organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1H-Pyrrolo­[2,3-b]pyridin-2-yl)pyridine

aCardinal Tien College of Healthcare & Management, Taipei, Taiwan 231, Republic of China, bInstitute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China, and cDepartment of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China
*Correspondence e-mail: pshuang@ctcn.edu.tw

(Received 12 March 2013; accepted 29 March 2013; online 10 April 2013)

The asymmetric unit of the title compound, C12H9N3, contains two independent mol­ecules in which the dihedral angle between the pyridine and aza­indole rings are 8.23 (6) and 9.89 (2)°. In the crystal, both types of mol­ecule are connected by pairs of N—H—N hydrogen bonds into inversion dimers.

Related literature

For the production of luminescent organic compounds, see: Liu et al. (2000[Liu, S. F., Wu, Q., Schmider, H. L., Aziz, H., Hu, N. X., Popovic, Z. & Wang, S. (2000). J. Am. Chem. Soc. 122, 3671-3678.]); Parcerisa et al. (2008[Parcerisa, J., Romero, M. & Pujol, M. D. (2008). Tetrahedron, 64, 500-507.]). For related structures, see: Huang et al. (2012[Huang, P.-H., Wen, Y.-S. & Shen, J.-Y. (2012). Acta Cryst. E68, o1943.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N3

  • Mr = 195.22

  • Triclinic, [P \overline 1]

  • a = 6.5529 (5) Å

  • b = 10.0457 (8) Å

  • c = 14.5282 (11) Å

  • α = 83.372 (2)°

  • β = 86.697 (2)°

  • γ = 87.427 (2)°

  • V = 947.69 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.996

  • 10193 measured reflections

  • 3329 independent reflections

  • 2573 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.124

  • S = 1.14

  • 3329 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.22 3.061 (3) 167
N4—H4A⋯N5ii 0.86 2.22 3.066 (3) 169
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound has been shown to be an precursor for the production of luminescent organic compound (Liu et al., 2000). In the crystal structure of the title compound two crystallographically independent molecules are found which shows no large structural differences. Both molecules are nearly coplanar, the dihedral angles between the pyridine and the azaindole rings is 8.23 (6)° and 9.89 (2)° (Huang et al., 2012). Each of these molecules is connected into centrosymmetrically dimers by intermolecular N—H—N hydrogen bonding.

Related literature top

For the production of luminescent organic compounds, see: Liu et al. (2000); Parcerisa et al. (2008). For related structures, see: Huang et al. (2012).

Experimental top

The compound was synthesized by the following procedure (Parcerisa et al., 2008). A solution of [3-(2-hydroxy-2-pyridin-4-yl-ethyl)-pyridin-2-yl]-carbamic acid tert-butyl ester (1 mmol and acetonitrile (12 ml) was cooled to ice temperature. Afterwards triethylamine (1.2 mmol) and trifluoromethanesulfonic anhydride (1.1 mmol) was added over a period of 5 min. The mixture was stirred at room temperature for 2 h, trifluoroacetic acid was added (1.5 mmol) and afterwards the mixture was heated under reflux for 1 h. The mixture was cooled to room temperature and neutralized using 2 N NaOH. The aqueous layer was extracted with ethyl ether and the organic extract was washed with brine and aqueous Na2SO4, dried and concentrated. The residue was purified by column chromatography using hexane/ethyl acetate (2:8) as eluent, followed by recrystallization in CH2Cl2 and hexane to give a white solid in 64% yield. Crystals suitable for X-ray diffraction were grown from a CH2Cl2 solution layered with hexane at room temperature. 1H NMR (CDCl3, 300 MHz): 8.62 (dd, 2 H, J= 1.0, 3.1 Hz), 8.29 (dd, 1 H, J= 1.0, 3.4 Hz), 8.00 (dd, 1 H, J = 1.0, 5.3 Hz), 7.72 (dd, 2 H, J = 1.0, 3.1 Hz), 7.13 (dd, 1 H, J= 3.4, 5.3 Hz), 6.99 (s, 1 H), Anal. Calcd for C12H9N3: C, 73.83; H, 4.65; N, 21.52. Found: C, 74.21; H, 4.40; N, 21.34.

Refinement top

H atoms were located in difference map but were positioned with idealized geometry and refined isotropic with Uiso(H) = 1.2Ueq(C,N).

Structure description top

The title compound has been shown to be an precursor for the production of luminescent organic compound (Liu et al., 2000). In the crystal structure of the title compound two crystallographically independent molecules are found which shows no large structural differences. Both molecules are nearly coplanar, the dihedral angles between the pyridine and the azaindole rings is 8.23 (6)° and 9.89 (2)° (Huang et al., 2012). Each of these molecules is connected into centrosymmetrically dimers by intermolecular N—H—N hydrogen bonding.

For the production of luminescent organic compounds, see: Liu et al. (2000); Parcerisa et al. (2008). For related structures, see: Huang et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.
4-(1H-Pyrrolo[2,3-b]pyridin-2-yl)pyridine top
Crystal data top
C12H9N3Z = 4
Mr = 195.22F(000) = 408
Triclinic, P1Dx = 1.368 Mg m3
Dm = 1.368 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5529 (5) ÅCell parameters from 1585 reflections
b = 10.0457 (8) Åθ = 2.6–23.3°
c = 14.5282 (11) ŵ = 0.09 mm1
α = 83.372 (2)°T = 295 K
β = 86.697 (2)°Plate, colorless
γ = 87.427 (2)°0.30 × 0.20 × 0.05 mm
V = 947.69 (13) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3329 independent reflections
Radiation source: fine-focus sealed tube2573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.975, Tmax = 0.996k = 1111
10193 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.126P]
where P = (Fo2 + 2Fc2)/3
3329 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H9N3γ = 87.427 (2)°
Mr = 195.22V = 947.69 (13) Å3
Triclinic, P1Z = 4
a = 6.5529 (5) ÅMo Kα radiation
b = 10.0457 (8) ŵ = 0.09 mm1
c = 14.5282 (11) ÅT = 295 K
α = 83.372 (2)°0.30 × 0.20 × 0.05 mm
β = 86.697 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3329 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2573 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.996Rint = 0.034
10193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.14Δρmax = 0.14 e Å3
3329 reflectionsΔρmin = 0.17 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2449 (3)0.99700 (17)0.92427 (12)0.0443 (5)
H10.17871.05680.95320.053*
N20.0037 (3)0.82637 (19)0.94609 (13)0.0523 (5)
N30.7664 (4)1.3698 (2)0.86462 (16)0.0704 (6)
N40.7252 (3)0.97632 (17)0.57580 (12)0.0452 (5)
H4A0.66511.04370.54500.054*
N50.4869 (3)0.80868 (19)0.55706 (13)0.0524 (5)
N61.2240 (4)1.3404 (2)0.62691 (16)0.0710 (6)
C10.4379 (3)1.0098 (2)0.88094 (14)0.0423 (5)
C20.4911 (3)0.8951 (2)0.84219 (15)0.0493 (6)
H20.61310.87800.80890.059*
C30.3285 (3)0.8067 (2)0.86152 (15)0.0435 (5)
C40.2881 (4)0.6784 (2)0.84216 (16)0.0548 (6)
H40.38260.62900.80830.066*
C50.1035 (4)0.6273 (2)0.87473 (17)0.0576 (7)
H50.07130.54180.86300.069*
C60.0344 (4)0.7025 (2)0.92484 (17)0.0589 (7)
H60.15800.66440.94540.071*
C70.1773 (3)0.8734 (2)0.91330 (14)0.0416 (5)
C80.5755 (5)1.3615 (3)0.90108 (19)0.0712 (8)
H80.51401.43760.92320.085*
C90.4636 (4)1.2481 (2)0.90816 (18)0.0603 (7)
H90.33011.24930.93370.072*
C100.5497 (3)1.1326 (2)0.87731 (14)0.0445 (5)
C110.7495 (4)1.1396 (2)0.84044 (16)0.0561 (6)
H110.81621.06440.81930.067*
C120.8479 (4)1.2578 (3)0.83527 (18)0.0678 (7)
H120.98111.25970.80940.081*
C130.9063 (3)0.9796 (2)0.61960 (14)0.0424 (5)
C140.9524 (3)0.8542 (2)0.66219 (15)0.0485 (6)
H141.06560.82930.69690.058*
C150.7970 (3)0.7688 (2)0.64396 (14)0.0436 (5)
C160.7536 (4)0.6348 (2)0.66723 (16)0.0554 (6)
H160.83950.57710.70350.066*
C170.5792 (4)0.5904 (2)0.63473 (17)0.0573 (6)
H170.54540.50120.64860.069*
C180.4535 (4)0.6788 (2)0.58133 (17)0.0557 (6)
H180.33660.64500.56070.067*
C190.6574 (3)0.8490 (2)0.58945 (14)0.0415 (5)
C201.0412 (5)1.3402 (3)0.59264 (18)0.0692 (8)
H200.98181.42250.57010.083*
C210.9327 (4)1.2275 (2)0.58795 (16)0.0566 (6)
H210.80441.23500.56310.068*
C221.0152 (3)1.1027 (2)0.62031 (14)0.0444 (5)
C231.2075 (4)1.1013 (2)0.65608 (17)0.0559 (6)
H231.27121.02050.67870.067*
C241.3034 (4)1.2199 (3)0.65792 (18)0.0672 (7)
H241.43191.21590.68240.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0419 (10)0.0413 (11)0.0508 (11)0.0013 (8)0.0011 (9)0.0113 (8)
N20.0454 (11)0.0507 (12)0.0623 (13)0.0102 (9)0.0003 (9)0.0112 (9)
N30.0765 (16)0.0626 (16)0.0714 (15)0.0247 (13)0.0063 (12)0.0053 (12)
N40.0435 (11)0.0392 (11)0.0524 (11)0.0022 (8)0.0088 (9)0.0003 (8)
N50.0511 (12)0.0480 (12)0.0583 (12)0.0112 (9)0.0108 (9)0.0003 (9)
N60.0781 (17)0.0669 (16)0.0707 (15)0.0277 (13)0.0007 (13)0.0125 (12)
C10.0354 (12)0.0475 (14)0.0435 (13)0.0009 (10)0.0020 (10)0.0034 (10)
C20.0432 (13)0.0539 (15)0.0498 (14)0.0005 (11)0.0038 (11)0.0054 (11)
C30.0457 (13)0.0409 (13)0.0441 (13)0.0020 (10)0.0037 (10)0.0057 (10)
C40.0627 (16)0.0474 (15)0.0542 (15)0.0029 (12)0.0004 (12)0.0089 (11)
C50.0703 (17)0.0414 (14)0.0629 (16)0.0094 (12)0.0066 (13)0.0096 (11)
C60.0570 (15)0.0540 (16)0.0674 (17)0.0163 (12)0.0014 (13)0.0095 (13)
C70.0408 (12)0.0412 (13)0.0439 (13)0.0038 (10)0.0064 (10)0.0062 (10)
C80.080 (2)0.0510 (17)0.083 (2)0.0045 (14)0.0019 (16)0.0076 (14)
C90.0568 (15)0.0499 (16)0.0747 (18)0.0087 (12)0.0038 (13)0.0109 (13)
C100.0477 (13)0.0461 (14)0.0394 (12)0.0052 (10)0.0064 (10)0.0002 (10)
C110.0500 (14)0.0573 (16)0.0607 (16)0.0104 (12)0.0045 (12)0.0049 (12)
C120.0593 (17)0.076 (2)0.0665 (18)0.0216 (15)0.0066 (13)0.0018 (15)
C130.0394 (12)0.0457 (14)0.0423 (12)0.0011 (10)0.0029 (10)0.0059 (10)
C140.0448 (13)0.0499 (15)0.0509 (14)0.0019 (11)0.0111 (11)0.0034 (11)
C150.0465 (13)0.0395 (13)0.0439 (13)0.0006 (10)0.0027 (10)0.0016 (10)
C160.0632 (16)0.0461 (15)0.0559 (15)0.0016 (12)0.0070 (12)0.0009 (11)
C170.0707 (17)0.0407 (14)0.0604 (16)0.0123 (12)0.0045 (13)0.0010 (11)
C180.0556 (15)0.0524 (16)0.0595 (15)0.0157 (12)0.0078 (12)0.0004 (12)
C190.0431 (12)0.0385 (13)0.0429 (12)0.0062 (10)0.0006 (10)0.0040 (9)
C200.087 (2)0.0538 (17)0.0668 (18)0.0156 (15)0.0081 (16)0.0007 (13)
C210.0595 (15)0.0505 (15)0.0601 (16)0.0079 (12)0.0115 (12)0.0013 (12)
C220.0440 (13)0.0497 (14)0.0403 (13)0.0053 (10)0.0007 (10)0.0083 (10)
C230.0494 (14)0.0582 (16)0.0618 (16)0.0072 (12)0.0079 (12)0.0093 (12)
C240.0570 (16)0.082 (2)0.0658 (18)0.0206 (15)0.0063 (13)0.0156 (15)
Geometric parameters (Å, º) top
N1—C71.366 (2)C8—H80.9300
N1—C11.384 (2)C9—C101.378 (3)
N1—H10.8600C9—H90.9300
N2—C71.338 (3)C10—C111.387 (3)
N2—C61.343 (3)C11—C121.368 (3)
N3—C121.329 (3)C11—H110.9300
N3—C81.332 (3)C12—H120.9300
N4—C191.362 (3)C13—C141.367 (3)
N4—C131.382 (2)C13—C221.457 (3)
N4—H4A0.8600C14—C151.416 (3)
N5—C191.334 (3)C14—H140.9300
N5—C181.336 (3)C15—C161.388 (3)
N6—C201.324 (3)C15—C191.408 (3)
N6—C241.336 (3)C16—C171.373 (3)
C1—C21.362 (3)C16—H160.9300
C1—C101.457 (3)C17—C181.384 (3)
C2—C31.413 (3)C17—H170.9300
C2—H20.9300C18—H180.9300
C3—C41.390 (3)C20—C211.374 (3)
C3—C71.403 (3)C20—H200.9300
C4—C51.373 (3)C21—C221.384 (3)
C4—H40.9300C21—H210.9300
C5—C61.381 (3)C22—C231.390 (3)
C5—H50.9300C23—C241.375 (3)
C6—H60.9300C23—H230.9300
C8—C91.373 (3)C24—H240.9300
C7—N1—C1108.49 (17)C12—C11—H11120.1
C7—N1—H1125.8C10—C11—H11120.1
C1—N1—H1125.8N3—C12—C11124.5 (3)
C7—N2—C6113.4 (2)N3—C12—H12117.7
C12—N3—C8115.3 (2)C11—C12—H12117.7
C19—N4—C13108.82 (17)C14—C13—N4108.76 (19)
C19—N4—H4A125.6C14—C13—C22128.8 (2)
C13—N4—H4A125.6N4—C13—C22122.39 (19)
C19—N5—C18113.62 (19)C13—C14—C15107.79 (19)
C20—N6—C24115.3 (2)C13—C14—H14126.1
C2—C1—N1108.75 (19)C15—C14—H14126.1
C2—C1—C10129.1 (2)C16—C15—C19117.3 (2)
N1—C1—C10122.06 (19)C16—C15—C14136.3 (2)
C1—C2—C3108.01 (19)C19—C15—C14106.40 (18)
C1—C2—H2126.0C17—C16—C15117.6 (2)
C3—C2—H2126.0C17—C16—H16121.2
C4—C3—C7117.2 (2)C15—C16—H16121.2
C4—C3—C2136.3 (2)C16—C17—C18119.9 (2)
C7—C3—C2106.46 (19)C16—C17—H17120.0
C5—C4—C3117.6 (2)C18—C17—H17120.0
C5—C4—H4121.2N5—C18—C17125.2 (2)
C3—C4—H4121.2N5—C18—H18117.4
C4—C5—C6120.1 (2)C17—C18—H18117.4
C4—C5—H5119.9N5—C19—N4125.41 (19)
C6—C5—H5119.9N5—C19—C15126.4 (2)
N2—C6—C5125.0 (2)N4—C19—C15108.23 (18)
N2—C6—H6117.5N6—C20—C21124.8 (3)
C5—C6—H6117.5N6—C20—H20117.6
N2—C7—N1125.10 (19)C21—C20—H20117.6
N2—C7—C3126.6 (2)C20—C21—C22119.7 (2)
N1—C7—C3108.29 (18)C20—C21—H21120.2
N3—C8—C9124.4 (3)C22—C21—H21120.2
N3—C8—H8117.8C21—C22—C23116.1 (2)
C9—C8—H8117.8C21—C22—C13122.5 (2)
C8—C9—C10119.7 (2)C23—C22—C13121.3 (2)
C8—C9—H9120.1C24—C23—C22119.7 (2)
C10—C9—H9120.1C24—C23—H23120.1
C9—C10—C11116.3 (2)C22—C23—H23120.1
C9—C10—C1122.5 (2)N6—C24—C23124.3 (2)
C11—C10—C1121.1 (2)N6—C24—H24117.8
C12—C11—C10119.7 (2)C23—C24—H24117.8
C7—N1—C1—C20.5 (2)C19—N4—C13—C140.7 (2)
C7—N1—C1—C10177.80 (18)C19—N4—C13—C22178.17 (19)
N1—C1—C2—C30.2 (2)N4—C13—C14—C150.6 (2)
C10—C1—C2—C3177.3 (2)C22—C13—C14—C15177.8 (2)
C1—C2—C3—C4179.9 (2)C13—C14—C15—C16179.2 (3)
C1—C2—C3—C70.1 (2)C13—C14—C15—C190.3 (2)
C7—C3—C4—C50.3 (3)C19—C15—C16—C170.5 (3)
C2—C3—C4—C5179.7 (2)C14—C15—C16—C17179.3 (2)
C3—C4—C5—C60.0 (4)C15—C16—C17—C180.4 (4)
C7—N2—C6—C50.4 (3)C19—N5—C18—C170.0 (3)
C4—C5—C6—N20.3 (4)C16—C17—C18—N50.1 (4)
C6—N2—C7—N1179.2 (2)C18—N5—C19—N4179.1 (2)
C6—N2—C7—C30.1 (3)C18—N5—C19—C150.2 (3)
C1—N1—C7—N2179.9 (2)C13—N4—C19—N5180.0 (2)
C1—N1—C7—C30.5 (2)C13—N4—C19—C150.6 (2)
C4—C3—C7—N20.2 (3)C16—C15—C19—N50.5 (3)
C2—C3—C7—N2179.8 (2)C14—C15—C19—N5179.6 (2)
C4—C3—C7—N1179.60 (18)C16—C15—C19—N4178.96 (19)
C2—C3—C7—N10.4 (2)C14—C15—C19—N40.2 (2)
C12—N3—C8—C90.9 (4)C24—N6—C20—C210.4 (4)
N3—C8—C9—C100.8 (4)N6—C20—C21—C220.3 (4)
C8—C9—C10—C110.2 (4)C20—C21—C22—C230.1 (3)
C8—C9—C10—C1178.6 (2)C20—C21—C22—C13178.4 (2)
C2—C1—C10—C9170.0 (2)C14—C13—C22—C21168.3 (2)
N1—C1—C10—C96.7 (3)N4—C13—C22—C218.6 (3)
C2—C1—C10—C118.7 (4)C14—C13—C22—C2310.1 (3)
N1—C1—C10—C11174.5 (2)N4—C13—C22—C23173.0 (2)
C9—C10—C11—C120.9 (3)C21—C22—C23—C240.2 (3)
C1—C10—C11—C12177.9 (2)C13—C22—C23—C24178.2 (2)
C8—N3—C12—C110.0 (4)C20—N6—C24—C230.2 (4)
C10—C11—C12—N30.9 (4)C22—C23—C24—N60.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.223.061 (3)167
N4—H4A···N5ii0.862.223.066 (3)169
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC12H9N3
Mr195.22
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.5529 (5), 10.0457 (8), 14.5282 (11)
α, β, γ (°)83.372 (2), 86.697 (2), 87.427 (2)
V3)947.69 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.975, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
10193, 3329, 2573
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.124, 1.14
No. of reflections3329
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.223.061 (3)167.0
N4—H4A···N5ii0.862.223.066 (3)168.6
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work is partially supported by the instrumentation center, National Taiwan University, and Cardinal Tien College of Healthcare & Management.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, P.-H., Wen, Y.-S. & Shen, J.-Y. (2012). Acta Cryst. E68, o1943.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S. F., Wu, Q., Schmider, H. L., Aziz, H., Hu, N. X., Popovic, Z. & Wang, S. (2000). J. Am. Chem. Soc. 122, 3671–3678.  Web of Science CSD CrossRef CAS Google Scholar
First citationParcerisa, J., Romero, M. & Pujol, M. D. (2008). Tetrahedron, 64, 500–507.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds