metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Tris{2-[2-(2,3,5,6-tetra­fluoro-4-iodo­phen­­oxy)eth­­oxy]eth­yl}amine)­potassium iodide

aNFMLab, Department of Chemistry, Materials and Chemical Engineering, "G. Natta", Politecnico di Milano, Via Mancinelli, 7, I-20131 Milano, Italy
*Correspondence e-mail: giancarlo.terraneo@polimi.it

(Received 14 March 2013; accepted 17 April 2013; online 24 April 2013)

The title adduct, [K(C30H24F12I3NO6)]I, gives an extended tape of cations linked through I⋯I halogen bonds (XBs), two of them being quite short and one quite long. In the structure, the cation is hosted in a cavity formed by the arms of the podand which presents a closed conformation wherein two tetra­fluoro­iodo­benzene rings are near parallel [dihedral angle = 15.8 (4)°; centroid–centroid distance = 3.908 (5) Å] and the third ring is closer to orthogonal [dihedral angles = 66.28 (14) and 75.20 (19)°] to the other two rings. The coordination sphere of the K+ cation is composed of the six O atoms, the N atom and an F atom in the ortho position of one of the rings.

Related literature

For the synthesis of tris­{2-[2-(2,3,5,6-tetra­fluoro-4-iodo­phen­oxy)eth­oxy]eth­yl}amine and its NaI adduct, see: Mele et al. (2005[Mele, A., Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). J. Am. Chem. Soc. 127, 14972-14973.]). For its HI salt, see: Abate et al. (2009[Abate, A., Biella, S., Cavallo, G., Meyer, F., Neukirch, H., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2009). J. Fluorine Chem. 130, 1171-1177.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C30H24F12I3NO6)]I

  • Mr = 1269.20

  • Monoclinic, P 21 /n

  • a = 13.037 (2) Å

  • b = 23.355 (3) Å

  • c = 13.787 (2) Å

  • β = 104.83 (3)°

  • V = 4058.0 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.27 mm−1

  • T = 295 K

  • 0.34 × 0.22 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.759, Tmax = 1.000

  • 24956 measured reflections

  • 7254 independent reflections

  • 5627 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.06

  • 7254 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 2.37 e Å−3

  • Δρmin = −1.25 e Å−3

Table 1
I⋯I XBs and short F⋯F contacts (Å and °)

C—XY XY C—XY
C8—I1⋯I4 3.4106 (6) 179.30 (13)
C8—I2⋯I4i 3.4157 (6) 168.45 (13)
C8—I3⋯I4ii 3.9437 (7) 179.21 (18)
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y, −z + 1.Note: for the sake of comparison, a Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) search for C—I⋯I contacts gives 109 hits with a mean I⋯I distance of 3.53 (3) Å, the lower and higher quartiles being 3.43 and 3.63 Å, respectively.

Table 2
Short contacts in receptor–metal cation system for KI and NaI adducts

  K+ Na+
N1 2.903 (4) 2.515 (15)
O1 2.744 (3) 2.388 (12)
O2 2.849 (3) 2.716 (12)
O3 2.707 (4) 2.463 (13)
O4 2.809 (4) 2.424 (12)
O5 2.756 (4) 2.371 (14)
O6 2.911 (4) 4.39 (2)
F4 3.041 (4) 3.124 (17)
Note: in the NaI adduct, Na+⋯F4 and Na+⋯O6 distances cannot be considered as bond lengths, thus they are only reported for the sake of comparison.

Data collection: APEX2 (Bruker, 1998[Bruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012[Sheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL2012.

Supporting information


Comment top

Tris(2-(2-(2,3,5,6-tetrafluoro-4-iodophenoxy)ethoxy)ethyl)amine has been systhesized as neutral ditopic receptor for alkali metal halide such as NaI, Mele et al.,(2005). It has been also employed as receptor for hydrogen halide systems such as HI, Abate et al.,(2009). Here the supramolecular cations (Fig. 1) formed by potassium coordination are linked by two short (namely strong) and one long (namely week) C—I···I- XBs (see Table A) and unlimited tapes are formed. A similar interactions pattern is observed in the isomorphous NaI adduct. In both structures the cation is hosted in a cavity formed by the podand's arms which presents a closed conformation wherein two tetrafluoroiodobenzene rings strictly parallel and the third ring nearly orthogonal. In this system the three C—I bonds are only slightly divergent from each other. The small Na+ cation is much more masked than the larger K+ one (see Fig. 2). Table B reports some characteristic of the cavity and evidences the differences between the K+ and Na+ coordination. Figure 3 shows two projections of the salt tapes. The ditopic receptor/HI adduct presents a completely different pattern of interactions. The podand molecules and iodide anions work as bidentate XB donors and acceptors, respectively. The H+ is simply bound to the N atom, the supercation adopts conformation different from adopted on K+ and Na+ coordination as the three tetrafluoroiodobenzene rings are completely divergent.

Related literature top

For the synthesis of tris(2-(2-(2,3,5,6-tetrafluoro-4-iodophenoxy)ethoxy)ethyl)amine and its NaI adduct, see: Mele et al. (2005). For its HI salt, see: Abate et al., (2009).

Experimental top

The chemical synthesis of the neutral triamine compound was carried on following the procedure reported in Mele et al., (2005). Good crystals were obtained from a CHCl3 solution of the KI complex after slow solvent diffusion in a box containing vaseline oil.

Refinement top

Hydrogen atoms were constrained with C—H = 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Tris(2-(2-(2,3,5,6-tetrafluoro-4-iodophenoxy)ethoxy)ethyl)amine has been systhesized as neutral ditopic receptor for alkali metal halide such as NaI, Mele et al.,(2005). It has been also employed as receptor for hydrogen halide systems such as HI, Abate et al.,(2009). Here the supramolecular cations (Fig. 1) formed by potassium coordination are linked by two short (namely strong) and one long (namely week) C—I···I- XBs (see Table A) and unlimited tapes are formed. A similar interactions pattern is observed in the isomorphous NaI adduct. In both structures the cation is hosted in a cavity formed by the podand's arms which presents a closed conformation wherein two tetrafluoroiodobenzene rings strictly parallel and the third ring nearly orthogonal. In this system the three C—I bonds are only slightly divergent from each other. The small Na+ cation is much more masked than the larger K+ one (see Fig. 2). Table B reports some characteristic of the cavity and evidences the differences between the K+ and Na+ coordination. Figure 3 shows two projections of the salt tapes. The ditopic receptor/HI adduct presents a completely different pattern of interactions. The podand molecules and iodide anions work as bidentate XB donors and acceptors, respectively. The H+ is simply bound to the N atom, the supercation adopts conformation different from adopted on K+ and Na+ coordination as the three tetrafluoroiodobenzene rings are completely divergent.

For the synthesis of tris(2-(2-(2,3,5,6-tetrafluoro-4-iodophenoxy)ethoxy)ethyl)amine and its NaI adduct, see: Mele et al. (2005). For its HI salt, see: Abate et al., (2009).

Computing details top

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2012 (Sheldrick, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP-3 view of the salt with numbering scheme. Probability level at 50%.
[Figure 2] Fig. 2. Representation of two receptor/KI and receptor/NaI units (top and bottom, respectively) viewed approximately along the tape direction. The spacefill style evidences how the receptor molecule masks differently the different cations.
[Figure 3] Fig. 3. The salt tape viewed along the a-axis (Mercury ball and stick style). Black dashed lines represent the I···I- XBs.
(Tris{2-[2-(2,3,5,6-tetrafluoro-4-iodophenoxy)ethoxy]ethyl}amine)potassium iodide top
Crystal data top
[K(C30H24F12I3NO6)]IF(000) = 2392
Mr = 1269.20Dx = 2.077 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.037 (2) ÅCell parameters from 8602 reflections
b = 23.355 (3) Åθ = 3.0–22.9°
c = 13.787 (2) ŵ = 3.27 mm1
β = 104.83 (3)°T = 295 K
V = 4058.0 (11) Å3Prism, colourless
Z = 40.34 × 0.22 × 0.10 mm
Data collection top
Bruker SMART APEX
diffractometer
7254 independent reflections
Radiation source: fine-focus sealed tube5627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1515
Tmin = 0.759, Tmax = 1.000k = 2727
24956 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.2017P],
where P = (Fo2 + 2Fc2)/3
7254 reflections(Δ/σ)max < 0.001
487 parametersΔρmax = 2.37 e Å3
0 restraintsΔρmin = 1.25 e Å3
Crystal data top
[K(C30H24F12I3NO6)]IV = 4058.0 (11) Å3
Mr = 1269.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.037 (2) ŵ = 3.27 mm1
b = 23.355 (3) ÅT = 295 K
c = 13.787 (2) Å0.34 × 0.22 × 0.10 mm
β = 104.83 (3)°
Data collection top
Bruker SMART APEX
diffractometer
7254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
5627 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 1.000Rint = 0.024
24956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.06Δρmax = 2.37 e Å3
7254 reflectionsΔρmin = 1.25 e Å3
487 parameters
Special details top

Experimental. The sample gave two kinds of crystals: rhombic tablets were suitable for data collection, elongated prisms were always twinned of the first. An attempt to collect data at lower temperature failed, probably due to a phase transition or the crystal cracking.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.08073 (3)0.12743 (2)0.28500 (3)0.07572 (13)
I20.13900 (4)0.12647 (2)0.10931 (3)0.09463 (16)
I30.16503 (3)0.16739 (2)0.61000 (4)0.1204 (2)
I40.11661 (3)0.01730 (2)0.27833 (3)0.08495 (15)
K10.16101 (8)0.43196 (4)0.21349 (8)0.0665 (3)
N10.1758 (4)0.54837 (19)0.1446 (4)0.0859 (12)
C10.0705 (5)0.5744 (3)0.1334 (6)0.107 (2)
H1A0.07670.61550.12690.128*
H1B0.02300.56030.07190.128*
C20.0235 (5)0.5624 (2)0.2174 (6)0.102 (2)
H2A0.07400.57170.28030.122*
H2B0.03910.58590.21140.122*
O10.0043 (3)0.50404 (14)0.2166 (3)0.0835 (10)
C30.0554 (5)0.4908 (2)0.2922 (5)0.0985 (19)
H3A0.11380.51710.28870.118*
H3B0.00580.49480.35760.118*
C40.0956 (4)0.4315 (2)0.2787 (5)0.0919 (18)
H4A0.13850.42360.32520.110*
H4B0.13940.42620.21100.110*
O20.0044 (3)0.39276 (15)0.2977 (3)0.0834 (10)
C50.0284 (4)0.3356 (2)0.2927 (4)0.0726 (13)
C60.0570 (4)0.3076 (2)0.3694 (4)0.0734 (13)
C70.0718 (4)0.2493 (2)0.3675 (4)0.0749 (13)
C80.0584 (4)0.21674 (18)0.2873 (4)0.0660 (12)
C90.0279 (5)0.2460 (2)0.2119 (4)0.0840 (15)
C100.0125 (5)0.3019 (2)0.2141 (4)0.0846 (15)
F10.0699 (3)0.33766 (13)0.4484 (2)0.0941 (9)
F20.1006 (3)0.22460 (13)0.4426 (2)0.0960 (10)
F30.0133 (4)0.21664 (15)0.1329 (2)0.1187 (13)
F40.0159 (3)0.33044 (14)0.1398 (3)0.1113 (11)
C110.1926 (7)0.5433 (3)0.0455 (5)0.119 (2)
H11A0.20080.58150.02070.143*
H11B0.12960.52660.00140.143*
C120.2856 (7)0.5085 (3)0.0388 (6)0.117 (2)
H12A0.28610.50360.03090.140*
H12B0.35060.52790.07330.140*
O30.2800 (4)0.45438 (19)0.0833 (3)0.1095 (14)
C130.3483 (6)0.4146 (3)0.0573 (6)0.118 (2)
H13A0.41180.43360.04920.142*
H13B0.31370.39610.00550.142*
C140.3756 (5)0.3728 (3)0.1370 (6)0.113 (2)
H14A0.41360.39150.19850.136*
H14B0.42220.34420.12010.136*
O40.2781 (3)0.34382 (17)0.1536 (3)0.0963 (12)
C150.2464 (4)0.2974 (2)0.0956 (4)0.0717 (13)
C160.1645 (4)0.2984 (2)0.0133 (4)0.0721 (12)
C170.1302 (4)0.2500 (2)0.0425 (4)0.0773 (13)
C180.1782 (4)0.1992 (2)0.0169 (3)0.0714 (13)
C190.2617 (5)0.1968 (2)0.0674 (3)0.0774 (14)
C200.2953 (5)0.2455 (3)0.1221 (4)0.0832 (15)
F50.1177 (3)0.34999 (14)0.0142 (3)0.1009 (10)
F60.0509 (3)0.25554 (18)0.1245 (3)0.1218 (13)
F70.3134 (3)0.14754 (15)0.0946 (2)0.1095 (12)
F80.3768 (3)0.24039 (18)0.2043 (2)0.1218 (14)
C210.2582 (5)0.5793 (3)0.2140 (5)0.0916 (16)
H21A0.22500.60620.25020.110*
H21B0.29700.60150.17570.110*
C220.3356 (5)0.5447 (3)0.2884 (5)0.0921 (16)
H22A0.37660.52130.25390.111*
H22B0.38420.57000.33390.111*
O50.2846 (3)0.50944 (16)0.3432 (3)0.0859 (10)
C230.3522 (5)0.4853 (3)0.4272 (5)0.1031 (19)
H23A0.39000.51570.46980.124*
H23B0.40410.46190.40650.124*
C240.2962 (6)0.4501 (3)0.4854 (5)0.110 (2)
H24A0.34670.43470.54390.132*
H24B0.24560.47350.50830.132*
O60.2412 (4)0.40369 (18)0.4250 (3)0.0985 (12)
C250.2263 (5)0.3547 (2)0.4710 (4)0.0802 (14)
C260.1778 (5)0.3506 (3)0.5479 (5)0.1009 (19)
C270.1658 (5)0.2973 (3)0.5890 (5)0.0983 (18)
C280.1908 (5)0.2488 (3)0.5517 (4)0.0932 (17)
C290.2358 (8)0.2504 (3)0.4750 (6)0.148 (3)
C300.2551 (8)0.3058 (3)0.4368 (6)0.138 (3)
F90.1451 (4)0.3983 (2)0.5853 (4)0.1440 (16)
F100.1180 (4)0.2962 (2)0.6674 (3)0.1458 (16)
F110.2663 (6)0.20565 (18)0.4352 (5)0.199 (3)
F120.3054 (6)0.3040 (2)0.3641 (4)0.203 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0783 (2)0.0641 (2)0.0865 (2)0.00030 (15)0.02418 (18)0.00568 (15)
I20.1145 (3)0.0786 (3)0.0969 (3)0.0213 (2)0.0383 (2)0.01458 (19)
I30.0933 (3)0.1262 (4)0.1488 (4)0.0136 (3)0.0440 (3)0.0550 (3)
I40.0860 (3)0.0669 (2)0.1078 (3)0.01087 (17)0.0354 (2)0.01963 (18)
K10.0724 (6)0.0548 (6)0.0779 (6)0.0008 (5)0.0294 (5)0.0074 (5)
N10.094 (3)0.068 (3)0.099 (3)0.007 (2)0.031 (3)0.001 (2)
C10.096 (4)0.067 (4)0.152 (6)0.007 (3)0.023 (4)0.020 (4)
C20.082 (4)0.060 (3)0.170 (6)0.002 (3)0.044 (4)0.002 (4)
O10.072 (2)0.0564 (19)0.124 (3)0.0006 (17)0.028 (2)0.0066 (19)
C30.087 (4)0.068 (3)0.149 (6)0.005 (3)0.047 (4)0.011 (3)
C40.077 (3)0.060 (3)0.146 (5)0.006 (3)0.042 (4)0.014 (3)
O20.067 (2)0.065 (2)0.128 (3)0.0003 (17)0.042 (2)0.006 (2)
C50.065 (3)0.063 (3)0.097 (4)0.002 (2)0.032 (3)0.003 (3)
C60.067 (3)0.077 (3)0.080 (3)0.000 (3)0.025 (2)0.007 (3)
C70.078 (3)0.072 (3)0.080 (3)0.003 (3)0.030 (3)0.000 (3)
C80.072 (3)0.044 (2)0.083 (3)0.006 (2)0.023 (2)0.005 (2)
C90.106 (4)0.067 (3)0.097 (4)0.000 (3)0.058 (3)0.008 (3)
C100.108 (4)0.073 (3)0.087 (3)0.002 (3)0.052 (3)0.003 (3)
F10.117 (2)0.083 (2)0.095 (2)0.0062 (18)0.0505 (19)0.0158 (16)
F20.140 (3)0.077 (2)0.0896 (19)0.0017 (18)0.063 (2)0.0035 (15)
F30.186 (4)0.101 (3)0.089 (2)0.008 (2)0.071 (2)0.0216 (18)
F40.159 (3)0.083 (2)0.117 (2)0.014 (2)0.082 (2)0.0027 (18)
C110.141 (6)0.110 (5)0.108 (5)0.026 (5)0.032 (5)0.017 (4)
C120.148 (6)0.108 (5)0.110 (5)0.025 (5)0.060 (5)0.015 (4)
O30.130 (4)0.097 (3)0.125 (3)0.013 (3)0.074 (3)0.024 (3)
C130.119 (5)0.115 (6)0.140 (6)0.013 (5)0.069 (5)0.044 (5)
C140.082 (4)0.116 (6)0.143 (6)0.004 (4)0.033 (4)0.063 (5)
O40.088 (2)0.092 (3)0.114 (3)0.005 (2)0.036 (2)0.037 (2)
C150.072 (3)0.077 (3)0.069 (3)0.014 (3)0.023 (3)0.014 (3)
C160.075 (3)0.067 (3)0.073 (3)0.016 (3)0.016 (3)0.003 (2)
C170.073 (3)0.074 (3)0.074 (3)0.007 (3)0.001 (3)0.002 (3)
C180.096 (4)0.055 (3)0.069 (3)0.002 (3)0.032 (3)0.003 (2)
C190.104 (4)0.081 (4)0.050 (3)0.032 (3)0.024 (3)0.010 (2)
C200.093 (4)0.102 (4)0.052 (3)0.023 (3)0.015 (3)0.001 (3)
F50.094 (2)0.083 (2)0.117 (2)0.0325 (18)0.0105 (19)0.0145 (18)
F60.104 (3)0.132 (3)0.101 (2)0.015 (2)0.025 (2)0.005 (2)
F70.160 (3)0.084 (2)0.083 (2)0.053 (2)0.029 (2)0.0157 (17)
F80.121 (3)0.149 (3)0.0694 (19)0.049 (3)0.0226 (19)0.019 (2)
C210.090 (4)0.081 (4)0.105 (4)0.014 (3)0.028 (3)0.000 (3)
C220.084 (4)0.087 (4)0.105 (4)0.017 (3)0.023 (3)0.004 (3)
O50.085 (2)0.081 (2)0.086 (2)0.011 (2)0.012 (2)0.003 (2)
C230.099 (4)0.085 (4)0.109 (5)0.004 (4)0.003 (4)0.004 (4)
C240.141 (6)0.099 (5)0.081 (4)0.006 (4)0.012 (4)0.002 (3)
O60.128 (3)0.081 (3)0.071 (2)0.012 (2)0.003 (2)0.004 (2)
C250.098 (4)0.075 (3)0.063 (3)0.011 (3)0.011 (3)0.012 (3)
C260.097 (4)0.105 (5)0.101 (4)0.008 (4)0.024 (4)0.026 (4)
C270.092 (4)0.108 (5)0.103 (4)0.002 (4)0.039 (4)0.010 (4)
C280.086 (4)0.104 (5)0.097 (4)0.017 (3)0.038 (3)0.032 (4)
C290.239 (10)0.095 (5)0.156 (7)0.008 (6)0.134 (7)0.005 (5)
C300.227 (9)0.092 (5)0.130 (6)0.015 (5)0.111 (6)0.000 (4)
F90.154 (4)0.111 (3)0.182 (4)0.007 (3)0.071 (3)0.038 (3)
F100.168 (4)0.166 (4)0.137 (3)0.011 (3)0.101 (3)0.012 (3)
F110.340 (8)0.074 (3)0.262 (6)0.025 (4)0.219 (6)0.008 (3)
F120.381 (8)0.111 (3)0.203 (4)0.021 (4)0.230 (6)0.012 (3)
Geometric parameters (Å, º) top
I1—C82.105 (4)C12—H12B0.9700
I2—C182.106 (5)O3—C131.395 (8)
I3—C282.124 (6)C13—C141.445 (10)
K1—O32.707 (4)C13—H13A0.9700
K1—O12.744 (3)C13—H13B0.9700
K1—O52.756 (4)C14—O41.509 (8)
K1—O42.809 (4)C14—H14A0.9700
K1—O22.849 (3)C14—H14B0.9700
K1—N12.903 (4)O4—C151.349 (6)
K1—O62.911 (4)C15—C161.344 (7)
K1—F43.041 (4)C15—C201.375 (7)
N1—C211.438 (7)C16—F51.360 (6)
N1—C111.443 (8)C16—C171.375 (7)
N1—C11.472 (8)C17—F61.328 (6)
C1—C21.470 (9)C17—C181.347 (7)
C1—H1A0.9700C18—C191.374 (7)
C1—H1B0.9700C19—F71.337 (6)
C2—O11.409 (6)C19—C201.373 (8)
C2—H2A0.9700C20—F81.346 (6)
C2—H2B0.9700C21—C221.481 (8)
O1—C31.408 (7)C21—H21A0.9700
C3—C41.474 (7)C21—H21B0.9700
C3—H3A0.9700C22—O51.396 (7)
C3—H3B0.9700C22—H22A0.9700
C4—O21.464 (6)C22—H22B0.9700
C4—H4A0.9700O5—C231.383 (7)
C4—H4B0.9700C23—C241.468 (9)
O2—C51.368 (6)C23—H23A0.9700
C5—C61.374 (7)C23—H23B0.9700
C5—C101.398 (7)C24—O61.440 (7)
C6—F11.341 (5)C24—H24A0.9700
C6—C71.375 (7)C24—H24B0.9700
C7—F21.320 (6)O6—C251.346 (6)
C7—C81.390 (7)C25—C301.326 (9)
C8—C91.385 (7)C25—C261.371 (8)
C9—C101.319 (7)C26—F91.342 (7)
C9—F31.342 (6)C26—C271.394 (9)
C10—F41.352 (6)C27—C281.318 (9)
C11—C121.482 (10)C27—F101.379 (7)
C11—H11A0.9700C28—C291.334 (8)
C11—H11B0.9700C29—F111.289 (8)
C12—O31.415 (8)C29—C301.443 (10)
C12—H12A0.9700C30—F121.331 (7)
C21—N1—C11113.7 (5)O4—C14—H14A109.3
C21—N1—C1112.3 (5)C13—C14—H14B109.3
C11—N1—C1107.4 (6)O4—C14—H14B109.3
C2—C1—N1113.9 (5)H14A—C14—H14B108.0
C2—C1—H1A108.8C15—O4—C14114.3 (4)
N1—C1—H1A108.8C16—C15—O4122.9 (5)
C2—C1—H1B108.8C16—C15—C20117.0 (5)
N1—C1—H1B108.8O4—C15—C20120.0 (5)
H1A—C1—H1B107.7C15—C16—F5117.0 (5)
O1—C2—C1109.7 (5)C15—C16—C17122.1 (5)
O1—C2—H2A109.7F5—C16—C17120.9 (5)
C1—C2—H2A109.7F6—C17—C18121.1 (5)
O1—C2—H2B109.7F6—C17—C16117.9 (5)
C1—C2—H2B109.7C18—C17—C16121.0 (5)
H2A—C2—H2B108.2C17—C18—C19118.2 (5)
C3—O1—C2112.1 (4)C17—C18—I2121.8 (4)
O1—C3—C4109.5 (5)C19—C18—I2119.7 (4)
O1—C3—H3A109.8F7—C19—C20119.4 (5)
C4—C3—H3A109.8F7—C19—C18120.4 (5)
O1—C3—H3B109.8C20—C19—C18120.2 (5)
C4—C3—H3B109.8F8—C20—C19117.5 (5)
H3A—C3—H3B108.2F8—C20—C15121.0 (5)
O2—C4—C3108.1 (4)C19—C20—C15121.5 (5)
O2—C4—H4A110.1N1—C21—C22116.6 (5)
C3—C4—H4A110.1N1—C21—H21A108.2
O2—C4—H4B110.1C22—C21—H21A108.2
C3—C4—H4B110.1N1—C21—H21B108.2
H4A—C4—H4B108.4C22—C21—H21B108.2
C5—O2—C4115.4 (4)H21A—C21—H21B107.3
O2—C5—C6122.0 (4)O5—C22—C21111.2 (5)
O2—C5—C10120.8 (4)O5—C22—H22A109.4
C6—C5—C10116.8 (5)C21—C22—H22A109.4
F1—C6—C5119.4 (5)O5—C22—H22B109.4
F1—C6—C7119.2 (4)C21—C22—H22B109.4
C5—C6—C7121.4 (5)H22A—C22—H22B108.0
F2—C7—C6119.0 (4)C23—O5—C22113.8 (5)
F2—C7—C8120.2 (5)O5—C23—C24112.7 (6)
C6—C7—C8120.8 (5)O5—C23—H23A109.0
C9—C8—C7116.5 (4)C24—C23—H23A109.0
C9—C8—I1122.9 (4)O5—C23—H23B109.0
C7—C8—I1120.6 (3)C24—C23—H23B109.0
C10—C9—F3118.2 (5)H23A—C23—H23B107.8
C10—C9—C8122.8 (5)O6—C24—C23110.5 (5)
F3—C9—C8119.0 (5)O6—C24—H24A109.6
C9—C10—F4122.7 (5)C23—C24—H24A109.6
C9—C10—C5121.6 (5)O6—C24—H24B109.6
F4—C10—C5115.7 (5)C23—C24—H24B109.6
N1—C11—C12115.4 (6)H24A—C24—H24B108.1
N1—C11—H11A108.4C25—O6—C24118.5 (4)
C12—C11—H11A108.4C30—C25—O6118.5 (5)
N1—C11—H11B108.4C30—C25—C26116.4 (6)
C12—C11—H11B108.4O6—C25—C26125.0 (6)
H11A—C11—H11B107.5F9—C26—C25119.7 (7)
O3—C12—C11109.2 (6)F9—C26—C27120.4 (6)
O3—C12—H12A109.8C25—C26—C27119.9 (6)
C11—C12—H12A109.8C28—C27—F10119.8 (6)
O3—C12—H12B109.8C28—C27—C26123.0 (6)
C11—C12—H12B109.8F10—C27—C26117.0 (6)
H12A—C12—H12B108.3C27—C28—C29119.2 (7)
C13—O3—C12112.0 (5)C27—C28—I3122.8 (4)
O3—C13—C14107.6 (6)C29—C28—I3118.0 (6)
O3—C13—H13A110.2F11—C29—C28124.2 (7)
C14—C13—H13A110.2F11—C29—C30117.9 (6)
O3—C13—H13B110.2C28—C29—C30117.9 (7)
C14—C13—H13B110.2C25—C30—F12122.2 (6)
H13A—C13—H13B108.5C25—C30—C29123.4 (6)
C13—C14—O4111.5 (6)F12—C30—C29114.4 (7)
C13—C14—H14A109.3
C21—N1—C1—C276.9 (6)F6—C17—C18—C19178.3 (5)
C11—N1—C1—C2157.3 (6)C16—C17—C18—C190.7 (8)
N1—C1—C2—O169.4 (7)F6—C17—C18—I24.5 (7)
C1—C2—O1—C3176.6 (5)C16—C17—C18—I2173.1 (4)
C2—O1—C3—C4172.1 (5)C17—C18—C19—F7178.5 (5)
O1—C3—C4—O266.8 (7)I2—C18—C19—F74.5 (6)
C3—C4—O2—C5177.1 (5)C17—C18—C19—C201.1 (7)
C4—O2—C5—C677.6 (6)I2—C18—C19—C20172.9 (4)
C4—O2—C5—C10110.0 (6)F7—C19—C20—F83.1 (7)
O2—C5—C6—F15.2 (7)C18—C19—C20—F8179.5 (4)
C10—C5—C6—F1177.8 (5)F7—C19—C20—C15178.4 (5)
O2—C5—C6—C7174.2 (5)C18—C19—C20—C151.0 (8)
C10—C5—C6—C71.5 (8)C16—C15—C20—F8178.9 (5)
F1—C6—C7—F21.5 (8)O4—C15—C20—F81.7 (8)
C5—C6—C7—F2179.2 (5)C16—C15—C20—C190.4 (8)
F1—C6—C7—C8179.5 (4)O4—C15—C20—C19176.8 (5)
C5—C6—C7—C80.2 (8)C11—N1—C21—C22103.3 (6)
F2—C7—C8—C9179.9 (5)C1—N1—C21—C22134.5 (6)
C6—C7—C8—C91.2 (8)N1—C21—C22—O555.2 (7)
F2—C7—C8—I11.2 (7)C21—C22—O5—C23167.0 (5)
C6—C7—C8—I1179.8 (4)C22—O5—C23—C24178.1 (5)
C7—C8—C9—C100.4 (9)O5—C23—C24—O660.2 (8)
I1—C8—C9—C10179.0 (5)C23—C24—O6—C25150.9 (6)
C7—C8—C9—F3179.6 (5)C24—O6—C25—C30128.5 (8)
I1—C8—C9—F31.0 (8)C24—O6—C25—C2655.2 (9)
F3—C9—C10—F40.8 (9)C30—C25—C26—F9179.0 (7)
C8—C9—C10—F4179.2 (6)O6—C25—C26—F92.7 (10)
F3—C9—C10—C5178.6 (6)C30—C25—C26—C273.0 (10)
C8—C9—C10—C51.4 (10)O6—C25—C26—C27179.3 (6)
O2—C5—C10—C9175.0 (5)F9—C26—C27—C28175.9 (6)
C6—C5—C10—C92.3 (9)C25—C26—C27—C286.1 (11)
O2—C5—C10—F47.0 (8)F9—C26—C27—F100.9 (10)
C6—C5—C10—F4179.8 (5)C25—C26—C27—F10178.9 (6)
C21—N1—C11—C1265.8 (7)F10—C27—C28—C29179.2 (7)
C1—N1—C11—C12169.3 (6)C26—C27—C28—C294.3 (12)
N1—C11—C12—O352.8 (8)F10—C27—C28—I31.9 (9)
C11—C12—O3—C13164.5 (6)C26—C27—C28—I3176.8 (5)
C12—O3—C13—C14153.4 (6)C27—C28—C29—F11177.7 (9)
O3—C13—C14—O458.0 (7)I3—C28—C29—F111.2 (14)
C13—C14—O4—C1587.5 (6)C27—C28—C29—C300.1 (13)
C14—O4—C15—C16101.9 (6)I3—C28—C29—C30178.8 (7)
C14—O4—C15—C2081.1 (7)O6—C25—C30—F125.3 (13)
O4—C15—C16—F54.4 (7)C26—C25—C30—F12178.2 (8)
C20—C15—C16—F5178.5 (4)O6—C25—C30—C29175.2 (8)
O4—C15—C16—C17177.0 (5)C26—C25—C30—C291.4 (13)
C20—C15—C16—C170.1 (8)F11—C29—C30—C25179.2 (9)
C15—C16—C17—F6177.8 (5)C28—C29—C30—C253.1 (15)
F5—C16—C17—F60.6 (7)F11—C29—C30—F121.2 (14)
C15—C16—C17—C180.2 (8)C28—C29—C30—F12176.5 (9)
F5—C16—C17—C18178.2 (5)

Experimental details

Crystal data
Chemical formula[K(C30H24F12I3NO6)]I
Mr1269.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)13.037 (2), 23.355 (3), 13.787 (2)
β (°) 104.83 (3)
V3)4058.0 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.27
Crystal size (mm)0.34 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.759, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24956, 7254, 5627
Rint0.024
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.06
No. of reflections7254
No. of parameters487
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.37, 1.25

Computer programs: APEX2 (Bruker, 1998), SAINT (Bruker, 1998), SIR2002 (Burla et al., 2003), SHELXL2012 (Sheldrick, 2012), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006).

Table A. I···I- XBs and short F···F contacts (Å and °). For the sake of comparison, a Cambridge Structural Database (Allen, 2002) search for C—I···I- contacts gives 109 hits with a mean I···I- distance of 3.53 (3) Å, the lower and higher quartiles being 3.43 and 3.63 Å, respectively. top
C—X···YX···YC-X···Y
C8—I1···I43.4106 (6)179.30 (13)
C8—I2···I4i3.4157 (6)168.45 (13)
C8—I3···I4ii3.9437 (7)179.21 (18)
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z+1.
Table B. Short contacts in receptor–metal cation system for KI and NaI adducts. top
K+Na+
N12.903 (4)2.515 (15)
O12.744 (3)2.388 (12)
O22.849 (3)2.716 (12)
O32.707 (4)2.463 (13)
O42.809 (4)2.424 (12)
O52.756 (4)2.371 (14)
O62.911 (4)4.39 (2)
F43.041 (4)3.124 (17)
In the NaI adduct, Na+···F4 and Na+···O6 distances cannot be considered as bond lengths, thus they are only reported for sake of comparison.
 

Acknowledgements

GC, PM, GR and GT acknowledge Fondazione Cariplo (projects 2009–2550 and 2010–1351) for financial support.

References

First citationAbate, A., Biella, S., Cavallo, G., Meyer, F., Neukirch, H., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2009). J. Fluorine Chem. 130, 1171–1177.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMele, A., Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). J. Am. Chem. Soc. 127, 14972–14973.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds