4)O1—C1—C11—C1210.3 (3)
C11—C1—C2—C3165.3 (2)C2—C1—C11—C12171.6 (2)
C1—C2—C3—C4177.9 (2)C18—C11—C12—C130.8 (3)
C2—C3—C4—C10172.7 (2)C1—C11—C12—C13175.2 (2)
C2—C3—C4—C55.9 (4)C11—C12—C13—O3179.6 (2)
C10—C4—C5—C60.6 (4)C11—C12—C13—C150.4 (3)
C3—C4—C5—C6179.2 (2)C12—C13—O3—C147.9 (3)
C4—C5—C6—C70.9 (4)C15—C13—O3—C14172.10 (19)
C5—C6—C7—C80.2 (4)C12—C13—C15—C160.0 (3)
C6—C7—C8—O2179.5 (2)O3—C13—C15—C16180.0 (2)
C6—C7—C8—C100.9 (4)C13—C15—C16—O4179.33 (19)
C7—C8—O2—C92.6 (4)C13—C15—C16—C180.0 (3)
C10—C8—O2—C9177.0 (2)C15—C16—O4—C172.0 (3)
O2—C8—C10—C4179.2 (2)C18—C16—O4—C17178.7 (2)
C7—C8—C10—C41.2 (4)C12—C11—C18—C160.8 (3)
C5—C4—C10—C80.4 (4)C1—C11—C18—C16175.1 (2)
C3—C4—C10—C8178.2 (2)C15—C16—C18—C110.4 (3)
O1—C1—C11—C18165.7 (2)O4—C16—C18—C11178.96 (19)
C2—C1—C11—C1812.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.952.553.405 (3)151
C9—H9C···O1ii0.982.503.388 (3)150
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H18O4
Mr298.32
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.2402 (12), 9.1449 (14), 10.8876 (16)
α, β, γ (°)95.395 (3), 107.667 (3), 102.837 (3)
V3)750.61 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.26 × 0.12
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.970, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4383, 2619, 1531
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 0.98
No. of reflections2619
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.952.553.405 (3)150.5
C9—H9C···O1ii0.982.503.388 (3)150.1
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z.
 

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarvalho-Jr, P. S., Sallum, L. O., Cidade, A. F., Aquino, G. L. B. & Napolitano, H. B. (2011). Acta Cryst. E67, o2126.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen a, C.-T., Wua, S.-F., Wua, Y.-C. & Chang, F.-R. (2012). Bioorg. Med. Chem. Lett. 22, 3912–3915.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHwang, D., Hyun, J., Jo, G., Koh, D. & Lim, Y. (2011). Magn. Reson. Chem. 49, 41–45.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJo, G., Sung, S. H., Lee, Y., Kim, B.-G., Yoon, J. W., Lee, H. K., Ji, S. Y., Koh, D., Ahn, J. H. & Lim, Y. (2012). Bull. Korean Chem. Soc. 33, 3841–3844.  CrossRef CAS Google Scholar
First citationSashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480–4484.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343–6346.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435–442.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Qiu, J., Wu, X., Yang, S. & Liu, Y. (2012). Acta Cryst. E68, o154.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds