organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Di­chloro-2,2′-dimeth­­oxy­biphen­yl

aThe University of Iowa, Department of Occupational and Environmental Health, Iowa City, IA 52242-5000, USA, and bUniversity of Kentucky, Department of Chemistry, Lexington, KY 40506-0055, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

(Received 18 March 2013; accepted 25 March 2013; online 5 April 2013)

In the title mol­ecule, C14H12Cl2O2, the dihedral angle between the least-square planes of the benzene rings is 62.17 (6)°. Both meth­oxy groups are slightly out of the plane of the benzene rings to which they are attached, making dihedral angles of 4.22 (18) and 18.82 (16)°.

Related literature

For background to polychlorinated biphenyls, see: Basu et al. (2009[Basu, I., Arnold, K. A., Venier, M. & Hites, R. A. (2009). Environ. Sci. Technol. 43, 6488-6492.]); Hu et al. (2008[Hu, D., Martinez, A. & Hornbuckle, K. C. (2008). Environ. Sci. Technol. 42, 7873-7877.]); Kaminsky et al. (1981[Kaminsky, L. S., Kennedy, M. W., Adams, S. M. & Guengerich, F. P. (1981). Biochemistry, 20, 7379-7384.]); Kennedy et al. (1981[Kennedy, M. W., Carpentier, N. K., Dymerski, P. P. & Kaminsky, L. S. (1981). Biochem. Pharmacol. 30, 577-588.]); McLean et al. (1996[McLean, M. R., Bauer, U., Amaro, A. R. & Robertson, L. W. (1996). Chem. Res. Toxicol. 9, 158-164.]); Rodenburg et al. (2010[Rodenburg, L. A., Guo, J., Du, S. & Cavallo, G. J. (2010). Environ. Sci. Technol. 44, 2816-2821.]). For related structures, see: Chattopadhyay et al. (1987[Chattopadhyay, D., Banerjee, T., Majumdar, S. K., Podder, G., Kashino, S. & Haisa, M. (1987). Acta Cryst. C43, 482-484.]); Nakaema et al. (2008[Nakaema, K., Okamoto, A., Maruyama, S., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o1731.]); Sun et al. (2001[Sun, D. L., Lindeman, S. V., Rathore, R. & Kochi, J. K. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1585-1594.]). For the synthesis of the title compound, see: Joshi et al. (2011[Joshi, S. N., Vyas, S. M., Duffel, M. W., Parkin, S. & Lehmler, H. J. (2011). Synthesis, pp. 1045-1054.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12Cl2O2

  • Mr = 283.14

  • Monoclinic, P 21 /n

  • a = 10.9629 (2) Å

  • b = 7.2177 (1) Å

  • c = 16.7812 (3) Å

  • β = 104.7108 (7)°

  • V = 1284.32 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 90 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.899, Tmax = 0.916

  • 21357 measured reflections

  • 2948 independent reflections

  • 2347 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.11

  • 2948 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

3,3'-Dichlorobiphenyl (CB11) is a polychlorinated biphenyl (PCB) congener found at comparatively high concentrations in water and air (Basu et al., 2009; Hu et al., 2008; Rodenburg et al., 2010). It is probably produced during the manufacturing of paint pigments and/or the degradation of higher chlorinated PCBs (Basu et al., 2009). Early metabolism studies with CB11 demonstrate its oxidation to mono-hydroxylated metabolites by hepatic cytochrome P450 enzymes (Kaminsky et al., 1981; Kennedy et al., 1981). Similar to other lower chlorinated PCB congeners (McLean et al., 1996), it is likely that these mono-hydroxylated metabolites are further oxidized to dihydroxylated metabolites, such as 2,2'-dihydroxy PCB 11. Here we report the crystal structure of the title compound, a dimethylated derivative of 2,2'-dihydroxy PCB 11.

There is one molecule of the title compound in the asymmetric unit (Fig. 1). The dihedral angle between the least-square planes of the two aromatic rings is 62.17 (6)°. The corresponding dihedral angles of structurally related biphenyls, 2,2'-dimethoxybiphenyls, 4,4'-dimethyl-2,2',5,5'-dimethoxybiphenyl and 2,2',4,4',5,5'-hexamethoxybiphenyl, are comparable with 66.94 (7)°, 69.1° (no s.u. available) and 81.1 (1)°, respectively (Nakaema et al., 2008; Sun et al., 2001; Chattopadhyay et al., 1987). In the title compound, the methoxy group at C7' has an almost coplanar arrangement with aromatic ring system, with a dihedral angle of 4.22 (18)°. In contrast, the methoxy group at C7, with a dihedral angle of 18.82 (16)°, is slightly out of the plane of the aromatic ring system. The twist of this methoxy group out of the plane of the aromatic ring system is relatively large compared to related crystal structures, which display dihedral angles ranging from 1.0° to 12.2° (Nakaema et al., 2008; Sun et al., 2001; Chattopadhyay et al., 1987).

Related literature top

For background to polychlorinated biphenyls, see: Basu et al. (2009); Hu et al. (2008); Kaminsky et al. (1981); Kennedy et al. (1981); McLean et al. (1996); Rodenburg et al. (2010). For related structures, see: Chattopadhyay et al. (1987); Nakaema et al. (2008); Sun et al. (2001). For the synthesis of the title compound, see: Joshi et al. (2011).

Experimental top

The title compound was prepared by the Suzuki coupling of 2-iodo-4-chloroanisole and 2-methoxy-5-chlorobenzeneboronic acid as described previously (Joshi et al., 2011). Crystals suitable for crystal structure analysis were obtained by slow evaporation of a methanolic solution.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.95 Å (CArH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Structure description top

3,3'-Dichlorobiphenyl (CB11) is a polychlorinated biphenyl (PCB) congener found at comparatively high concentrations in water and air (Basu et al., 2009; Hu et al., 2008; Rodenburg et al., 2010). It is probably produced during the manufacturing of paint pigments and/or the degradation of higher chlorinated PCBs (Basu et al., 2009). Early metabolism studies with CB11 demonstrate its oxidation to mono-hydroxylated metabolites by hepatic cytochrome P450 enzymes (Kaminsky et al., 1981; Kennedy et al., 1981). Similar to other lower chlorinated PCB congeners (McLean et al., 1996), it is likely that these mono-hydroxylated metabolites are further oxidized to dihydroxylated metabolites, such as 2,2'-dihydroxy PCB 11. Here we report the crystal structure of the title compound, a dimethylated derivative of 2,2'-dihydroxy PCB 11.

There is one molecule of the title compound in the asymmetric unit (Fig. 1). The dihedral angle between the least-square planes of the two aromatic rings is 62.17 (6)°. The corresponding dihedral angles of structurally related biphenyls, 2,2'-dimethoxybiphenyls, 4,4'-dimethyl-2,2',5,5'-dimethoxybiphenyl and 2,2',4,4',5,5'-hexamethoxybiphenyl, are comparable with 66.94 (7)°, 69.1° (no s.u. available) and 81.1 (1)°, respectively (Nakaema et al., 2008; Sun et al., 2001; Chattopadhyay et al., 1987). In the title compound, the methoxy group at C7' has an almost coplanar arrangement with aromatic ring system, with a dihedral angle of 4.22 (18)°. In contrast, the methoxy group at C7, with a dihedral angle of 18.82 (16)°, is slightly out of the plane of the aromatic ring system. The twist of this methoxy group out of the plane of the aromatic ring system is relatively large compared to related crystal structures, which display dihedral angles ranging from 1.0° to 12.2° (Nakaema et al., 2008; Sun et al., 2001; Chattopadhyay et al., 1987).

For background to polychlorinated biphenyls, see: Basu et al. (2009); Hu et al. (2008); Kaminsky et al. (1981); Kennedy et al. (1981); McLean et al. (1996); Rodenburg et al. (2010). For related structures, see: Chattopadhyay et al. (1987); Nakaema et al. (2008); Sun et al. (2001). For the synthesis of the title compound, see: Joshi et al. (2011).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound showing displacement ellipsoids drawn at the 50% probability level.
5,5'-Dichloro-2,2'-dimethoxybiphenyl top
Crystal data top
C14H12Cl2O2F(000) = 584
Mr = 283.14Dx = 1.464 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3160 reflections
a = 10.9629 (2) Åθ = 1.0–27.5°
b = 7.2177 (1) ŵ = 0.50 mm1
c = 16.7812 (3) ÅT = 90 K
β = 104.7108 (7)°Block, colourless
V = 1284.32 (4) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2948 independent reflections
Radiation source: fine-focus sealed tube2347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 9.1 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scans at fixed χ = 55°h = 1414
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 99
Tmin = 0.899, Tmax = 0.916l = 2121
21357 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.9091P]
where P = (Fo2 + 2Fc2)/3
2948 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C14H12Cl2O2V = 1284.32 (4) Å3
Mr = 283.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9629 (2) ŵ = 0.50 mm1
b = 7.2177 (1) ÅT = 90 K
c = 16.7812 (3) Å0.22 × 0.20 × 0.18 mm
β = 104.7108 (7)°
Data collection top
Nonius KappaCCD
diffractometer
2948 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2347 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.916Rint = 0.047
21357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.11Δρmax = 0.43 e Å3
2948 reflectionsΔρmin = 0.41 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07535 (4)0.15602 (7)0.32405 (3)0.02285 (15)
O10.56298 (12)0.53852 (19)0.38856 (9)0.0168 (3)
C10.43664 (17)0.2807 (3)0.33719 (12)0.0137 (4)
C20.45037 (18)0.4500 (3)0.37970 (12)0.0149 (4)
C30.35230 (18)0.5203 (3)0.40971 (12)0.0170 (4)
H30.36360.63210.44060.020*
C40.23774 (18)0.4264 (3)0.39443 (12)0.0171 (4)
H40.17090.47260.41540.020*
C50.22250 (18)0.2655 (3)0.34850 (12)0.0170 (4)
C60.32045 (18)0.1903 (3)0.32061 (12)0.0163 (4)
H60.30850.07760.29030.020*
C70.56729 (19)0.7317 (3)0.40866 (14)0.0211 (4)
H7A0.49580.79520.37180.032*
H7B0.64630.78510.40200.032*
H7C0.56280.74700.46590.032*
Cl1'0.59609 (5)0.10229 (8)0.08207 (3)0.02197 (15)
O1'0.66596 (13)0.1598 (2)0.44014 (8)0.0174 (3)
C1'0.54159 (18)0.2061 (3)0.30496 (12)0.0137 (4)
C2'0.65747 (18)0.1509 (3)0.35747 (12)0.0147 (4)
C3'0.75356 (18)0.0855 (3)0.32448 (12)0.0163 (4)
H3'0.83190.05010.36030.020*
C4'0.73626 (19)0.0711 (3)0.23964 (13)0.0175 (4)
H4'0.80240.02770.21730.021*
C5'0.62136 (18)0.1210 (3)0.18870 (12)0.0157 (4)
C6'0.52457 (18)0.1888 (3)0.22031 (12)0.0156 (4)
H6'0.44650.22350.18390.019*
C7'0.78413 (19)0.1104 (3)0.49485 (13)0.0212 (5)
H7'10.80510.01770.48410.032*
H7'20.77820.12140.55200.032*
H7'30.85010.19350.48600.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0134 (2)0.0267 (3)0.0286 (3)0.00368 (19)0.0056 (2)0.0006 (2)
O10.0159 (7)0.0120 (7)0.0239 (8)0.0027 (5)0.0075 (6)0.0041 (6)
C10.0140 (9)0.0144 (9)0.0130 (9)0.0016 (7)0.0040 (7)0.0015 (8)
C20.0135 (9)0.0158 (10)0.0151 (9)0.0010 (8)0.0032 (7)0.0029 (8)
C30.0188 (10)0.0146 (10)0.0178 (10)0.0016 (8)0.0048 (8)0.0016 (8)
C40.0146 (9)0.0195 (10)0.0186 (10)0.0038 (8)0.0070 (8)0.0012 (8)
C50.0127 (9)0.0195 (10)0.0184 (10)0.0010 (8)0.0031 (7)0.0035 (8)
C60.0172 (10)0.0152 (10)0.0167 (10)0.0009 (8)0.0048 (8)0.0001 (8)
C70.0218 (10)0.0122 (10)0.0293 (12)0.0031 (8)0.0065 (9)0.0035 (9)
Cl1'0.0204 (3)0.0295 (3)0.0170 (3)0.0005 (2)0.00670 (19)0.0048 (2)
O1'0.0169 (7)0.0198 (7)0.0153 (7)0.0038 (6)0.0036 (5)0.0010 (6)
C1'0.0153 (9)0.0084 (9)0.0189 (10)0.0007 (7)0.0069 (7)0.0015 (8)
C2'0.0165 (9)0.0113 (9)0.0172 (10)0.0017 (7)0.0058 (8)0.0009 (8)
C3'0.0135 (9)0.0140 (9)0.0215 (10)0.0008 (8)0.0046 (8)0.0002 (8)
C4'0.0169 (9)0.0135 (10)0.0250 (11)0.0007 (8)0.0109 (8)0.0015 (8)
C5'0.0197 (10)0.0146 (10)0.0142 (9)0.0031 (8)0.0069 (8)0.0020 (8)
C6'0.0142 (9)0.0127 (9)0.0201 (10)0.0004 (7)0.0047 (8)0.0000 (8)
C7'0.0202 (10)0.0224 (11)0.0177 (10)0.0052 (9)0.0016 (8)0.0004 (9)
Geometric parameters (Å, º) top
Cl1—C51.749 (2)Cl1'—C5'1.745 (2)
O1—C21.364 (2)O1'—C2'1.368 (2)
O1—C71.432 (2)O1'—C7'1.430 (2)
C1—C61.395 (3)C1'—C6'1.391 (3)
C1—C21.404 (3)C1'—C2'1.407 (3)
C1—C1'1.491 (2)C2'—C3'1.391 (3)
C2—C31.393 (3)C3'—C4'1.392 (3)
C3—C41.392 (3)C3'—H3'0.9500
C3—H30.9500C4'—C5'1.379 (3)
C4—C51.381 (3)C4'—H4'0.9500
C4—H40.9500C5'—C6'1.390 (3)
C5—C61.386 (3)C6'—H6'0.9500
C6—H60.9500C7'—H7'10.9800
C7—H7A0.9800C7'—H7'20.9800
C7—H7B0.9800C7'—H7'30.9800
C7—H7C0.9800
C2—O1—C7117.14 (15)C2'—O1'—C7'117.18 (15)
C6—C1—C2118.90 (17)C6'—C1'—C2'118.68 (17)
C6—C1—C1'120.57 (17)C6'—C1'—C1119.16 (17)
C2—C1—C1'120.38 (16)C2'—C1'—C1122.16 (17)
O1—C2—C3123.39 (18)O1'—C2'—C3'123.77 (18)
O1—C2—C1116.12 (16)O1'—C2'—C1'116.10 (16)
C3—C2—C1120.48 (17)C3'—C2'—C1'120.09 (18)
C4—C3—C2119.96 (19)C2'—C3'—C4'120.81 (18)
C4—C3—H3120.0C2'—C3'—H3'119.6
C2—C3—H3120.0C4'—C3'—H3'119.6
C5—C4—C3119.19 (18)C5'—C4'—C3'118.72 (18)
C5—C4—H4120.4C5'—C4'—H4'120.6
C3—C4—H4120.4C3'—C4'—H4'120.6
C4—C5—C6121.58 (18)C4'—C5'—C6'121.41 (18)
C4—C5—Cl1119.00 (15)C4'—C5'—Cl1'119.85 (15)
C6—C5—Cl1119.41 (16)C6'—C5'—Cl1'118.74 (15)
C5—C6—C1119.72 (18)C5'—C6'—C1'120.26 (18)
C5—C6—H6120.1C5'—C6'—H6'119.9
C1—C6—H6120.1C1'—C6'—H6'119.9
O1—C7—H7A109.5O1'—C7'—H7'1109.5
O1—C7—H7B109.5O1'—C7'—H7'2109.5
H7A—C7—H7B109.5H7'1—C7'—H7'2109.5
O1—C7—H7C109.5O1'—C7'—H7'3109.5
H7A—C7—H7C109.5H7'1—C7'—H7'3109.5
H7B—C7—H7C109.5H7'2—C7'—H7'3109.5
C7—O1—C2—C317.7 (3)C6—C1—C1'—C2'119.2 (2)
C7—O1—C2—C1161.82 (17)C2—C1—C1'—C2'65.4 (3)
C6—C1—C2—O1175.20 (17)C7'—O1'—C2'—C3'4.5 (3)
C1'—C1—C2—O10.3 (3)C7'—O1'—C2'—C1'177.96 (17)
C6—C1—C2—C34.3 (3)C6'—C1'—C2'—O1'175.93 (17)
C1'—C1—C2—C3179.85 (18)C1—C1'—C2'—O1'3.6 (3)
O1—C2—C3—C4176.63 (18)C6'—C1'—C2'—C3'1.7 (3)
C1—C2—C3—C42.9 (3)C1—C1'—C2'—C3'178.75 (18)
C2—C3—C4—C50.9 (3)O1'—C2'—C3'—C4'176.60 (18)
C3—C4—C5—C63.2 (3)C1'—C2'—C3'—C4'0.9 (3)
C3—C4—C5—Cl1176.05 (15)C2'—C3'—C4'—C5'0.7 (3)
C4—C5—C6—C11.7 (3)C3'—C4'—C5'—C6'1.5 (3)
Cl1—C5—C6—C1177.55 (15)C3'—C4'—C5'—Cl1'179.32 (15)
C2—C1—C6—C52.1 (3)C4'—C5'—C6'—C1'0.6 (3)
C1'—C1—C6—C5177.59 (18)Cl1'—C5'—C6'—C1'179.82 (15)
C6—C1—C1'—C6'60.3 (3)C2'—C1'—C6'—C5'1.0 (3)
C2—C1—C1'—C6'115.1 (2)C1—C1'—C6'—C5'179.49 (17)

Experimental details

Crystal data
Chemical formulaC14H12Cl2O2
Mr283.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)10.9629 (2), 7.2177 (1), 16.7812 (3)
β (°) 104.7108 (7)
V3)1284.32 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.899, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
21357, 2948, 2347
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.11
No. of reflections2948
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.41

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

This research was supported by grant Nos. ES05605, ES013661 and ES017425 from the National Institute of Environmental Health Sciences, National Institutes of Health.

References

First citationBasu, I., Arnold, K. A., Venier, M. & Hites, R. A. (2009). Environ. Sci. Technol. 43, 6488–6492.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChattopadhyay, D., Banerjee, T., Majumdar, S. K., Podder, G., Kashino, S. & Haisa, M. (1987). Acta Cryst. C43, 482–484.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHu, D., Martinez, A. & Hornbuckle, K. C. (2008). Environ. Sci. Technol. 42, 7873–7877.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJoshi, S. N., Vyas, S. M., Duffel, M. W., Parkin, S. & Lehmler, H. J. (2011). Synthesis, pp. 1045–1054.  Google Scholar
First citationKaminsky, L. S., Kennedy, M. W., Adams, S. M. & Guengerich, F. P. (1981). Biochemistry, 20, 7379–7384.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKennedy, M. W., Carpentier, N. K., Dymerski, P. P. & Kaminsky, L. S. (1981). Biochem. Pharmacol. 30, 577–588.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMcLean, M. R., Bauer, U., Amaro, A. R. & Robertson, L. W. (1996). Chem. Res. Toxicol. 9, 158–164.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNakaema, K., Okamoto, A., Maruyama, S., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o1731.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRodenburg, L. A., Guo, J., Du, S. & Cavallo, G. J. (2010). Environ. Sci. Technol. 44, 2816–2821.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D. L., Lindeman, S. V., Rathore, R. & Kochi, J. K. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1585–1594.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds