organic compounds
1,2-Bis(2,4-dinitrophenyl)disulfane
aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in
In the title molecule, C12H6N4O8S2, the dihedral angle between the benzene rings is 77.00 (8)°. The mean planes of the nitro groups are twisted slightly from the benzene rings, forming dihedral angles in the range 2.3 (2)–8.6 (3)°. The S—S bond length is 2.0458 (7) Å. Each S atom is essentially coplanar with the benzene ring to which it is attached, with deviations from the ring planes of 0.0163 (5) and 0.0538 (5) Å. In the crystal, molecules are linked through weak C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001).
Related literature
For synthetic applications of disulfides, see: Khavasch et al. (1950); Mitin & Zaperalova (1974); Stepanov et al. (1974, 1977); Cochran et al. (1996). For the natural occurrence of disulfides, see: Ramadas & Srinivasan (1995). For the preparation procedures for disulfides, see: Khavasch & Cameron (1951); Traynelis & Rieck (1973); Bilozor & Boldyrev (1984). For standard bond lengths, see: Allen et al. (1987). For related structures, see: Glidewell et al. (2000); Song & Fan (2009); Xiao et al. (2010); Buvaneswari et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536813011082/lh5606sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813011082/lh5606Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813011082/lh5606Isup3.cml
1-Chloro-2,4-dinitrobenzene (2 g, 0.01 mol) was dissolved in 20 ml of DMSO. Thiourea (0.8 g, 0.01 mol) was also dissolved in 20 ml of DMSO. These two solutions were mixed together and stirred well for about 2 hours and then allowed to stand 303K. On standing, a crystalline yellow solid separated out. The yellow coloured crystals were filtered and dried. The solid obtained was ground well and washed repeatedly with water, alcohol and ether to remove unreacted 1-Chloro-2,4-dinitrobenzene (DNCB) and thiourea (TU). The washed sample was recrystallised from acetic acid to yield single crystals. The yield of the pure compound was 95% (melting point greater than 533K). Micro analysis, calcd:C, 36.18; H,1.50; N, 14.07; found : C, 36.37; H, 1.27; N, 14.13. It is worth mentioning that in the reported preparation, the title molecule crystallizes in the pure form from the reaction mixture and the IR, PMR and micro analysis data of the sample before and after recrystallisation are exactly the same.
H atoms were placed in calculated positions with C—H = 0.93Å and were included in the
with Uiso(H) = 1.2Ueq(C).The title molecule has acquired significance as it is employed to prepare several other synthetically important molecules (Khavasch et al.,1950; Stepanov et al.,1974; Stepanov et al.,1977; Cochran et al.,1996; Mitin & Zaperalova, 1974). Disulfide compounds are found in many naturally occuring compounds (Ramadas & Srinivasan, 1995). Despite the fact that several synthetic procedures are available for the preparation of title molecule, the yield of it is less than 55% in many cases (Khavasch & Cameron, 1951; Traynelis & Rieck, 1973; Bilozor & Boldyrev, 1984). In the present work, it is obtained in good yield (greater than 90%) with high purity through a one pot synthesis.
The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and bond angles are within normal ranges and are essentially the same in both chemically similar halves of the molecule. The the S—S bond is formally a single bond [S1—S2 bond length = 2.0458 (7)Å]. The dihedral angle between the benzene rings is 77.00 (8)°. Similar observations have been reported in related molecular structures (Glidewell et al., 2000; Song & Fan, 2009; Xiao et al., 2010; Buvaneswari et al., 2012). The mean planes of the nitro groups are slightly twisted from the benzene rings forming dihedral angles of 4.4 (2), 8.6 (3), 5.3 (2) and 2.3 (2)° for the nitro groups containing N1, N2, N3 and N4 respectively. In the crystal, weak C—H···O hydrogen bonds (Table 1) connect molecules to form R33(20) and R33(22) graph-set motifs (Bernstein et al., 1995) contained within two-dimensional corrugated sheets running parallel to (001) (Fig 2).
For synthetic applications of disulfides, see: Khavasch et al. (1950); Mitin & Zaperalova (1974); Stepanov et al. (1974, 1977); Cochran et al. (1996). For the natural occurrence of disulfides, see: Ramadas & Srinivasan (1995). For the preparation procedures for disulfides, see: Khavasch & Cameron (1951); Traynelis & Rieck (1973); Bilozor & Boldyrev (1984). For standard bond lengths, see: Allen et al. (1987). For related structures, see : Glidewell et al. (2000); Song & Fan (2009); Xiao et al. (2010); Buvaneswari et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title conpound showing 30% probability displacement ellipsoids. | |
Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. |
C12H6N4O8S2 | F(000) = 808 |
Mr = 398.33 | Dx = 1.761 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7792 reflections |
a = 11.3776 (6) Å | θ = 2.5–30.2° |
b = 11.9579 (5) Å | µ = 0.41 mm−1 |
c = 11.0459 (6) Å | T = 293 K |
β = 90.943 (2)° | Block, yellow |
V = 1502.62 (13) Å3 | 0.25 × 0.20 × 0.20 mm |
Z = 4 |
Bruker Kappa APEXII CCD diffractometer | 5706 independent reflections |
Radiation source: fine-focus sealed tube | 3983 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω and φ scan | θmax = 33.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −17→16 |
Tmin = 0.804, Tmax = 0.922 | k = −17→18 |
22589 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0681P)2 + 0.4377P] where P = (Fo2 + 2Fc2)/3 |
5706 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C12H6N4O8S2 | V = 1502.62 (13) Å3 |
Mr = 398.33 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.3776 (6) Å | µ = 0.41 mm−1 |
b = 11.9579 (5) Å | T = 293 K |
c = 11.0459 (6) Å | 0.25 × 0.20 × 0.20 mm |
β = 90.943 (2)° |
Bruker Kappa APEXII CCD diffractometer | 5706 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3983 reflections with I > 2σ(I) |
Tmin = 0.804, Tmax = 0.922 | Rint = 0.025 |
22589 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.44 e Å−3 |
5706 reflections | Δρmin = −0.25 e Å−3 |
235 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.94644 (14) | 0.13448 (15) | 0.26049 (15) | 0.0423 (3) | |
C2 | 0.87515 (16) | 0.21656 (14) | 0.21366 (17) | 0.0459 (4) | |
H2 | 0.8704 | 0.2863 | 0.2504 | 0.055* | |
C3 | 0.81090 (15) | 0.19244 (13) | 0.11069 (16) | 0.0414 (3) | |
C4 | 0.81370 (13) | 0.08818 (12) | 0.05402 (14) | 0.0360 (3) | |
C5 | 0.88741 (14) | 0.00751 (13) | 0.10614 (15) | 0.0402 (3) | |
H5 | 0.8917 | −0.0631 | 0.0711 | 0.048* | |
C6 | 0.95385 (14) | 0.03052 (14) | 0.20845 (16) | 0.0423 (3) | |
H6 | 1.0032 | −0.0237 | 0.2419 | 0.051* | |
C7 | 0.56165 (13) | −0.32356 (13) | 0.13396 (14) | 0.0357 (3) | |
C8 | 0.62734 (13) | −0.37316 (13) | 0.04595 (15) | 0.0386 (3) | |
H8 | 0.6302 | −0.4505 | 0.0380 | 0.046* | |
C9 | 0.68881 (13) | −0.30433 (13) | −0.03018 (14) | 0.0358 (3) | |
C10 | 0.68625 (12) | −0.18758 (13) | −0.02111 (13) | 0.0342 (3) | |
C11 | 0.61794 (14) | −0.14233 (13) | 0.07059 (15) | 0.0391 (3) | |
H11 | 0.6145 | −0.0651 | 0.0798 | 0.047* | |
C12 | 0.55557 (14) | −0.20961 (13) | 0.14776 (15) | 0.0385 (3) | |
H12 | 0.5101 | −0.1784 | 0.2082 | 0.046* | |
N1 | 1.01562 (15) | 0.15860 (17) | 0.37076 (16) | 0.0594 (4) | |
N2 | 0.73842 (17) | 0.28314 (13) | 0.06113 (19) | 0.0586 (4) | |
N3 | 0.49685 (13) | −0.39543 (13) | 0.21674 (14) | 0.0477 (3) | |
N4 | 0.75847 (13) | −0.36018 (14) | −0.12208 (14) | 0.0476 (3) | |
O1 | 1.08349 (18) | 0.0867 (2) | 0.40606 (18) | 0.0917 (6) | |
O2 | 1.00333 (17) | 0.24936 (18) | 0.41926 (17) | 0.0815 (5) | |
O3 | 0.7298 (2) | 0.36795 (16) | 0.1202 (2) | 0.1180 (9) | |
O4 | 0.69201 (16) | 0.26986 (13) | −0.03687 (19) | 0.0752 (5) | |
O5 | 0.44650 (15) | −0.35239 (14) | 0.30093 (15) | 0.0700 (4) | |
O6 | 0.49935 (17) | −0.49559 (13) | 0.19861 (18) | 0.0799 (5) | |
O7 | 0.75453 (16) | −0.46121 (13) | −0.12824 (17) | 0.0778 (5) | |
O8 | 0.81704 (14) | −0.30190 (14) | −0.18852 (14) | 0.0655 (4) | |
S1 | 0.72498 (4) | 0.05824 (4) | −0.07550 (4) | 0.04737 (13) | |
S2 | 0.76812 (4) | −0.10241 (4) | −0.12039 (4) | 0.04554 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0357 (7) | 0.0502 (9) | 0.0413 (8) | −0.0104 (6) | 0.0067 (6) | −0.0055 (7) |
C2 | 0.0488 (9) | 0.0382 (8) | 0.0513 (9) | −0.0065 (7) | 0.0143 (7) | −0.0080 (7) |
C3 | 0.0412 (8) | 0.0335 (7) | 0.0499 (9) | −0.0008 (6) | 0.0103 (7) | 0.0043 (6) |
C4 | 0.0359 (7) | 0.0335 (7) | 0.0390 (7) | −0.0070 (5) | 0.0064 (6) | 0.0041 (5) |
C5 | 0.0407 (8) | 0.0332 (7) | 0.0467 (8) | −0.0027 (6) | 0.0038 (6) | −0.0013 (6) |
C6 | 0.0356 (7) | 0.0427 (8) | 0.0487 (9) | −0.0013 (6) | 0.0020 (6) | 0.0029 (7) |
C7 | 0.0326 (7) | 0.0360 (7) | 0.0384 (7) | −0.0004 (5) | 0.0012 (5) | 0.0030 (5) |
C8 | 0.0381 (7) | 0.0320 (6) | 0.0458 (8) | 0.0035 (5) | −0.0016 (6) | −0.0028 (6) |
C9 | 0.0325 (7) | 0.0387 (7) | 0.0360 (7) | 0.0036 (5) | 0.0004 (5) | −0.0076 (6) |
C10 | 0.0318 (6) | 0.0378 (7) | 0.0331 (6) | −0.0037 (5) | 0.0009 (5) | −0.0017 (5) |
C11 | 0.0427 (8) | 0.0309 (6) | 0.0440 (8) | −0.0003 (6) | 0.0077 (6) | −0.0032 (6) |
C12 | 0.0383 (7) | 0.0362 (7) | 0.0414 (8) | 0.0024 (6) | 0.0097 (6) | −0.0032 (6) |
N1 | 0.0498 (9) | 0.0760 (12) | 0.0524 (9) | −0.0147 (8) | −0.0006 (7) | −0.0107 (8) |
N2 | 0.0671 (11) | 0.0374 (8) | 0.0714 (11) | 0.0071 (7) | 0.0062 (9) | 0.0083 (7) |
N3 | 0.0443 (8) | 0.0449 (8) | 0.0540 (9) | −0.0049 (6) | 0.0050 (6) | 0.0119 (6) |
N4 | 0.0445 (8) | 0.0499 (8) | 0.0485 (8) | 0.0045 (6) | 0.0063 (6) | −0.0146 (6) |
O1 | 0.0865 (13) | 0.1028 (15) | 0.0845 (13) | 0.0076 (11) | −0.0384 (10) | −0.0111 (11) |
O2 | 0.0828 (12) | 0.0917 (12) | 0.0701 (11) | −0.0154 (10) | 0.0018 (9) | −0.0382 (9) |
O3 | 0.196 (3) | 0.0589 (11) | 0.0986 (15) | 0.0615 (14) | −0.0184 (16) | −0.0123 (10) |
O4 | 0.0770 (11) | 0.0504 (8) | 0.0972 (13) | 0.0045 (7) | −0.0282 (10) | 0.0116 (8) |
O5 | 0.0730 (10) | 0.0733 (10) | 0.0646 (9) | −0.0068 (8) | 0.0304 (8) | 0.0071 (8) |
O6 | 0.0989 (13) | 0.0415 (7) | 0.1001 (13) | −0.0095 (8) | 0.0274 (10) | 0.0162 (8) |
O7 | 0.0914 (12) | 0.0486 (8) | 0.0946 (13) | 0.0047 (8) | 0.0382 (10) | −0.0246 (8) |
O8 | 0.0707 (9) | 0.0673 (9) | 0.0594 (8) | −0.0052 (7) | 0.0297 (7) | −0.0162 (7) |
S1 | 0.0535 (3) | 0.0414 (2) | 0.0469 (2) | −0.00851 (17) | −0.00634 (18) | 0.00949 (16) |
S2 | 0.0508 (2) | 0.0483 (2) | 0.0377 (2) | −0.01204 (17) | 0.00926 (16) | −0.00253 (16) |
C1—C2 | 1.369 (3) | C9—C10 | 1.400 (2) |
C1—C6 | 1.373 (2) | C9—N4 | 1.460 (2) |
C1—N1 | 1.468 (2) | C10—C11 | 1.396 (2) |
C2—C3 | 1.373 (3) | C10—S2 | 1.7723 (15) |
C2—H2 | 0.9300 | C11—C12 | 1.378 (2) |
C3—C4 | 1.396 (2) | C11—H11 | 0.9300 |
C3—N2 | 1.463 (2) | C12—H12 | 0.9300 |
C4—C5 | 1.396 (2) | N1—O1 | 1.216 (3) |
C4—S1 | 1.7738 (16) | N1—O2 | 1.219 (3) |
C5—C6 | 1.377 (2) | N2—O4 | 1.207 (3) |
C5—H5 | 0.9300 | N2—O3 | 1.211 (3) |
C6—H6 | 0.9300 | N3—O5 | 1.215 (2) |
C7—C8 | 1.371 (2) | N3—O6 | 1.215 (2) |
C7—C12 | 1.373 (2) | N4—O7 | 1.211 (2) |
C7—N3 | 1.463 (2) | N4—O8 | 1.218 (2) |
C8—C9 | 1.376 (2) | S1—S2 | 2.0458 (7) |
C8—H8 | 0.9300 | ||
C2—C1—C6 | 122.07 (16) | C8—C9—N4 | 116.01 (14) |
C2—C1—N1 | 118.61 (17) | C10—C9—N4 | 121.21 (14) |
C6—C1—N1 | 119.31 (17) | C11—C10—C9 | 116.81 (13) |
C1—C2—C3 | 117.81 (15) | C11—C10—S2 | 122.06 (12) |
C1—C2—H2 | 121.1 | C9—C10—S2 | 121.13 (11) |
C3—C2—H2 | 121.1 | C12—C11—C10 | 121.42 (14) |
C2—C3—C4 | 122.93 (15) | C12—C11—H11 | 119.3 |
C2—C3—N2 | 116.33 (16) | C10—C11—H11 | 119.3 |
C4—C3—N2 | 120.74 (16) | C7—C12—C11 | 118.92 (14) |
C3—C4—C5 | 116.76 (15) | C7—C12—H12 | 120.5 |
C3—C4—S1 | 121.68 (12) | C11—C12—H12 | 120.5 |
C5—C4—S1 | 121.54 (12) | O1—N1—O2 | 124.45 (19) |
C6—C5—C4 | 121.21 (15) | O1—N1—C1 | 117.14 (19) |
C6—C5—H5 | 119.4 | O2—N1—C1 | 118.4 (2) |
C4—C5—H5 | 119.4 | O4—N2—O3 | 123.72 (19) |
C1—C6—C5 | 119.21 (16) | O4—N2—C3 | 118.27 (17) |
C1—C6—H6 | 120.4 | O3—N2—C3 | 118.0 (2) |
C5—C6—H6 | 120.4 | O5—N3—O6 | 123.81 (17) |
C8—C7—C12 | 122.49 (14) | O5—N3—C7 | 118.59 (15) |
C8—C7—N3 | 118.38 (14) | O6—N3—C7 | 117.57 (16) |
C12—C7—N3 | 119.13 (14) | O7—N4—O8 | 123.85 (16) |
C7—C8—C9 | 117.59 (14) | O7—N4—C9 | 118.39 (16) |
C7—C8—H8 | 121.2 | O8—N4—C9 | 117.76 (15) |
C9—C8—H8 | 121.2 | C4—S1—S2 | 104.44 (6) |
C8—C9—C10 | 122.78 (14) | C10—S2—S1 | 105.01 (5) |
C6—C1—C2—C3 | −0.7 (3) | N3—C7—C12—C11 | 179.17 (14) |
N1—C1—C2—C3 | −179.85 (15) | C10—C11—C12—C7 | 0.3 (2) |
C1—C2—C3—C4 | 1.3 (2) | C2—C1—N1—O1 | −175.60 (19) |
C1—C2—C3—N2 | −178.22 (15) | C6—C1—N1—O1 | 5.2 (3) |
C2—C3—C4—C5 | −0.9 (2) | C2—C1—N1—O2 | 2.9 (3) |
N2—C3—C4—C5 | 178.56 (15) | C6—C1—N1—O2 | −176.26 (18) |
C2—C3—C4—S1 | 177.43 (13) | C2—C3—N2—O4 | 171.12 (18) |
N2—C3—C4—S1 | −3.1 (2) | C4—C3—N2—O4 | −8.4 (3) |
C3—C4—C5—C6 | 0.0 (2) | C2—C3—N2—O3 | −7.9 (3) |
S1—C4—C5—C6 | −178.38 (12) | C4—C3—N2—O3 | 172.6 (2) |
C2—C1—C6—C5 | −0.2 (3) | C8—C7—N3—O5 | 173.98 (16) |
N1—C1—C6—C5 | 178.95 (15) | C12—C7—N3—O5 | −5.4 (2) |
C4—C5—C6—C1 | 0.6 (2) | C8—C7—N3—O6 | −4.1 (2) |
C12—C7—C8—C9 | 0.1 (2) | C12—C7—N3—O6 | 176.51 (17) |
N3—C7—C8—C9 | −179.24 (13) | C8—C9—N4—O7 | 2.6 (2) |
C7—C8—C9—C10 | −0.2 (2) | C10—C9—N4—O7 | −177.71 (17) |
C7—C8—C9—N4 | 179.53 (14) | C8—C9—N4—O8 | −177.67 (16) |
C8—C9—C10—C11 | 0.3 (2) | C10—C9—N4—O8 | 2.1 (2) |
N4—C9—C10—C11 | −179.36 (14) | C3—C4—S1—S2 | 178.71 (12) |
C8—C9—C10—S2 | 179.38 (12) | C5—C4—S1—S2 | −3.03 (14) |
N4—C9—C10—S2 | −0.3 (2) | C11—C10—S2—S1 | −4.57 (14) |
C9—C10—C11—C12 | −0.4 (2) | C9—C10—S2—S1 | 176.45 (11) |
S2—C10—C11—C12 | −179.43 (13) | C4—S1—S2—C10 | 80.78 (7) |
C8—C7—C12—C11 | −0.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.93 | 2.54 | 3.341 (3) | 144 |
C8—H8···O3ii | 0.93 | 2.60 | 3.403 (2) | 144 |
C12—H12···O6iii | 0.93 | 2.42 | 3.139 (2) | 134 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H6N4O8S2 |
Mr | 398.33 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.3776 (6), 11.9579 (5), 11.0459 (6) |
β (°) | 90.943 (2) |
V (Å3) | 1502.62 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.25 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.804, 0.922 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22589, 5706, 3983 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.776 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.141, 1.02 |
No. of reflections | 5706 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.25 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.93 | 2.54 | 3.341 (3) | 144.2 |
C8—H8···O3ii | 0.93 | 2.60 | 3.403 (2) | 144.3 |
C12—H12···O6iii | 0.93 | 2.42 | 3.139 (2) | 134.2 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors thank the IIT Madras for the data collection and the University Grants Commission, New Delhi, for financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bilozor, T. K. & Boldyrev, B. G. (1984). Zh. Org. Khim. 20, 889–890. CAS Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buvaneswari, M., Kalaivani, D. & Nethaji, M. (2012). Acta Cryst. E68, o3116. CSD CrossRef IUCr Journals Google Scholar
Cochran, J. C., Friedman, S. R. & Frazier, J. P. (1996). J. Org. Chem. 61, 1533–1536. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. B56, 893–905. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Khavasch, N. & Cameron, J. L. (1951). J. Am. Chem. Soc. 73, 3864–3867. Google Scholar
Khavasch, N., Gleason, G. J. & Buess, C. M. (1950). J. Am. Chem. Soc. 72, 1796–1798. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mitin, Yu. V. & Zaperalova, N. P. (1974). Zh. Obshch. Khim. 44, 2074–2075. CAS Google Scholar
Ramadas, K. & Srinivasan, N. (1995). Synth. Commun. 25, 227–234. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, M. & Fan, C. (2009). Acta Cryst. E65, o2835. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stepanov, B. I., Rodionov, V. Ya. & Chibisova, T. A. (1974). Zh. Org. Khim. 10, 79–83. CAS Google Scholar
Stepanov, B. I., Rodionov, V. Ya., Chibisova, T. A., Yogodina, L. A. & Stankevich, A. D. (1977). Zh. Org. Khim. 13, 370–374. CAS Google Scholar
Traynelis, V. J. & Rieck, J. N. (1973). J. Org. Chem. 38, 4339–4341. CrossRef CAS Web of Science Google Scholar
Xiao, Q., Liu, R., Li, Y.-H., Chen, H.-B. & Zhu, H.-J. (2010). Acta Cryst. E66, o606. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title molecule has acquired significance as it is employed to prepare several other synthetically important molecules (Khavasch et al.,1950; Stepanov et al.,1974; Stepanov et al.,1977; Cochran et al.,1996; Mitin & Zaperalova, 1974). Disulfide compounds are found in many naturally occuring compounds (Ramadas & Srinivasan, 1995). Despite the fact that several synthetic procedures are available for the preparation of title molecule, the yield of it is less than 55% in many cases (Khavasch & Cameron, 1951; Traynelis & Rieck, 1973; Bilozor & Boldyrev, 1984). In the present work, it is obtained in good yield (greater than 90%) with high purity through a one pot synthesis.
The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and bond angles are within normal ranges and are essentially the same in both chemically similar halves of the molecule. The the S—S bond is formally a single bond [S1—S2 bond length = 2.0458 (7)Å]. The dihedral angle between the benzene rings is 77.00 (8)°. Similar observations have been reported in related molecular structures (Glidewell et al., 2000; Song & Fan, 2009; Xiao et al., 2010; Buvaneswari et al., 2012). The mean planes of the nitro groups are slightly twisted from the benzene rings forming dihedral angles of 4.4 (2), 8.6 (3), 5.3 (2) and 2.3 (2)° for the nitro groups containing N1, N2, N3 and N4 respectively. In the crystal, weak C—H···O hydrogen bonds (Table 1) connect molecules to form R33(20) and R33(22) graph-set motifs (Bernstein et al., 1995) contained within two-dimensional corrugated sheets running parallel to (001) (Fig 2).