metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(anti-Chlorido­thio­semicabazide-κS)bis­­(tri­phenyl­phosphane-κP)copper(I) 0.48-hydrate

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

(Received 21 March 2013; accepted 28 March 2013; online 5 April 2013)

In the mononuclear title complex, [CuCl(CH5N3S)(C18H15P)2]·0.48H2O, the CuI ion is in a slightly distorted tetra­hedral coordination geometry formed by two P atoms from two tri­phenyl­phosphane ligands, one S atom from a thio­semicarbazide ligand and one chloride anion. An intra­molecular N—H⋯N hydrogen bond [graph-set motif S(5)] stabilizes the thio­semicarbazide ligand in its anti conformation, and an intra­molecular N—H⋯Cl hydrogen bond between the hydrazine N—H group and the chloride anion influences the arrangement and orientation of the ligands around the metal center. A weak intra­molecular C—H⋯Cl hydrogen bond is also present. In the crystal, complex mol­ecules are connected through N—H⋯Cl hydrogen bonds originating from the amide –NH2 group, and through O—H⋯S and O—H⋯Cl hydrogen bonds involving the solvent water mol­ecule. Both the direct N—H⋯Cl hydrogen bonds as well as the bridging hydrogen bonds mediated by the water mol­ecule connect the complex mol­ecules into zigzag chains that propagate along [010]. The solvent water mol­ecule is partially occupied, with a refined occupancy of 0.479 (7).

Related literature

For the coordination of thio­semicarbazide and thio­semicarbazones with metal complexes, see: Andreetti et al. (1970[Andreetti, G. D., Domiano, P., Gasparri, G. F., Nardelli, M. & Sgarabotto, P. (1970). Acta Cryst. B26, 1005-1009.]); Chattopadhyay et al. (1991[Chattopadhyay, D., Majumdar, S. K., Lowe, P., Schwalbe, C. H., Chattopadhyay, S. K. & Ghosh, S. (1991). J. Chem. Soc. Dalton Trans. pp. 2121-2124.]); Jia et al. (2008a[Jia, L., Ma, S. & Li, D. (2008a). Acta Cryst. E64, m796.],b[Jia, L., Ma, S.-X. & Li, D.-C. (2008b). Acta Cryst. E64, m820.]); Villa et al. (1972a[Villa, A. C., Manfredotti, A. G. & Guastini, C. (1972a). Cryst. Struct. Commun. 1, 125.],b[Villa, A. C., Manfredotti, A. G. & Guastini, C. (1972b). Cryst. Struct. Commun. 1, 207.]); Qirong et al. (1987[Qirong, C., Cun, L., Jingyu, Z., Xiaozeng, Y., Jinshun, H., Manfang, W. & Tongbao, K. (1987). Chin. Sci. Bull. 32, 321-330.]). For potential applications of related complexes, see: Alagarsamy & Parthiban (2011[Alagarsamy, V. & Parthiban, P. (2011). Rasayan. J. Chem. 4, 736-743.]); Kowol et al. (2007[Kowol, C. R., Berger, R., Eichinger, R., Roller, A., Jakupec, M. A., Schmidt, P. P., Arion, V. B. & Keppler, B. K. (2007). J. Med. Chem. 50, 1254-1265.]); Pelosi (2010[Pelosi, G. (2010). The Open Crystallogr. J. 3, 16-28.]); Yu et al. (2009[Yu, Y., Kalinowski, D. S., Kovacevic, Z., Siafakas, A. R., Jansson, P. J., Stefani, C., Lovejoy, D. B., Sharpe, P. C. & Richardson, D. R. (2009). J. Med. Chem. 52, 5271-5294.]); Wattanakanjana et al. (2012[Wattanakanjana, Y., Pakawatchai, C., Saithong, S., Piboonphon, P. & Nimthong, R. (2012). Acta Cryst. E68, m1417-m1418.]). For hydrogen-bond graph-set motifs, see: Bernstein, et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database (CSD), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(CH5N3S)(C18H15P)2]·0.48H2O

  • Mr = 723.29

  • Monoclinic, P 21 /n

  • a = 14.8723 (7) Å

  • b = 12.4829 (6) Å

  • c = 19.2103 (9) Å

  • β = 96.126 (1)°

  • V = 3546.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 293 K

  • 0.34 × 0.11 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003)[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.880, Tmax = 1

  • 48021 measured reflections

  • 8591 independent reflections

  • 6691 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.110

  • S = 1.06

  • 8591 reflections

  • 428 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯Cl1 0.82 (2) 2.37 (2) 3.186 (5) 179 (12)
O1—H1D⋯S1i 0.82 (2) 2.70 (10) 3.218 (5) 123 (9)
N1—H1B⋯Cl1ii 0.86 2.48 3.302 (3) 161
N1—H1A⋯N3 0.86 2.27 2.628 (5) 105
N2—H2⋯Cl1 0.86 2.35 3.202 (2) 170
C42—H42⋯Cl1 0.93 2.72 3.626 (3) 164
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE Rev609 (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazones, the condensation products of thiosemicarbazide and aldehydes, are compounds of considerable interest due to their remarkable number and variety of biological properties and the potential medical and pharmaceutical applications that result (Pelosi, 2010; Yu et al., 2009). Biological applications are not limited to the thiosemicarbazones, but their metal complexes have been described to also have similar effects, and are often even more active than the uncoordinated thiosemicarbazones. Metal complexes of thiosemicarbazones have been described to be active antimicrobial agents (Alagarsamy et al., 2011), are highly effective anticancer agents (Yu et al., 2009), they exhibit cytotoxicity and do interact with ribonucleotide reductase (Kowol et al., 2007), to name just a few of the properties they have been investigated for. The parent compound of all thiosemicarbazones, thiosemicarbazide, does also exhibit a rich metal coordination chemistry. Having no substituent at the hydrazide NH2 group, thiosemicarbazide is able to coordinate to metal ions in an N,S-chelating mode, and this is realised in most of its complexes. Of 79 complexes of thiosemicarbazide reported in the Cambridge Structural Database (2013 release, Allen, 2002), 61 featured N,S-chelation of the ligand, 5 displayed N,S-chelation and additional coordination via the sulfur atom, and 13 displayed mono- or bidentate coordination via the sulfur only. Coordination via only nitrogen was not observed at all. The coordination mode towards the metal dicates the conformation of the thiosemicarbazide ligand. In N,S-chelating complexes, the ligand necessarily features a syn-conformation of the sulfur atom versus the hydrazide NH2 group. In the complexes with only sulfur coordination both syn and anti conformation can be imagined. However, all reported examples feature the anti-conformation which is also observed in the parent compound. In salts of with protonated thiosemicarbazide cations, on the other hand, the anti conformation is again the only one realised (Andreetti et al., 1970).

The reasons for the often increased biological activity of metal complexes, when compared to those of only the ligands by themselves, is manifold and depend highly on the individual case and type of biological activity under investigation. Common to many mechanisms is the need for the active compounds to pass through the cell membrane, a barrier difficult to pentrate for polar compounds such as thiosemicarbazone. Coordination to metal complexes, especially when paired with other more lipophilic ligands, reduces the polarity of the thiosemicarbazide compound. In an effort to investigate the influence of metal coordination and use of various phenyl phosphane ligands on the antibacterial properties of copper(I) and silver(I) complexes of thiosemicarbazide we reacted thiosemicarbazide with the triphenylphosphine adduct of copper(I) chloride

The use of monodenate triphenylphosphane lead to the formation or the mononuclear complex have prepared the title compound of this study, (anti-thiosemicabazide-κS)chloridobis(triphenylphosphane-κP)copper(I), which crystallized from acetonitrile in the form of its hemihydrate (with a refined occupancy of 0.479 (7)). As is typical for soft metal ions such as Cu(I), thiosemicarbazide coordination is via the soft sulfur donor only, as had been observed for the other two Cu(I) complexes of thiosemicarbazide (Jia et al., 2008a,b). Copper(II), on the other hand shows N,S-chelation with thiosemicarbazide (Villa et al., 1972a,b; Qirong et al., 1987; Chattopadhyay et al.,1991). In the title compound, the metal center is coordinated to one S donor of the thiosemicarbazide ligand, two P atoms of two triphenylphosphane ligands one chlorine atom. In agreement with expectation for a Cu(I) center with soft donor atoms, It displays a distorted tetrahedral coordination of the CuI center. (Fig. 1). The Cu—S bond distance of 2.3841 (7) Å is slightly longer than in the other two Cu(I) thiosemicarbazides (2.2401 (10) to 2.3192 (13) Å, Jia et al., 2008a,b), but very similar to several other similar complexes such as the thiosemicarnzone complex [CuI(C4H9N3S)(C18H15P)2] with a Cu—S bond length of 2.3866 (7) Å (Wattanakanjana et al., 2012). As in all other complexes with S-only coordination of thiosemicarbazides the ligand is in the anti-conformation, which is stablized by an intramolecular N—H···N hydrogen bond between N1—H1A and N3 (graph set designator as S(5) (Bernstein et al., 1995)). Another intramolecular hydrogen bond, between the hydrazine N2—H2 group and the chloride anion, orients the hyrdrazide N—H group towards the chlorine atom and, through this, influences the arrangement and orientation of the ligands around the CuI center. Neighboring complexes are connected with each other through N1—H1B···Cl1 hydrogen bonds originating from the amide NH2 group, and through O1—H1D···S1 and O1—H1C···Cl1 hydrogen bonds involving the solvate water molecule. Both the direct N2—H2···Cl1 hydrogen bonds as well as the bridging H-bonds mediated by the water molecule are linking molecules with each other leading to formation of a one-dimentional zigzag chain parallel to the b axis (see Table and Fig.2).

Related literature top

For the coordination of thiosemicarbazide and thiosemicarbazones with metal complexes, see: Andreetti et al. (1970); Chattopadhyay et al. (1991); Jia et al. (2008a,b); Villa et al. (1972a,b); Qirong et al. (1987). For potential applications of related complexes, see: Alagarsamy et al. (2011); Kowol et al. (2007); Pelosi (2010); Yu et al. (2009); Wattanakanjana et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein, et al. (1995). For a description of the Cambridge Structural Database (CSD), see: Allen (2002).

Experimental top

Triphenylphosphane (0.53 g, 2 mmol) was dissolved in 30 cm3 of acetonitrile at 335 K. CuCl (0.10 g, 1 mmol) was added and the mixture was stirred for 1.5 h. Thiosemicarbazide (0.09 g, 1 mmol) was added and the reaction mixture was heated to reflux of the solvent for 5.5 h. The resulting clear solution was filtered and left to evaporate at room temperature. The crystalline solid, which precipitated upon standing for three days, was filtered off and dried under reduced pressure (0.38 g, yield 52%). Mp = 439–441 K. Main IR peaks (KBr, cm-1): ν(N—H) 3420, 3248, 3126 m, ν (C—N) + δ (N—H) 1620, 1598, 1476 m, ν (C=S) + ν (C=N) + ν (C—N) 1326, 1308 m, ν (C—N) +ν (C—S) 1082 s, ν (C—S) 775 s.

Refinement top

The two hydrazide NH2 H atoms were located in a difference Fourier map and refined isotropically, with N—H distances restrained to 0.86 (2) Å, with Uiso(H) = 1.2Ueq(N). The remaining H atoms bonded to N or C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93, N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C/N). A solvate water molecule is partailly occupied, the occupancy of the water molecule refined to 0.479 (7). The H atoms attached to the water molecules were located in a difference Fourier map and refined isotropically, with O—H distances restrained to 0.82 (2) Å, with Uiso(H) = 1.2Ueq(N).

Structure description top

Thiosemicarbazones, the condensation products of thiosemicarbazide and aldehydes, are compounds of considerable interest due to their remarkable number and variety of biological properties and the potential medical and pharmaceutical applications that result (Pelosi, 2010; Yu et al., 2009). Biological applications are not limited to the thiosemicarbazones, but their metal complexes have been described to also have similar effects, and are often even more active than the uncoordinated thiosemicarbazones. Metal complexes of thiosemicarbazones have been described to be active antimicrobial agents (Alagarsamy et al., 2011), are highly effective anticancer agents (Yu et al., 2009), they exhibit cytotoxicity and do interact with ribonucleotide reductase (Kowol et al., 2007), to name just a few of the properties they have been investigated for. The parent compound of all thiosemicarbazones, thiosemicarbazide, does also exhibit a rich metal coordination chemistry. Having no substituent at the hydrazide NH2 group, thiosemicarbazide is able to coordinate to metal ions in an N,S-chelating mode, and this is realised in most of its complexes. Of 79 complexes of thiosemicarbazide reported in the Cambridge Structural Database (2013 release, Allen, 2002), 61 featured N,S-chelation of the ligand, 5 displayed N,S-chelation and additional coordination via the sulfur atom, and 13 displayed mono- or bidentate coordination via the sulfur only. Coordination via only nitrogen was not observed at all. The coordination mode towards the metal dicates the conformation of the thiosemicarbazide ligand. In N,S-chelating complexes, the ligand necessarily features a syn-conformation of the sulfur atom versus the hydrazide NH2 group. In the complexes with only sulfur coordination both syn and anti conformation can be imagined. However, all reported examples feature the anti-conformation which is also observed in the parent compound. In salts of with protonated thiosemicarbazide cations, on the other hand, the anti conformation is again the only one realised (Andreetti et al., 1970).

The reasons for the often increased biological activity of metal complexes, when compared to those of only the ligands by themselves, is manifold and depend highly on the individual case and type of biological activity under investigation. Common to many mechanisms is the need for the active compounds to pass through the cell membrane, a barrier difficult to pentrate for polar compounds such as thiosemicarbazone. Coordination to metal complexes, especially when paired with other more lipophilic ligands, reduces the polarity of the thiosemicarbazide compound. In an effort to investigate the influence of metal coordination and use of various phenyl phosphane ligands on the antibacterial properties of copper(I) and silver(I) complexes of thiosemicarbazide we reacted thiosemicarbazide with the triphenylphosphine adduct of copper(I) chloride

The use of monodenate triphenylphosphane lead to the formation or the mononuclear complex have prepared the title compound of this study, (anti-thiosemicabazide-κS)chloridobis(triphenylphosphane-κP)copper(I), which crystallized from acetonitrile in the form of its hemihydrate (with a refined occupancy of 0.479 (7)). As is typical for soft metal ions such as Cu(I), thiosemicarbazide coordination is via the soft sulfur donor only, as had been observed for the other two Cu(I) complexes of thiosemicarbazide (Jia et al., 2008a,b). Copper(II), on the other hand shows N,S-chelation with thiosemicarbazide (Villa et al., 1972a,b; Qirong et al., 1987; Chattopadhyay et al.,1991). In the title compound, the metal center is coordinated to one S donor of the thiosemicarbazide ligand, two P atoms of two triphenylphosphane ligands one chlorine atom. In agreement with expectation for a Cu(I) center with soft donor atoms, It displays a distorted tetrahedral coordination of the CuI center. (Fig. 1). The Cu—S bond distance of 2.3841 (7) Å is slightly longer than in the other two Cu(I) thiosemicarbazides (2.2401 (10) to 2.3192 (13) Å, Jia et al., 2008a,b), but very similar to several other similar complexes such as the thiosemicarnzone complex [CuI(C4H9N3S)(C18H15P)2] with a Cu—S bond length of 2.3866 (7) Å (Wattanakanjana et al., 2012). As in all other complexes with S-only coordination of thiosemicarbazides the ligand is in the anti-conformation, which is stablized by an intramolecular N—H···N hydrogen bond between N1—H1A and N3 (graph set designator as S(5) (Bernstein et al., 1995)). Another intramolecular hydrogen bond, between the hydrazine N2—H2 group and the chloride anion, orients the hyrdrazide N—H group towards the chlorine atom and, through this, influences the arrangement and orientation of the ligands around the CuI center. Neighboring complexes are connected with each other through N1—H1B···Cl1 hydrogen bonds originating from the amide NH2 group, and through O1—H1D···S1 and O1—H1C···Cl1 hydrogen bonds involving the solvate water molecule. Both the direct N2—H2···Cl1 hydrogen bonds as well as the bridging H-bonds mediated by the water molecule are linking molecules with each other leading to formation of a one-dimentional zigzag chain parallel to the b axis (see Table and Fig.2).

For the coordination of thiosemicarbazide and thiosemicarbazones with metal complexes, see: Andreetti et al. (1970); Chattopadhyay et al. (1991); Jia et al. (2008a,b); Villa et al. (1972a,b); Qirong et al. (1987). For potential applications of related complexes, see: Alagarsamy et al. (2011); Kowol et al. (2007); Pelosi (2010); Yu et al. (2009); Wattanakanjana et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein, et al. (1995). For a description of the Cambridge Structural Database (CSD), see: Allen (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008) and SHELXLE Rev609 (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular struture with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure wuth O—H···S and N—H···Cl hydrogen bonds, shown as dashed lines, which link molecules into one dimensional zigzag chain parallel to the b axis.
(anti-Chloridothiosemicabazide-κS)bis(triphenylphosphane-κP)copper(I) 0.48-hydrate top
Crystal data top
[CuCl(CH5N3S)(C18H15P)2]·0.48H2OF(000) = 1499.2
Mr = 723.29Dx = 1.355 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.8723 (7) ÅCell parameters from 7520 reflections
b = 12.4829 (6) Åθ = 2.3–23.0°
c = 19.2103 (9) ŵ = 0.87 mm1
β = 96.126 (1)°T = 293 K
V = 3546.0 (3) Å3Block, colorless
Z = 40.34 × 0.11 × 0.07 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8591 independent reflections
Radiation source: sealed tube6691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1919
Tmin = 0.880, Tmax = 1k = 1616
48021 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.050P)2 + 1.0259P]
where P = (Fo2 + 2Fc2)/3
8591 reflections(Δ/σ)max = 0.001
428 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = 0.19 e Å3
Crystal data top
[CuCl(CH5N3S)(C18H15P)2]·0.48H2OV = 3546.0 (3) Å3
Mr = 723.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.8723 (7) ŵ = 0.87 mm1
b = 12.4829 (6) ÅT = 293 K
c = 19.2103 (9) Å0.34 × 0.11 × 0.07 mm
β = 96.126 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
8591 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6691 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 1Rint = 0.047
48021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.42 e Å3
8591 reflectionsΔρmin = 0.19 e Å3
428 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.87688 (2)0.69145 (2)0.14512 (2)0.03859 (9)
O10.6525 (4)0.3863 (6)0.1104 (3)0.106 (3)0.479 (7)
H1C0.701 (4)0.417 (8)0.120 (6)0.159*0.479 (7)
H1D0.631 (7)0.336 (6)0.130 (5)0.159*0.479 (7)
Cl10.84280 (4)0.50261 (5)0.14456 (3)0.04861 (15)
S10.80953 (5)0.77828 (5)0.23718 (4)0.05356 (18)
P11.02443 (4)0.69509 (5)0.19010 (3)0.03600 (13)
P20.80809 (4)0.77112 (5)0.04621 (3)0.03623 (14)
N10.64208 (18)0.7719 (2)0.27084 (16)0.0810 (8)
H1A0.59220.73960.27610.097*
H1B0.64910.83800.28290.097*
N20.69393 (15)0.61907 (19)0.22675 (13)0.0648 (7)
H20.73560.58290.20960.078*
N30.6107 (2)0.5707 (3)0.2361 (2)0.1044 (13)
H3A0.583 (3)0.566 (4)0.1932 (13)0.125*
H3B0.618 (3)0.5052 (19)0.248 (3)0.125*
C10.70773 (18)0.7203 (2)0.24444 (13)0.0514 (6)
C111.11233 (14)0.66548 (18)0.13309 (11)0.0365 (5)
C121.09407 (17)0.58379 (19)0.08457 (13)0.0469 (6)
H121.03880.54830.08170.056*
C131.1577 (2)0.5551 (2)0.04057 (14)0.0567 (7)
H131.14520.50040.00810.068*
C141.2390 (2)0.6069 (2)0.04457 (15)0.0585 (7)
H141.28150.58740.01470.070*
C151.25819 (18)0.6875 (2)0.09241 (16)0.0583 (7)
H151.31380.72220.09500.070*
C161.19517 (16)0.7173 (2)0.13669 (13)0.0477 (6)
H161.20830.77220.16890.057*
C211.05730 (15)0.82700 (19)0.22479 (13)0.0418 (5)
C221.0509 (2)0.9125 (2)0.17833 (15)0.0582 (7)
H221.02880.90060.13180.070*
C231.0763 (2)1.0143 (2)0.1993 (2)0.0718 (9)
H231.07261.07020.16710.086*
C241.1072 (2)1.0327 (3)0.2678 (2)0.0782 (10)
H241.12581.10110.28220.094*
C251.1109 (2)0.9510 (3)0.3150 (2)0.0877 (12)
H251.13040.96440.36180.105*
C261.0856 (2)0.8474 (3)0.29384 (16)0.0646 (8)
H261.08790.79230.32650.077*
C311.05437 (16)0.60214 (19)0.26296 (12)0.0419 (5)
C321.14238 (18)0.5696 (2)0.28240 (14)0.0559 (7)
H321.18890.59620.25860.067*
C331.1621 (2)0.4978 (3)0.33684 (16)0.0677 (8)
H331.22170.47740.34980.081*
C341.0941 (2)0.4567 (3)0.37161 (16)0.0727 (9)
H341.10740.40850.40820.087*
C351.0072 (2)0.4869 (3)0.35232 (16)0.0747 (9)
H350.96110.45810.37550.090*
C360.98627 (19)0.5600 (2)0.29870 (14)0.0573 (7)
H360.92660.58070.28670.069*
C410.68669 (15)0.7430 (2)0.02893 (12)0.0422 (5)
C420.65597 (19)0.6448 (3)0.04902 (16)0.0626 (7)
H420.69650.59560.07100.075*
C430.5651 (2)0.6188 (3)0.0366 (2)0.0890 (11)
H430.54490.55240.05030.107*
C440.5049 (2)0.6905 (4)0.0044 (2)0.0912 (12)
H440.44390.67310.00350.109*
C450.5344 (2)0.7876 (3)0.01622 (19)0.0780 (10)
H450.49350.83600.03860.094*
C460.62496 (18)0.8145 (3)0.00402 (16)0.0610 (7)
H460.64450.88120.01800.073*
C510.85129 (15)0.73927 (18)0.03696 (12)0.0389 (5)
C520.79750 (19)0.7307 (3)0.10006 (14)0.0580 (7)
H520.73600.74580.10220.070*
C530.8345 (2)0.6999 (3)0.16006 (15)0.0660 (8)
H530.79750.69440.20210.079*
C540.9242 (2)0.6776 (2)0.15837 (15)0.0587 (7)
H540.94820.65600.19890.070*
C550.97882 (19)0.6872 (2)0.09687 (15)0.0576 (7)
H551.04040.67350.09560.069*
C560.94248 (17)0.7172 (2)0.03655 (14)0.0486 (6)
H560.98010.72260.00520.058*
C610.80914 (16)0.91750 (19)0.04859 (12)0.0429 (5)
C620.7576 (2)0.9697 (2)0.09473 (15)0.0605 (7)
H620.72450.92940.12380.073*
C630.7549 (3)1.0802 (2)0.09799 (17)0.0766 (9)
H630.71941.11380.12860.092*
C640.8040 (3)1.1398 (3)0.05644 (19)0.0857 (11)
H640.80201.21420.05840.103*
C650.8562 (3)1.0901 (3)0.01195 (19)0.0883 (11)
H650.89051.13100.01580.106*
C660.8586 (2)0.9793 (2)0.00755 (15)0.0623 (7)
H660.89410.94670.02340.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03296 (15)0.04514 (17)0.03791 (16)0.00235 (12)0.00491 (11)0.00367 (12)
O10.104 (5)0.132 (6)0.074 (4)0.054 (4)0.025 (3)0.031 (3)
Cl10.0553 (4)0.0380 (3)0.0546 (4)0.0016 (3)0.0157 (3)0.0045 (3)
S10.0600 (4)0.0470 (4)0.0581 (4)0.0062 (3)0.0267 (3)0.0090 (3)
P10.0326 (3)0.0408 (3)0.0345 (3)0.0015 (2)0.0031 (2)0.0009 (2)
P20.0323 (3)0.0405 (3)0.0359 (3)0.0013 (2)0.0036 (2)0.0022 (2)
N10.0616 (16)0.0768 (18)0.111 (2)0.0057 (14)0.0397 (16)0.0275 (16)
N20.0507 (13)0.0628 (15)0.0868 (17)0.0123 (11)0.0347 (12)0.0253 (13)
N30.068 (2)0.099 (2)0.156 (3)0.0340 (19)0.055 (2)0.046 (3)
C10.0513 (15)0.0576 (16)0.0480 (14)0.0054 (12)0.0178 (12)0.0065 (12)
C110.0350 (11)0.0408 (12)0.0339 (11)0.0038 (9)0.0047 (9)0.0038 (9)
C120.0510 (14)0.0423 (13)0.0475 (14)0.0025 (11)0.0055 (11)0.0006 (11)
C130.0751 (19)0.0470 (15)0.0499 (15)0.0075 (14)0.0155 (13)0.0055 (12)
C140.0648 (18)0.0579 (17)0.0574 (16)0.0172 (14)0.0276 (14)0.0085 (13)
C150.0424 (14)0.0652 (18)0.0700 (18)0.0009 (12)0.0180 (13)0.0062 (15)
C160.0407 (13)0.0538 (15)0.0491 (14)0.0042 (11)0.0061 (11)0.0041 (11)
C210.0315 (11)0.0457 (13)0.0484 (13)0.0006 (9)0.0057 (10)0.0063 (10)
C220.0693 (18)0.0483 (15)0.0594 (17)0.0014 (13)0.0173 (14)0.0006 (13)
C230.074 (2)0.0436 (16)0.102 (3)0.0007 (14)0.0286 (19)0.0052 (16)
C240.0532 (18)0.0538 (18)0.126 (3)0.0037 (14)0.0035 (19)0.031 (2)
C250.086 (2)0.080 (2)0.088 (3)0.009 (2)0.030 (2)0.039 (2)
C260.0679 (19)0.0608 (17)0.0601 (17)0.0080 (15)0.0159 (14)0.0101 (14)
C310.0436 (13)0.0444 (13)0.0368 (12)0.0000 (10)0.0006 (10)0.0007 (10)
C320.0508 (15)0.0623 (17)0.0540 (15)0.0066 (13)0.0028 (12)0.0120 (13)
C330.0650 (19)0.072 (2)0.0642 (18)0.0212 (16)0.0008 (15)0.0146 (15)
C340.096 (3)0.0641 (19)0.0569 (18)0.0155 (18)0.0017 (17)0.0196 (15)
C350.081 (2)0.085 (2)0.0607 (19)0.0052 (18)0.0165 (16)0.0279 (17)
C360.0543 (16)0.0706 (18)0.0470 (15)0.0003 (14)0.0062 (12)0.0146 (13)
C410.0337 (11)0.0549 (15)0.0376 (12)0.0034 (10)0.0021 (9)0.0042 (10)
C420.0473 (15)0.0670 (18)0.0710 (19)0.0138 (13)0.0052 (13)0.0002 (15)
C430.062 (2)0.096 (3)0.106 (3)0.037 (2)0.0070 (19)0.006 (2)
C440.0389 (17)0.141 (4)0.092 (3)0.019 (2)0.0038 (16)0.006 (2)
C450.0416 (16)0.110 (3)0.080 (2)0.0091 (17)0.0061 (15)0.003 (2)
C460.0427 (15)0.0740 (19)0.0654 (18)0.0024 (13)0.0007 (13)0.0113 (15)
C510.0401 (12)0.0391 (12)0.0381 (12)0.0010 (10)0.0075 (9)0.0010 (9)
C520.0441 (14)0.086 (2)0.0431 (14)0.0032 (14)0.0008 (11)0.0040 (14)
C530.0654 (19)0.093 (2)0.0395 (14)0.0050 (16)0.0033 (13)0.0071 (14)
C540.0719 (19)0.0564 (17)0.0520 (16)0.0060 (14)0.0265 (14)0.0076 (12)
C550.0478 (15)0.0610 (17)0.0672 (18)0.0020 (13)0.0206 (13)0.0021 (14)
C560.0417 (13)0.0567 (16)0.0477 (14)0.0002 (11)0.0063 (11)0.0009 (11)
C610.0479 (13)0.0395 (12)0.0401 (12)0.0013 (10)0.0011 (10)0.0033 (10)
C620.077 (2)0.0506 (16)0.0557 (16)0.0073 (14)0.0170 (14)0.0043 (13)
C630.111 (3)0.0526 (18)0.067 (2)0.0171 (18)0.0143 (19)0.0046 (15)
C640.140 (3)0.0417 (17)0.073 (2)0.002 (2)0.003 (2)0.0008 (16)
C650.136 (3)0.0539 (19)0.079 (2)0.027 (2)0.030 (2)0.0082 (17)
C660.079 (2)0.0498 (16)0.0603 (17)0.0128 (14)0.0192 (15)0.0005 (13)
Geometric parameters (Å, º) top
Cu1—P12.2714 (6)C31—C361.387 (3)
Cu1—P22.2872 (6)C32—C331.385 (4)
Cu1—S12.3841 (7)C32—H320.9300
Cu1—Cl12.4110 (7)C33—C341.369 (5)
O1—H1C0.82 (2)C33—H330.9300
O1—H1D0.82 (2)C34—C351.359 (5)
S1—C11.697 (3)C34—H340.9300
P1—C211.823 (2)C35—C361.386 (4)
P1—C111.831 (2)C35—H350.9300
P1—C311.836 (2)C36—H360.9300
P2—C611.828 (2)C41—C421.377 (4)
P2—C511.828 (2)C41—C461.385 (4)
P2—C411.834 (2)C42—C431.386 (4)
N1—C11.316 (3)C42—H420.9300
N1—H1A0.8600C43—C441.366 (5)
N1—H1B0.8600C43—H430.9300
N2—C11.319 (3)C44—C451.362 (5)
N2—N31.406 (4)C44—H440.9300
N2—H20.8600C45—C461.383 (4)
N3—H3A0.879 (19)C45—H450.9300
N3—H3B0.851 (19)C46—H460.9300
C11—C161.387 (3)C51—C561.383 (3)
C11—C121.389 (3)C51—C521.383 (3)
C12—C131.382 (4)C52—C531.384 (4)
C12—H120.9300C52—H520.9300
C13—C141.365 (4)C53—C541.359 (4)
C13—H130.9300C53—H530.9300
C14—C151.373 (4)C54—C551.366 (4)
C14—H140.9300C54—H540.9300
C15—C161.382 (4)C55—C561.382 (4)
C15—H150.9300C55—H550.9300
C16—H160.9300C56—H560.9300
C21—C261.372 (4)C61—C661.372 (4)
C21—C221.388 (4)C61—C621.394 (4)
C22—C231.373 (4)C62—C631.382 (4)
C22—H220.9300C62—H620.9300
C23—C241.367 (5)C63—C641.360 (5)
C23—H230.9300C63—H630.9300
C24—C251.362 (5)C64—C651.364 (5)
C24—H240.9300C64—H640.9300
C25—C261.395 (5)C65—C661.386 (4)
C25—H250.9300C65—H650.9300
C26—H260.9300C66—H660.9300
C31—C321.383 (3)
P1—Cu1—P2129.47 (2)C36—C31—P1119.14 (18)
P1—Cu1—S1100.02 (3)C31—C32—C33120.8 (3)
P2—Cu1—S1103.44 (3)C31—C32—H32119.6
P1—Cu1—Cl1102.44 (2)C33—C32—H32119.6
P2—Cu1—Cl1110.26 (2)C34—C33—C32120.2 (3)
S1—Cu1—Cl1110.06 (2)C34—C33—H33119.9
H1C—O1—H1D129 (10)C32—C33—H33119.9
C1—S1—Cu1108.44 (9)C35—C34—C33119.6 (3)
C21—P1—C11102.72 (10)C35—C34—H34120.2
C21—P1—C31104.98 (11)C33—C34—H34120.2
C11—P1—C31101.42 (10)C34—C35—C36121.1 (3)
C21—P1—Cu1111.56 (8)C34—C35—H35119.4
C11—P1—Cu1119.40 (7)C36—C35—H35119.4
C31—P1—Cu1115.04 (8)C35—C36—C31120.0 (3)
C61—P2—C51103.67 (11)C35—C36—H36120.0
C61—P2—C41101.63 (11)C31—C36—H36120.0
C51—P2—C41103.36 (10)C42—C41—C46118.6 (2)
C61—P2—Cu1114.33 (8)C42—C41—P2118.0 (2)
C51—P2—Cu1117.63 (8)C46—C41—P2123.4 (2)
C41—P2—Cu1114.30 (8)C41—C42—C43120.4 (3)
C1—N1—H1A120.0C41—C42—H42119.8
C1—N1—H1B120.0C43—C42—H42119.8
H1A—N1—H1B120.0C44—C43—C42120.3 (3)
C1—N2—N3119.6 (2)C44—C43—H43119.9
C1—N2—H2120.2C42—C43—H43119.9
N3—N2—H2120.2C45—C44—C43119.9 (3)
N2—N3—H3A104 (3)C45—C44—H44120.0
N2—N3—H3B111 (3)C43—C44—H44120.0
H3A—N3—H3B102 (4)C44—C45—C46120.3 (3)
N1—C1—N2117.8 (3)C44—C45—H45119.8
N1—C1—S1121.9 (2)C46—C45—H45119.8
N2—C1—S1120.19 (19)C45—C46—C41120.4 (3)
C16—C11—C12119.0 (2)C45—C46—H46119.8
C16—C11—P1124.28 (18)C41—C46—H46119.8
C12—C11—P1116.67 (17)C56—C51—C52117.7 (2)
C13—C12—C11120.2 (2)C56—C51—P2118.30 (18)
C13—C12—H12119.9C52—C51—P2123.93 (19)
C11—C12—H12119.9C51—C52—C53120.5 (3)
C14—C13—C12120.2 (3)C51—C52—H52119.8
C14—C13—H13119.9C53—C52—H52119.8
C12—C13—H13119.9C54—C53—C52120.9 (3)
C13—C14—C15120.3 (2)C54—C53—H53119.6
C13—C14—H14119.8C52—C53—H53119.6
C15—C14—H14119.8C53—C54—C55119.6 (3)
C14—C15—C16120.2 (3)C53—C54—H54120.2
C14—C15—H15119.9C55—C54—H54120.2
C16—C15—H15119.9C54—C55—C56119.9 (3)
C15—C16—C11120.1 (2)C54—C55—H55120.0
C15—C16—H16120.0C56—C55—H55120.0
C11—C16—H16120.0C55—C56—C51121.4 (2)
C26—C21—C22118.1 (2)C55—C56—H56119.3
C26—C21—P1124.3 (2)C51—C56—H56119.3
C22—C21—P1117.53 (19)C66—C61—C62117.9 (2)
C23—C22—C21121.6 (3)C66—C61—P2123.5 (2)
C23—C22—H22119.2C62—C61—P2118.63 (19)
C21—C22—H22119.2C63—C62—C61121.1 (3)
C24—C23—C22119.5 (3)C63—C62—H62119.5
C24—C23—H23120.2C61—C62—H62119.5
C22—C23—H23120.2C64—C63—C62120.0 (3)
C25—C24—C23120.0 (3)C64—C63—H63120.0
C25—C24—H24120.0C62—C63—H63120.0
C23—C24—H24120.0C63—C64—C65119.7 (3)
C24—C25—C26120.7 (3)C63—C64—H64120.1
C24—C25—H25119.7C65—C64—H64120.1
C26—C25—H25119.7C64—C65—C66120.9 (3)
C21—C26—C25119.9 (3)C64—C65—H65119.6
C21—C26—H26120.0C66—C65—H65119.6
C25—C26—H26120.0C61—C66—C65120.4 (3)
C32—C31—C36118.3 (2)C61—C66—H66119.8
C32—C31—P1122.49 (19)C65—C66—H66119.8
N3—N2—C1—N10.5 (5)C32—C31—C36—C350.1 (4)
N3—N2—C1—S1177.1 (3)P1—C31—C36—C35177.8 (2)
Cu1—S1—C1—N1154.9 (2)C61—P2—C41—C42156.0 (2)
Cu1—S1—C1—N228.6 (3)C51—P2—C41—C4296.8 (2)
C21—P1—C11—C1618.2 (2)Cu1—P2—C41—C4232.3 (2)
C31—P1—C11—C1690.2 (2)C61—P2—C41—C4625.0 (3)
Cu1—P1—C11—C16142.20 (18)C51—P2—C41—C4682.3 (2)
C21—P1—C11—C12163.36 (18)Cu1—P2—C41—C46148.6 (2)
C31—P1—C11—C1288.22 (19)C46—C41—C42—C430.3 (4)
Cu1—P1—C11—C1239.3 (2)P2—C41—C42—C43179.4 (3)
C16—C11—C12—C130.1 (4)C41—C42—C43—C440.0 (6)
P1—C11—C12—C13178.7 (2)C42—C43—C44—C450.5 (6)
C11—C12—C13—C140.0 (4)C43—C44—C45—C460.6 (6)
C12—C13—C14—C150.2 (4)C44—C45—C46—C410.3 (5)
C13—C14—C15—C160.3 (4)C42—C41—C46—C450.1 (4)
C14—C15—C16—C110.2 (4)P2—C41—C46—C45179.2 (2)
C12—C11—C16—C150.0 (4)C61—P2—C51—C5695.5 (2)
P1—C11—C16—C15178.4 (2)C41—P2—C51—C56158.8 (2)
C11—P1—C21—C26114.0 (2)Cu1—P2—C51—C5631.8 (2)
C31—P1—C21—C268.3 (3)C61—P2—C51—C5287.8 (2)
Cu1—P1—C21—C26117.0 (2)C41—P2—C51—C5217.9 (3)
C11—P1—C21—C2267.8 (2)Cu1—P2—C51—C52144.9 (2)
C31—P1—C21—C22173.51 (19)C56—C51—C52—C530.7 (4)
Cu1—P1—C21—C2261.3 (2)P2—C51—C52—C53176.0 (2)
C26—C21—C22—C233.4 (4)C51—C52—C53—C540.1 (5)
P1—C21—C22—C23178.3 (2)C52—C53—C54—C550.9 (5)
C21—C22—C23—C241.3 (5)C53—C54—C55—C561.4 (4)
C22—C23—C24—C251.3 (5)C54—C55—C56—C510.8 (4)
C23—C24—C25—C261.7 (5)C52—C51—C56—C550.3 (4)
C22—C21—C26—C252.9 (4)P2—C51—C56—C55176.6 (2)
P1—C21—C26—C25178.8 (2)C51—P2—C61—C6618.1 (3)
C24—C25—C26—C210.5 (5)C41—P2—C61—C66125.2 (2)
C21—P1—C31—C3277.2 (2)Cu1—P2—C61—C66111.2 (2)
C11—P1—C31—C3229.5 (2)C51—P2—C61—C62162.3 (2)
Cu1—P1—C31—C32159.82 (19)C41—P2—C61—C6255.3 (2)
C21—P1—C31—C36104.9 (2)Cu1—P2—C61—C6268.4 (2)
C11—P1—C31—C36148.4 (2)C66—C61—C62—C631.4 (4)
Cu1—P1—C31—C3618.1 (2)P2—C61—C62—C63179.1 (2)
C36—C31—C32—C330.9 (4)C61—C62—C63—C640.9 (5)
P1—C31—C32—C33178.8 (2)C62—C63—C64—C650.3 (6)
C31—C32—C33—C341.0 (5)C63—C64—C65—C661.2 (6)
C32—C33—C34—C350.0 (5)C62—C61—C66—C650.6 (4)
C33—C34—C35—C361.1 (5)P2—C61—C66—C65179.9 (3)
C34—C35—C36—C311.1 (5)C64—C65—C66—C610.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···Cl10.82 (2)2.37 (2)3.186 (5)179 (12)
O1—H1D···S1i0.82 (2)2.70 (10)3.218 (5)123 (9)
N1—H1B···Cl1ii0.862.483.302 (3)161
N1—H1A···N30.862.272.628 (5)105
N2—H2···Cl10.862.353.202 (2)170
C42—H42···Cl10.932.723.626 (3)164
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuCl(CH5N3S)(C18H15P)2]·0.48H2O
Mr723.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.8723 (7), 12.4829 (6), 19.2103 (9)
β (°) 96.126 (1)
V3)3546.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.34 × 0.11 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.880, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
48021, 8591, 6691
Rint0.047
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.110, 1.06
No. of reflections8591
No. of parameters428
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008) and SHELXLE Rev609 (Hübschle et al., 2011), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···Cl10.82 (2)2.37 (2)3.186 (5)179 (12)
O1—H1D···S1i0.82 (2)2.70 (10)3.218 (5)123 (9)
N1—H1B···Cl1ii0.862.483.302 (3)161
N1—H1A···N30.862.272.628 (5)105
N2—H2···Cl10.862.353.202 (2)170
C42—H42···Cl10.932.723.626 (3)164
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH–CIC), the Office of the Higher Education Commission, Ministry of Education and Department of Chemistry, Prince of Songkla University, is gratefully acknowledged. RN would like to thank Dr Matthias Zeller for valuable suggestions and assistance with X-ray structure determination and use of structure refinement programs.

References

First citationAlagarsamy, V. & Parthiban, P. (2011). Rasayan. J. Chem. 4, 736–743.  CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAndreetti, G. D., Domiano, P., Gasparri, G. F., Nardelli, M. & Sgarabotto, P. (1970). Acta Cryst. B26, 1005–1009.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, D., Majumdar, S. K., Lowe, P., Schwalbe, C. H., Chattopadhyay, S. K. & Ghosh, S. (1991). J. Chem. Soc. Dalton Trans. pp. 2121–2124.  CSD CrossRef Web of Science Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJia, L., Ma, S. & Li, D. (2008a). Acta Cryst. E64, m796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, L., Ma, S.-X. & Li, D.-C. (2008b). Acta Cryst. E64, m820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKowol, C. R., Berger, R., Eichinger, R., Roller, A., Jakupec, M. A., Schmidt, P. P., Arion, V. B. & Keppler, B. K. (2007). J. Med. Chem. 50, 1254–1265.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPelosi, G. (2010). The Open Crystallogr. J. 3, 16–28.  CrossRef CAS Google Scholar
First citationQirong, C., Cun, L., Jingyu, Z., Xiaozeng, Y., Jinshun, H., Manfang, W. & Tongbao, K. (1987). Chin. Sci. Bull. 32, 321–330.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVilla, A. C., Manfredotti, A. G. & Guastini, C. (1972a). Cryst. Struct. Commun. 1, 125.  Google Scholar
First citationVilla, A. C., Manfredotti, A. G. & Guastini, C. (1972b). Cryst. Struct. Commun. 1, 207.  Google Scholar
First citationWattanakanjana, Y., Pakawatchai, C., Saithong, S., Piboonphon, P. & Nimthong, R. (2012). Acta Cryst. E68, m1417–m1418.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y., Kalinowski, D. S., Kovacevic, Z., Siafakas, A. R., Jansson, P. J., Stefani, C., Lovejoy, D. B., Sharpe, P. C. & Richardson, D. R. (2009). J. Med. Chem. 52, 5271–5294.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds