organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(2,4-di­nitro­phen­yl)disulfane

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 7 April 2013; accepted 23 April 2013; online 30 April 2013)

In the title mol­ecule, C12H6N4O8S2, the dihedral angle between the benzene rings is 77.00 (8)°. The mean planes of the nitro groups are twisted slightly from the benzene rings, forming dihedral angles in the range 2.3 (2)–8.6 (3)°. The S—S bond length is 2.0458 (7) Å. Each S atom is essentially coplanar with the benzene ring to which it is attached, with deviations from the ring planes of 0.0163 (5) and 0.0538 (5) Å. In the crystal, mol­ecules are linked through weak C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001).

Related literature

For synthetic applications of di­sulfides, see: Khavasch et al. (1950[Khavasch, N., Gleason, G. J. & Buess, C. M. (1950). J. Am. Chem. Soc. 72, 1796-1798.]); Mitin & Zaperalova (1974[Mitin, Yu. V. & Zaperalova, N. P. (1974). Zh. Obshch. Khim. 44, 2074-2075.]); Stepanov et al. (1974[Stepanov, B. I., Rodionov, V. Ya. & Chibisova, T. A. (1974). Zh. Org. Khim. 10, 79-83.], 1977[Stepanov, B. I., Rodionov, V. Ya., Chibisova, T. A., Yogodina, L. A. & Stankevich, A. D. (1977). Zh. Org. Khim. 13, 370-374.]); Cochran et al. (1996[Cochran, J. C., Friedman, S. R. & Frazier, J. P. (1996). J. Org. Chem. 61, 1533-1536.]). For the natural occurrence of di­sulfides, see: Ramadas & Srinivasan (1995[Ramadas, K. & Srinivasan, N. (1995). Synth. Commun. 25, 227-234.]). For the preparation procedures for di­sulfides, see: Khavasch & Cameron (1951[Khavasch, N. & Cameron, J. L. (1951). J. Am. Chem. Soc. 73, 3864-3867.]); Traynelis & Rieck (1973[Traynelis, V. J. & Rieck, J. N. (1973). J. Org. Chem. 38, 4339-4341.]); Bilozor & Boldyrev (1984[Bilozor, T. K. & Boldyrev, B. G. (1984). Zh. Org. Khim. 20, 889-890.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Glidewell et al. (2000[Glidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. B56, 893-905.]); Song & Fan (2009[Song, M. & Fan, C. (2009). Acta Cryst. E65, o2835.]); Xiao et al. (2010[Xiao, Q., Liu, R., Li, Y.-H., Chen, H.-B. & Zhu, H.-J. (2010). Acta Cryst. E66, o606.]); Buvaneswari et al. (2012[Buvaneswari, M., Kalaivani, D. & Nethaji, M. (2012). Acta Cryst. E68, o3116.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H6N4O8S2

  • Mr = 398.33

  • Monoclinic, P 21 /c

  • a = 11.3776 (6) Å

  • b = 11.9579 (5) Å

  • c = 11.0459 (6) Å

  • β = 90.943 (2)°

  • V = 1502.62 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.922

  • 22589 measured reflections

  • 5706 independent reflections

  • 3983 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.141

  • S = 1.02

  • 5706 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.54 3.341 (3) 144
C8—H8⋯O3ii 0.93 2.60 3.403 (2) 144
C12—H12⋯O6iii 0.93 2.42 3.139 (2) 134
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title molecule has acquired significance as it is employed to prepare several other synthetically important molecules (Khavasch et al.,1950; Stepanov et al.,1974; Stepanov et al.,1977; Cochran et al.,1996; Mitin & Zaperalova, 1974). Disulfide compounds are found in many naturally occuring compounds (Ramadas & Srinivasan, 1995). Despite the fact that several synthetic procedures are available for the preparation of title molecule, the yield of it is less than 55% in many cases (Khavasch & Cameron, 1951; Traynelis & Rieck, 1973; Bilozor & Boldyrev, 1984). In the present work, it is obtained in good yield (greater than 90%) with high purity through a one pot synthesis.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and bond angles are within normal ranges and are essentially the same in both chemically similar halves of the molecule. The the S—S bond is formally a single bond [S1—S2 bond length = 2.0458 (7)Å]. The dihedral angle between the benzene rings is 77.00 (8)°. Similar observations have been reported in related molecular structures (Glidewell et al., 2000; Song & Fan, 2009; Xiao et al., 2010; Buvaneswari et al., 2012). The mean planes of the nitro groups are slightly twisted from the benzene rings forming dihedral angles of 4.4 (2), 8.6 (3), 5.3 (2) and 2.3 (2)° for the nitro groups containing N1, N2, N3 and N4 respectively. In the crystal, weak C—H···O hydrogen bonds (Table 1) connect molecules to form R33(20) and R33(22) graph-set motifs (Bernstein et al., 1995) contained within two-dimensional corrugated sheets running parallel to (001) (Fig 2).

Related literature top

For synthetic applications of disulfides, see: Khavasch et al. (1950); Mitin & Zaperalova (1974); Stepanov et al. (1974, 1977); Cochran et al. (1996). For the natural occurrence of disulfides, see: Ramadas & Srinivasan (1995). For the preparation procedures for disulfides, see: Khavasch & Cameron (1951); Traynelis & Rieck (1973); Bilozor & Boldyrev (1984). For standard bond lengths, see: Allen et al. (1987). For related structures, see : Glidewell et al. (2000); Song & Fan (2009); Xiao et al. (2010); Buvaneswari et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Experimental top

1-Chloro-2,4-dinitrobenzene (2 g, 0.01 mol) was dissolved in 20 ml of DMSO. Thiourea (0.8 g, 0.01 mol) was also dissolved in 20 ml of DMSO. These two solutions were mixed together and stirred well for about 2 hours and then allowed to stand 303K. On standing, a crystalline yellow solid separated out. The yellow coloured crystals were filtered and dried. The solid obtained was ground well and washed repeatedly with water, alcohol and ether to remove unreacted 1-Chloro-2,4-dinitrobenzene (DNCB) and thiourea (TU). The washed sample was recrystallised from acetic acid to yield single crystals. The yield of the pure compound was 95% (melting point greater than 533K). Micro analysis, calcd:C, 36.18; H,1.50; N, 14.07; found : C, 36.37; H, 1.27; N, 14.13. It is worth mentioning that in the reported preparation, the title molecule crystallizes in the pure form from the reaction mixture and the IR, PMR and micro analysis data of the sample before and after recrystallisation are exactly the same.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93Å and were included in the refinement with Uiso(H) = 1.2Ueq(C).

Structure description top

The title molecule has acquired significance as it is employed to prepare several other synthetically important molecules (Khavasch et al.,1950; Stepanov et al.,1974; Stepanov et al.,1977; Cochran et al.,1996; Mitin & Zaperalova, 1974). Disulfide compounds are found in many naturally occuring compounds (Ramadas & Srinivasan, 1995). Despite the fact that several synthetic procedures are available for the preparation of title molecule, the yield of it is less than 55% in many cases (Khavasch & Cameron, 1951; Traynelis & Rieck, 1973; Bilozor & Boldyrev, 1984). In the present work, it is obtained in good yield (greater than 90%) with high purity through a one pot synthesis.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and bond angles are within normal ranges and are essentially the same in both chemically similar halves of the molecule. The the S—S bond is formally a single bond [S1—S2 bond length = 2.0458 (7)Å]. The dihedral angle between the benzene rings is 77.00 (8)°. Similar observations have been reported in related molecular structures (Glidewell et al., 2000; Song & Fan, 2009; Xiao et al., 2010; Buvaneswari et al., 2012). The mean planes of the nitro groups are slightly twisted from the benzene rings forming dihedral angles of 4.4 (2), 8.6 (3), 5.3 (2) and 2.3 (2)° for the nitro groups containing N1, N2, N3 and N4 respectively. In the crystal, weak C—H···O hydrogen bonds (Table 1) connect molecules to form R33(20) and R33(22) graph-set motifs (Bernstein et al., 1995) contained within two-dimensional corrugated sheets running parallel to (001) (Fig 2).

For synthetic applications of disulfides, see: Khavasch et al. (1950); Mitin & Zaperalova (1974); Stepanov et al. (1974, 1977); Cochran et al. (1996). For the natural occurrence of disulfides, see: Ramadas & Srinivasan (1995). For the preparation procedures for disulfides, see: Khavasch & Cameron (1951); Traynelis & Rieck (1973); Bilozor & Boldyrev (1984). For standard bond lengths, see: Allen et al. (1987). For related structures, see : Glidewell et al. (2000); Song & Fan (2009); Xiao et al. (2010); Buvaneswari et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title conpound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
1,2-Bis(2,4-dinitrophenyl)disulfane top
Crystal data top
C12H6N4O8S2F(000) = 808
Mr = 398.33Dx = 1.761 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7792 reflections
a = 11.3776 (6) Åθ = 2.5–30.2°
b = 11.9579 (5) ŵ = 0.41 mm1
c = 11.0459 (6) ÅT = 293 K
β = 90.943 (2)°Block, yellow
V = 1502.62 (13) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5706 independent reflections
Radiation source: fine-focus sealed tube3983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scanθmax = 33.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1716
Tmin = 0.804, Tmax = 0.922k = 1718
22589 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.4377P]
where P = (Fo2 + 2Fc2)/3
5706 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H6N4O8S2V = 1502.62 (13) Å3
Mr = 398.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3776 (6) ŵ = 0.41 mm1
b = 11.9579 (5) ÅT = 293 K
c = 11.0459 (6) Å0.25 × 0.20 × 0.20 mm
β = 90.943 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5706 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3983 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.922Rint = 0.025
22589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
5706 reflectionsΔρmin = 0.25 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.94644 (14)0.13448 (15)0.26049 (15)0.0423 (3)
C20.87515 (16)0.21656 (14)0.21366 (17)0.0459 (4)
H20.87040.28630.25040.055*
C30.81090 (15)0.19244 (13)0.11069 (16)0.0414 (3)
C40.81370 (13)0.08818 (12)0.05402 (14)0.0360 (3)
C50.88741 (14)0.00751 (13)0.10614 (15)0.0402 (3)
H50.89170.06310.07110.048*
C60.95385 (14)0.03052 (14)0.20845 (16)0.0423 (3)
H61.00320.02370.24190.051*
C70.56165 (13)0.32356 (13)0.13396 (14)0.0357 (3)
C80.62734 (13)0.37316 (13)0.04595 (15)0.0386 (3)
H80.63020.45050.03800.046*
C90.68881 (13)0.30433 (13)0.03018 (14)0.0358 (3)
C100.68625 (12)0.18758 (13)0.02111 (13)0.0342 (3)
C110.61794 (14)0.14233 (13)0.07059 (15)0.0391 (3)
H110.61450.06510.07980.047*
C120.55557 (14)0.20961 (13)0.14776 (15)0.0385 (3)
H120.51010.17840.20820.046*
N11.01562 (15)0.15860 (17)0.37076 (16)0.0594 (4)
N20.73842 (17)0.28314 (13)0.06113 (19)0.0586 (4)
N30.49685 (13)0.39543 (13)0.21674 (14)0.0477 (3)
N40.75847 (13)0.36018 (14)0.12208 (14)0.0476 (3)
O11.08349 (18)0.0867 (2)0.40606 (18)0.0917 (6)
O21.00333 (17)0.24936 (18)0.41926 (17)0.0815 (5)
O30.7298 (2)0.36795 (16)0.1202 (2)0.1180 (9)
O40.69201 (16)0.26986 (13)0.03687 (19)0.0752 (5)
O50.44650 (15)0.35239 (14)0.30093 (15)0.0700 (4)
O60.49935 (17)0.49559 (13)0.19861 (18)0.0799 (5)
O70.75453 (16)0.46121 (13)0.12824 (17)0.0778 (5)
O80.81704 (14)0.30190 (14)0.18852 (14)0.0655 (4)
S10.72498 (4)0.05824 (4)0.07550 (4)0.04737 (13)
S20.76812 (4)0.10241 (4)0.12039 (4)0.04554 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (7)0.0502 (9)0.0413 (8)0.0104 (6)0.0067 (6)0.0055 (7)
C20.0488 (9)0.0382 (8)0.0513 (9)0.0065 (7)0.0143 (7)0.0080 (7)
C30.0412 (8)0.0335 (7)0.0499 (9)0.0008 (6)0.0103 (7)0.0043 (6)
C40.0359 (7)0.0335 (7)0.0390 (7)0.0070 (5)0.0064 (6)0.0041 (5)
C50.0407 (8)0.0332 (7)0.0467 (8)0.0027 (6)0.0038 (6)0.0013 (6)
C60.0356 (7)0.0427 (8)0.0487 (9)0.0013 (6)0.0020 (6)0.0029 (7)
C70.0326 (7)0.0360 (7)0.0384 (7)0.0004 (5)0.0012 (5)0.0030 (5)
C80.0381 (7)0.0320 (6)0.0458 (8)0.0035 (5)0.0016 (6)0.0028 (6)
C90.0325 (7)0.0387 (7)0.0360 (7)0.0036 (5)0.0004 (5)0.0076 (6)
C100.0318 (6)0.0378 (7)0.0331 (6)0.0037 (5)0.0009 (5)0.0017 (5)
C110.0427 (8)0.0309 (6)0.0440 (8)0.0003 (6)0.0077 (6)0.0032 (6)
C120.0383 (7)0.0362 (7)0.0414 (8)0.0024 (6)0.0097 (6)0.0032 (6)
N10.0498 (9)0.0760 (12)0.0524 (9)0.0147 (8)0.0006 (7)0.0107 (8)
N20.0671 (11)0.0374 (8)0.0714 (11)0.0071 (7)0.0062 (9)0.0083 (7)
N30.0443 (8)0.0449 (8)0.0540 (9)0.0049 (6)0.0050 (6)0.0119 (6)
N40.0445 (8)0.0499 (8)0.0485 (8)0.0045 (6)0.0063 (6)0.0146 (6)
O10.0865 (13)0.1028 (15)0.0845 (13)0.0076 (11)0.0384 (10)0.0111 (11)
O20.0828 (12)0.0917 (12)0.0701 (11)0.0154 (10)0.0018 (9)0.0382 (9)
O30.196 (3)0.0589 (11)0.0986 (15)0.0615 (14)0.0184 (16)0.0123 (10)
O40.0770 (11)0.0504 (8)0.0972 (13)0.0045 (7)0.0282 (10)0.0116 (8)
O50.0730 (10)0.0733 (10)0.0646 (9)0.0068 (8)0.0304 (8)0.0071 (8)
O60.0989 (13)0.0415 (7)0.1001 (13)0.0095 (8)0.0274 (10)0.0162 (8)
O70.0914 (12)0.0486 (8)0.0946 (13)0.0047 (8)0.0382 (10)0.0246 (8)
O80.0707 (9)0.0673 (9)0.0594 (8)0.0052 (7)0.0297 (7)0.0162 (7)
S10.0535 (3)0.0414 (2)0.0469 (2)0.00851 (17)0.00634 (18)0.00949 (16)
S20.0508 (2)0.0483 (2)0.0377 (2)0.01204 (17)0.00926 (16)0.00253 (16)
Geometric parameters (Å, º) top
C1—C21.369 (3)C9—C101.400 (2)
C1—C61.373 (2)C9—N41.460 (2)
C1—N11.468 (2)C10—C111.396 (2)
C2—C31.373 (3)C10—S21.7723 (15)
C2—H20.9300C11—C121.378 (2)
C3—C41.396 (2)C11—H110.9300
C3—N21.463 (2)C12—H120.9300
C4—C51.396 (2)N1—O11.216 (3)
C4—S11.7738 (16)N1—O21.219 (3)
C5—C61.377 (2)N2—O41.207 (3)
C5—H50.9300N2—O31.211 (3)
C6—H60.9300N3—O51.215 (2)
C7—C81.371 (2)N3—O61.215 (2)
C7—C121.373 (2)N4—O71.211 (2)
C7—N31.463 (2)N4—O81.218 (2)
C8—C91.376 (2)S1—S22.0458 (7)
C8—H80.9300
C2—C1—C6122.07 (16)C8—C9—N4116.01 (14)
C2—C1—N1118.61 (17)C10—C9—N4121.21 (14)
C6—C1—N1119.31 (17)C11—C10—C9116.81 (13)
C1—C2—C3117.81 (15)C11—C10—S2122.06 (12)
C1—C2—H2121.1C9—C10—S2121.13 (11)
C3—C2—H2121.1C12—C11—C10121.42 (14)
C2—C3—C4122.93 (15)C12—C11—H11119.3
C2—C3—N2116.33 (16)C10—C11—H11119.3
C4—C3—N2120.74 (16)C7—C12—C11118.92 (14)
C3—C4—C5116.76 (15)C7—C12—H12120.5
C3—C4—S1121.68 (12)C11—C12—H12120.5
C5—C4—S1121.54 (12)O1—N1—O2124.45 (19)
C6—C5—C4121.21 (15)O1—N1—C1117.14 (19)
C6—C5—H5119.4O2—N1—C1118.4 (2)
C4—C5—H5119.4O4—N2—O3123.72 (19)
C1—C6—C5119.21 (16)O4—N2—C3118.27 (17)
C1—C6—H6120.4O3—N2—C3118.0 (2)
C5—C6—H6120.4O5—N3—O6123.81 (17)
C8—C7—C12122.49 (14)O5—N3—C7118.59 (15)
C8—C7—N3118.38 (14)O6—N3—C7117.57 (16)
C12—C7—N3119.13 (14)O7—N4—O8123.85 (16)
C7—C8—C9117.59 (14)O7—N4—C9118.39 (16)
C7—C8—H8121.2O8—N4—C9117.76 (15)
C9—C8—H8121.2C4—S1—S2104.44 (6)
C8—C9—C10122.78 (14)C10—S2—S1105.01 (5)
C6—C1—C2—C30.7 (3)N3—C7—C12—C11179.17 (14)
N1—C1—C2—C3179.85 (15)C10—C11—C12—C70.3 (2)
C1—C2—C3—C41.3 (2)C2—C1—N1—O1175.60 (19)
C1—C2—C3—N2178.22 (15)C6—C1—N1—O15.2 (3)
C2—C3—C4—C50.9 (2)C2—C1—N1—O22.9 (3)
N2—C3—C4—C5178.56 (15)C6—C1—N1—O2176.26 (18)
C2—C3—C4—S1177.43 (13)C2—C3—N2—O4171.12 (18)
N2—C3—C4—S13.1 (2)C4—C3—N2—O48.4 (3)
C3—C4—C5—C60.0 (2)C2—C3—N2—O37.9 (3)
S1—C4—C5—C6178.38 (12)C4—C3—N2—O3172.6 (2)
C2—C1—C6—C50.2 (3)C8—C7—N3—O5173.98 (16)
N1—C1—C6—C5178.95 (15)C12—C7—N3—O55.4 (2)
C4—C5—C6—C10.6 (2)C8—C7—N3—O64.1 (2)
C12—C7—C8—C90.1 (2)C12—C7—N3—O6176.51 (17)
N3—C7—C8—C9179.24 (13)C8—C9—N4—O72.6 (2)
C7—C8—C9—C100.2 (2)C10—C9—N4—O7177.71 (17)
C7—C8—C9—N4179.53 (14)C8—C9—N4—O8177.67 (16)
C8—C9—C10—C110.3 (2)C10—C9—N4—O82.1 (2)
N4—C9—C10—C11179.36 (14)C3—C4—S1—S2178.71 (12)
C8—C9—C10—S2179.38 (12)C5—C4—S1—S23.03 (14)
N4—C9—C10—S20.3 (2)C11—C10—S2—S14.57 (14)
C9—C10—C11—C120.4 (2)C9—C10—S2—S1176.45 (11)
S2—C10—C11—C12179.43 (13)C4—S1—S2—C1080.78 (7)
C8—C7—C12—C110.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.543.341 (3)144
C8—H8···O3ii0.932.603.403 (2)144
C12—H12···O6iii0.932.423.139 (2)134
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H6N4O8S2
Mr398.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.3776 (6), 11.9579 (5), 11.0459 (6)
β (°) 90.943 (2)
V3)1502.62 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.804, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
22589, 5706, 3983
Rint0.025
(sin θ/λ)max1)0.776
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.141, 1.02
No. of reflections5706
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.25

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.543.341 (3)144.2
C8—H8···O3ii0.932.603.403 (2)144.3
C12—H12···O6iii0.932.423.139 (2)134.2
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the IIT Madras for the data collection and the University Grants Commission, New Delhi, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBilozor, T. K. & Boldyrev, B. G. (1984). Zh. Org. Khim. 20, 889–890.  CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M., Kalaivani, D. & Nethaji, M. (2012). Acta Cryst. E68, o3116.  CSD CrossRef IUCr Journals Google Scholar
First citationCochran, J. C., Friedman, S. R. & Frazier, J. P. (1996). J. Org. Chem. 61, 1533–1536.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. B56, 893–905.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhavasch, N. & Cameron, J. L. (1951). J. Am. Chem. Soc. 73, 3864–3867.  Google Scholar
First citationKhavasch, N., Gleason, G. J. & Buess, C. M. (1950). J. Am. Chem. Soc. 72, 1796–1798.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitin, Yu. V. & Zaperalova, N. P. (1974). Zh. Obshch. Khim. 44, 2074–2075.  CAS Google Scholar
First citationRamadas, K. & Srinivasan, N. (1995). Synth. Commun. 25, 227–234.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, M. & Fan, C. (2009). Acta Cryst. E65, o2835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStepanov, B. I., Rodionov, V. Ya. & Chibisova, T. A. (1974). Zh. Org. Khim. 10, 79–83.  CAS Google Scholar
First citationStepanov, B. I., Rodionov, V. Ya., Chibisova, T. A., Yogodina, L. A. & Stankevich, A. D. (1977). Zh. Org. Khim. 13, 370–374.  CAS Google Scholar
First citationTraynelis, V. J. & Rieck, J. N. (1973). J. Org. Chem. 38, 4339–4341.  CrossRef CAS Web of Science Google Scholar
First citationXiao, Q., Liu, R., Li, Y.-H., Chen, H.-B. & Zhu, H.-J. (2010). Acta Cryst. E66, o606.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds