organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-4-{(E)-[4-(methyl­sulfan­yl)benzyl­­idene]amino}-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, PA College of Engineering, Nadupadavu 574 153, D.K. Mangalore, India, bFaculty of Industrial Science and Technology, University Malaysia Pahang, LebuhrayaTunRazak, 2630 0Gambang, Kuantan, Pahang Darul Makmur, Malaysia, and cX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 3 April 2013; accepted 9 April 2013; online 13 April 2013)

In the title mol­ecule, C11H12N4S2, the dihedral angle between the triazole and benzene rings is 21.31 (5)°. A weak intra­molecular C—H⋯S hydrogen bond generates an S(6) ring motif. In the crystal, pairs of N—H⋯S hydrogen bonds form inversion dimers. In addition, ππ inter­actions are observed between the benzene rings, with a centroid–centroid separation of 3.7599 (11) Å.

Related literature

For background to Schiff base compounds, see: Dubey & Vaid (1991[Dubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1299-1311.]); Yadav et al. (1994[Yadav, S., Srivastava, S. & Pandey, O. P. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 925-939.]); Galic et al. (2001[Galic, N., Peric, B., Prodic, K. B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187-194.]). For biological applications of sulfur- and nitro­gen-containing compounds, see: Wei et al. (1981[Wei, P. H. L. & Bell, C. S. (1981). Chem. Abstr. 96, 104227.], 1982[Wei, P. H. L. & Bell, C. S. (1982). American Home Products Corporation, US Patent No. 4302585.]); Thieme et al. (1973a[Thieme, P., König, H. & Amann, A. (1973a). BASF, German Patent 2228259.],b[Thieme, P., König, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q.]); Dornow et al. (1964[Dornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173-2178.]); Barrera et al. (1985[Barrera, H., Vinas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027-2030.]); Malik et al., (2011[Malik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387-1394.]). For related structures, see: Devarajegowda et al. (2012[Devarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607.]); Fun et al. (2008[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B., Muralidharan, A. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1509.]); Wang et al. (2008[Wang, M., Cao, M., Hu, B., Cheng, C. X. & Song, X. G. (2008). Acta Cryst. E64, o374.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond graph-set motifs, see: Bernstein et al.(1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N4S2

  • Mr = 264.37

  • Triclinic, [P \overline 1]

  • a = 7.7873 (2) Å

  • b = 9.5982 (2) Å

  • c = 9.6041 (2) Å

  • α = 76.608 (2)°

  • β = 70.602 (2)°

  • γ = 68.570 (2)°

  • V = 625.30 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.866, Tmax = 1.000

  • 30316 measured reflections

  • 2449 independent reflections

  • 2121 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.03

  • 2449 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯S1 0.93 2.57 3.212 (2) 126
N2—H2⋯S1i 0.86 2.48 3.328 (2) 169
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

During the last few decades, there has been a considerable interest in the chemistry of Schiff base compounds (Dubey & Vaid, 1991; Yadav et al.,1994). Schiff bases, containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei et al., 1981, 1982), analgesic (Thieme et al., 1973a,b), anti-inflammatory (Dornow et al., 1964), sedative (Barrera et al., 1985), or fungicidal (Malik et al., 2011), synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical reactivity and biological activity.

In the title compound (Fig. 1), the bond lengths and angles have values in the normal ranges (Allen et al., 1987) and are comparable with closely related structures (Devarajegowda et al., 2012; Fun et al., 2008; Wang et al., 2008). The dihedral angle between the triazole ring (N1/N2/C3/N4/C5) and the benzene ring (C9—C14) is 21.31 (5)°. The molecule exists in the thione tautomeric form, with an SC distance of 1.681 (3) Å, which indicates substantial double-bond character for this bond [1.671 (24) Å](Allen et al., 1987). The methylidene amino linkage (N7/C8) is slightly twisted from the mean plane of the 1,2,4 triazole ring as indicated by the torsion angle C3–N4–N7–C8 of -30.8 (2)°. A weak intramolecular C—H···S hydrogen bond generates an S(6) ring motif (Bernstein et al.,1995). The packing of molecules within the unit cell is shown in Fig. 2. In the crystal, pairs of N—H···S hydrogen bonds form inversion dimers. In addition, ππ interactions are observed between the benzene rings with Cg···Cg(-x,-y,1-z) = 3.7599 (11) Å, where Cg is the centroid of the C9—C14 ring.

Related literature top

For background to Schiff base compounds, see: Dubey & Vaid (1991); Yadav et al. (1994); Galic et al. (2001). For biological applications of sulfur- and nitrogen-containing compounds, see: Wei et al. (1981, 1982); Thieme et al. (1973a,b); Dornow et al. (1964); Barrera et al. (1985); Malik et al., (2011). For related structures, see: Devarajegowda et al. (2012); Fun et al. (2008); Wang et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond graph-set motifs, see: Bernstein et al.(1995).

Experimental top

To a suspension of 4-(methylthio)benzaldehyde (1.52 g, 0.01 mol) in methanol (15 ml), 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (0.01 mol, 1.65 g) was added and heated to form a clear solution. To this a few drops of conc.H2SO4 was added as a catalyst and refluxed for 5 h on a water bath. The precipitate formed was filtered and recrystallized from mixture of methanol and dioxane (2:1) to yield the titled compound. The single crystals were grown from a solution of the titlr compound of methanol (mp. 355–357 K).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.96 Å and N—H distance of 0.86 Å; and with Uiso(H) = 1.2Ueq(C/N), except for the methyl groups where Uiso(H) = 1.5Ueq(C),.

Structure description top

During the last few decades, there has been a considerable interest in the chemistry of Schiff base compounds (Dubey & Vaid, 1991; Yadav et al.,1994). Schiff bases, containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei et al., 1981, 1982), analgesic (Thieme et al., 1973a,b), anti-inflammatory (Dornow et al., 1964), sedative (Barrera et al., 1985), or fungicidal (Malik et al., 2011), synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical reactivity and biological activity.

In the title compound (Fig. 1), the bond lengths and angles have values in the normal ranges (Allen et al., 1987) and are comparable with closely related structures (Devarajegowda et al., 2012; Fun et al., 2008; Wang et al., 2008). The dihedral angle between the triazole ring (N1/N2/C3/N4/C5) and the benzene ring (C9—C14) is 21.31 (5)°. The molecule exists in the thione tautomeric form, with an SC distance of 1.681 (3) Å, which indicates substantial double-bond character for this bond [1.671 (24) Å](Allen et al., 1987). The methylidene amino linkage (N7/C8) is slightly twisted from the mean plane of the 1,2,4 triazole ring as indicated by the torsion angle C3–N4–N7–C8 of -30.8 (2)°. A weak intramolecular C—H···S hydrogen bond generates an S(6) ring motif (Bernstein et al.,1995). The packing of molecules within the unit cell is shown in Fig. 2. In the crystal, pairs of N—H···S hydrogen bonds form inversion dimers. In addition, ππ interactions are observed between the benzene rings with Cg···Cg(-x,-y,1-z) = 3.7599 (11) Å, where Cg is the centroid of the C9—C14 ring.

For background to Schiff base compounds, see: Dubey & Vaid (1991); Yadav et al. (1994); Galic et al. (2001). For biological applications of sulfur- and nitrogen-containing compounds, see: Wei et al. (1981, 1982); Thieme et al. (1973a,b); Dornow et al. (1964); Barrera et al. (1985); Malik et al., (2011). For related structures, see: Devarajegowda et al. (2012); Fun et al. (2008); Wang et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond graph-set motifs, see: Bernstein et al.(1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the a axis. Hydrogen bonds are shown as dashed lines.
3-Methyl-4-{(E)-[4-(methylsulfanyl)benzylidene]amino}-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C11H12N4S2Z = 2
Mr = 264.37F(000) = 276
Triclinic, P1Dx = 1.404 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7873 (2) ÅCell parameters from 15170 reflections
b = 9.5982 (2) Åθ = 3.4–29.1°
c = 9.6041 (2) ŵ = 0.41 mm1
α = 76.608 (2)°T = 293 K
β = 70.602 (2)°Block, white
γ = 68.570 (2)°0.3 × 0.2 × 0.1 mm
V = 625.30 (2) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2449 independent reflections
Radiation source: fine-focus sealed tube2121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.866, Tmax = 1.000l = 1111
30316 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.2502P]
where P = (Fo2 + 2Fc2)/3
2449 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C11H12N4S2γ = 68.570 (2)°
Mr = 264.37V = 625.30 (2) Å3
Triclinic, P1Z = 2
a = 7.7873 (2) ÅMo Kα radiation
b = 9.5982 (2) ŵ = 0.41 mm1
c = 9.6041 (2) ÅT = 293 K
α = 76.608 (2)°0.3 × 0.2 × 0.1 mm
β = 70.602 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2449 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2121 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 1.000Rint = 0.041
30316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
2449 reflectionsΔρmin = 0.17 e Å3
156 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15017 (7)0.32917 (5)0.84285 (5)0.04691 (16)
S20.40556 (6)0.40134 (5)0.33254 (5)0.03932 (14)
N10.3639 (2)0.35160 (17)1.09693 (16)0.0409 (4)
N20.2053 (2)0.39804 (16)1.03276 (16)0.0389 (3)
H20.19540.47641.05420.047*
N40.14673 (19)0.20528 (14)0.93293 (14)0.0308 (3)
N70.0745 (2)0.07943 (15)0.85714 (15)0.0356 (3)
C30.0676 (2)0.31151 (18)0.93426 (18)0.0322 (3)
C50.3237 (2)0.23338 (19)1.03460 (18)0.0351 (4)
C60.4492 (3)0.1392 (2)1.0656 (2)0.0530 (5)
H6A0.55730.17021.14920.079*
H6B0.37840.03531.08760.079*
H6C0.49320.15110.98000.079*
C80.0461 (2)0.08739 (18)0.73055 (19)0.0359 (4)
H80.08180.17430.69410.043*
C90.1295 (2)0.03748 (18)0.64155 (18)0.0332 (3)
C100.2741 (3)0.0280 (2)0.5103 (2)0.0411 (4)
H100.31620.05610.48310.049*
C110.3554 (3)0.1409 (2)0.4205 (2)0.0413 (4)
H110.45270.13310.33390.050*
C120.2930 (2)0.26694 (18)0.45838 (18)0.0324 (3)
C130.1500 (2)0.27788 (19)0.58982 (18)0.0367 (4)
H130.10840.36220.61720.044*
C140.0695 (2)0.16417 (19)0.67990 (18)0.0364 (4)
H140.02620.17270.76740.044*
C150.2776 (3)0.5350 (2)0.4030 (2)0.0513 (5)
H15A0.28240.57490.50350.077*
H15B0.33500.61570.34230.077*
H15C0.14640.48640.40110.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0418 (3)0.0503 (3)0.0534 (3)0.0245 (2)0.0056 (2)0.0266 (2)
S20.0395 (2)0.0369 (2)0.0370 (2)0.00991 (18)0.00102 (18)0.01659 (18)
N10.0374 (8)0.0447 (8)0.0427 (8)0.0163 (7)0.0004 (6)0.0192 (7)
N20.0401 (8)0.0359 (7)0.0437 (8)0.0157 (6)0.0011 (6)0.0196 (6)
N40.0360 (7)0.0278 (6)0.0321 (7)0.0115 (5)0.0071 (6)0.0110 (5)
N70.0419 (8)0.0298 (7)0.0387 (8)0.0102 (6)0.0094 (6)0.0152 (6)
C30.0369 (8)0.0293 (8)0.0321 (8)0.0110 (7)0.0065 (7)0.0102 (6)
C50.0363 (8)0.0378 (9)0.0333 (8)0.0134 (7)0.0062 (7)0.0106 (7)
C60.0496 (11)0.0582 (12)0.0599 (12)0.0311 (10)0.0024 (9)0.0191 (10)
C80.0431 (9)0.0310 (8)0.0377 (9)0.0113 (7)0.0117 (7)0.0114 (7)
C90.0353 (8)0.0314 (8)0.0344 (8)0.0057 (7)0.0112 (7)0.0121 (7)
C100.0419 (9)0.0377 (9)0.0456 (10)0.0163 (8)0.0056 (8)0.0123 (8)
C110.0386 (9)0.0414 (9)0.0398 (9)0.0139 (8)0.0018 (7)0.0135 (7)
C120.0310 (8)0.0312 (8)0.0331 (8)0.0038 (6)0.0087 (7)0.0103 (6)
C130.0414 (9)0.0304 (8)0.0369 (9)0.0112 (7)0.0049 (7)0.0104 (7)
C140.0389 (9)0.0356 (9)0.0316 (8)0.0098 (7)0.0034 (7)0.0107 (7)
C150.0498 (11)0.0516 (11)0.0546 (12)0.0224 (9)0.0052 (9)0.0285 (9)
Geometric parameters (Å, º) top
S1—C31.6818 (17)C8—C91.458 (2)
S2—C121.7565 (16)C8—H80.9300
S2—C151.7837 (19)C9—C141.388 (2)
N1—C51.294 (2)C9—C101.395 (2)
N1—N21.3688 (19)C10—C111.374 (2)
N2—C31.332 (2)C10—H100.9300
N2—H20.8600C11—C121.393 (2)
N4—C51.372 (2)C11—H110.9300
N4—C31.3744 (19)C12—C131.391 (2)
N4—N71.3944 (18)C13—C141.382 (2)
N7—C81.272 (2)C13—H130.9300
C5—C61.479 (2)C14—H140.9300
C6—H6A0.9600C15—H15A0.9600
C6—H6B0.9600C15—H15B0.9600
C6—H6C0.9600C15—H15C0.9600
C12—S2—C15104.35 (8)C14—C9—C10118.42 (15)
C5—N1—N2103.74 (13)C14—C9—C8123.14 (15)
C3—N2—N1114.29 (13)C10—C9—C8118.44 (15)
C3—N2—H2122.9C11—C10—C9121.01 (16)
N1—N2—H2122.9C11—C10—H10119.5
C5—N4—C3108.19 (13)C9—C10—H10119.5
C5—N4—N7119.83 (13)C10—C11—C12120.40 (16)
C3—N4—N7131.85 (13)C10—C11—H11119.8
C8—N7—N4116.65 (13)C12—C11—H11119.8
N2—C3—N4102.66 (14)C13—C12—C11118.93 (15)
N2—C3—S1126.93 (12)C13—C12—S2125.20 (13)
N4—C3—S1130.36 (12)C11—C12—S2115.88 (13)
N1—C5—N4111.08 (14)C14—C13—C12120.34 (16)
N1—C5—C6125.65 (16)C14—C13—H13119.8
N4—C5—C6123.27 (15)C12—C13—H13119.8
C5—C6—H6A109.5C13—C14—C9120.90 (16)
C5—C6—H6B109.5C13—C14—H14119.6
H6A—C6—H6B109.5C9—C14—H14119.6
C5—C6—H6C109.5S2—C15—H15A109.5
H6A—C6—H6C109.5S2—C15—H15B109.5
H6B—C6—H6C109.5H15A—C15—H15B109.5
N7—C8—C9121.10 (15)S2—C15—H15C109.5
N7—C8—H8119.4H15A—C15—H15C109.5
C9—C8—H8119.5H15B—C15—H15C109.5
C5—N1—N2—C30.8 (2)N4—N7—C8—C9179.55 (14)
C5—N4—N7—C8153.95 (16)N7—C8—C9—C147.1 (3)
C3—N4—N7—C830.8 (2)N7—C8—C9—C10174.05 (16)
N1—N2—C3—N41.71 (19)C14—C9—C10—C110.1 (3)
N1—N2—C3—S1176.03 (13)C8—C9—C10—C11178.77 (17)
C5—N4—C3—N21.95 (17)C9—C10—C11—C120.7 (3)
N7—N4—C3—N2177.60 (15)C10—C11—C12—C131.3 (3)
C5—N4—C3—S1175.68 (14)C10—C11—C12—S2178.86 (14)
N7—N4—C3—S10.0 (3)C15—S2—C12—C135.91 (18)
N2—N1—C5—N40.59 (19)C15—S2—C12—C11174.23 (14)
N2—N1—C5—C6179.81 (18)C11—C12—C13—C141.0 (3)
C3—N4—C5—N11.67 (19)S2—C12—C13—C14179.17 (13)
N7—N4—C5—N1177.93 (14)C12—C13—C14—C90.1 (3)
C3—N4—C5—C6178.72 (16)C10—C9—C14—C130.4 (3)
N7—N4—C5—C62.5 (2)C8—C9—C14—C13178.42 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S10.932.573.212 (2)126
N2—H2···S1i0.862.483.328 (2)169
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC11H12N4S2
Mr264.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7873 (2), 9.5982 (2), 9.6041 (2)
α, β, γ (°)76.608 (2), 70.602 (2), 68.570 (2)
V3)625.30 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.866, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
30316, 2449, 2121
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.03
No. of reflections2449
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S10.932.573.212 (2)126
N2—H2···S1i0.862.4793.328 (2)169
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the sanction of the single-crystal X-ray diffractometer as a National Facility under mega research project No. SR/S2/ CMP-47/2003.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBarrera, H., Vinas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027–2030.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDevarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607.  CSD CrossRef IUCr Journals Google Scholar
First citationDornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173–2178.  CrossRef CAS Web of Science Google Scholar
First citationDubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1299–1311.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B., Muralidharan, A. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGalic, N., Peric, B., Prodic, K. B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187–194.  CAS Google Scholar
First citationMalik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387–1394.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThieme, P., König, H. & Amann, A. (1973a). BASF, German Patent 2228259.  Google Scholar
First citationThieme, P., König, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q.  Google Scholar
First citationWang, M., Cao, M., Hu, B., Cheng, C. X. & Song, X. G. (2008). Acta Cryst. E64, o374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, P. H. L. & Bell, C. S. (1981). Chem. Abstr. 96, 104227.  Google Scholar
First citationWei, P. H. L. & Bell, C. S. (1982). American Home Products Corporation, US Patent No. 4302585.  Google Scholar
First citationYadav, S., Srivastava, S. & Pandey, O. P. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 925–939.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds