metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­­(4-methyl­benzene­sulfonato-κO)(η5-penta­methyl­cyclo­penta­dien­yl)rhodium(III) monohydrate

aDepartment of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu

(Received 18 March 2013; accepted 28 March 2013; online 13 April 2013)

The title half-sandwich rhodium(III) complex, [Rh(C10H15)(C7H7O3S)2(H2O)]·H2O, consists of a π-bonded penta­methyl­cyclo­penta­dienyl group, two σ-bonded tosyl­ate groups and an aqua ligand. The structure displays both inter- and intra­molecular O—H⋯O hydrogen bonding. The inter­molecular hydrogen bonding results in an extended helical chain along a 21 screw axis parallel to c, due to hydrogen bonding from the coordinating water ligand to the lattice water mol­ecule and then to a sulfonate O atom of a different asymmetric unit.

Related literature

Synthesis details are given in Boyer et al. (1996[Boyer, P. M., Roy, C. P. & Merola, J. S. (1996). Inorg. Chim. Acta, 245, 7-15.]). For the structure of another penta­methyl­cyclo­penta­dienylmetal bis-tosyl­ate (CCDC: 821138), see: Zaitsev et al. (2008[Zaitsev, A. B., Gruber, S., Pluss, P. A., Pregosin, P. S., Verlos, L. F. & Worle, M. (2008). J. Am. Chem. Soc. 130, 11604-11605.]). For the characterization of other aquo compounds, see: Bergmeister et al. (1990[Bergmeister, J. J., Hanson, B. E. & Merola, J. S. (1990). Inorg. Chem. 29, 4831-4833.]; CCDC: 601561) and Luo et al. (1990[Luo, X. L., Schulte, G. K. & Crabtree, R. H. (1990). Inorg. Chem. 29, 682-686.]; CCDC: 595047). A survey of the geometry and environment of water molecules in crystalline hydrates studied by neutron diffraction can be found in in Ferraris & Franchini-Angela (1972[Ferraris, G. & Franchini-Angela, M. (1972). Acta Cryst. B28, 3572-3583.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C10H15)(C7H7O3S)2(H2O)]·H2O

  • Mr = 616.53

  • Orthorhombic, P b c n

  • a = 23.550 (8) Å

  • b = 18.814 (7) Å

  • c = 12.114 (5) Å

  • V = 5367 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 295 K

  • 0.4 × 0.4 × 0.4 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.00, Tmax = 0.881

  • 4738 measured reflections

  • 4738 independent reflections

  • 3297 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 0(1)

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.086

  • S = 1.03

  • 4738 reflections

  • 340 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O8 0.85 (5) 1.99 (6) 2.608 (6) 128 (5)
O7—H7B⋯O3 1.11 (8) 1.64 (8) 2.647 (5) 147 (7)
O8—H8D⋯O2i 0.77 (8) 2.06 (8) 2.807 (6) 162 (8)
O8—H8E⋯O5 0.88 (6) 1.91 (6) 2.766 (7) 162 (6)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound adds to the body of organometallic compounds with water as a ligand. The empirically discovered requirement that water attached to metals must also be hydrogen-bonded either intermolecularly or intramolecularly still holds with this complex where the bonded water is H-bonded both intramolecularly to a sulfate oxygen and intermolecularly to a lattice water molecule. The hydrogen bonding creates a helical motif that runs parallel to the c-axis.

Related literature top

Synthesis details are given in Boyer et al. (1996). For the structure of another pentamethylcyclopentadienylmetal bis-tosylate (CCDC: 821138), see: Zaitsev et al. (2008). For the characterization of other aquo compounds, see: Bergmeister et al. (1990; CCDC: 601561) and Luo et al. (1990; CCDC: 595047). A detailed analysis of the neutron diffaction of various mineral water structures can be found in Ferraris & Franchini-Angela (1972).

Experimental top

The title compound was prepared in a manner analogous to our previously reported carboxylate compounds using [(C5Me5)RhCl2]2 and silver tosylate. (Boyer et al., 1996).

Refinement top

1. Fixed Uiso At 1.2 times of: H23 of C23, H13 of C13, H12 of C12, H19 of C19, H15 of C15, H16 of C16, H22 of C22, H20 of C20 At 1.5 times of: {H6A,H6B,H6C} of C6, {H17A,H17B,H17C} of C17, {H24A,H24B,H24C} of C24, {H8A, H8B,H8C} of C8, {H7C,H7D,H7E} of C7, {H9A,H9B,H9C} of C9, {H10A,H10B,H10C} of C10 2.a Aromatic/amide H refined with riding coordinates: C12(H12), C13(H13), C15(H15), C16(H16), C19(H19), C20(H20), C22(H22), C23(H23) 2.b Idealized Me refined as rotating group: C6(H6A,H6B,H6C), C7(H7C,H7D,H7E), C8(H8A,H8B,H8C), C9(H9A,H9B,H9C), C10(H10A, H10B,H10C), C17(H17A,H17B,H17C), C24(H24A,H24B,H24C)

Structure description top

The title compound adds to the body of organometallic compounds with water as a ligand. The empirically discovered requirement that water attached to metals must also be hydrogen-bonded either intermolecularly or intramolecularly still holds with this complex where the bonded water is H-bonded both intramolecularly to a sulfate oxygen and intermolecularly to a lattice water molecule. The hydrogen bonding creates a helical motif that runs parallel to the c-axis.

Synthesis details are given in Boyer et al. (1996). For the structure of another pentamethylcyclopentadienylmetal bis-tosylate (CCDC: 821138), see: Zaitsev et al. (2008). For the characterization of other aquo compounds, see: Bergmeister et al. (1990; CCDC: 601561) and Luo et al. (1990; CCDC: 595047). A detailed analysis of the neutron diffaction of various mineral water structures can be found in Ferraris & Franchini-Angela (1972).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot (30% probability) view of the title compound.
[Figure 2] Fig. 2. A view of the hydrogen-bonded helical chain that propagates parallel to the c-axis.
Aquabis(4-methylbenzenesulfonato-κO)(η5-pentamethylcyclopentadienyl)rhodium(III) monohydrate top
Crystal data top
[Rh(C10H15)(C7H7O3S)2(H2O)]·H2ODx = 1.526 Mg m3
Mr = 616.53Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 50 reflections
a = 23.550 (8) Åθ = 2–25°
b = 18.814 (7) ŵ = 0.84 mm1
c = 12.114 (5) ÅT = 295 K
V = 5367 (3) Å3Prism, clear orange
Z = 80.4 × 0.4 × 0.4 mm
F(000) = 2544
Data collection top
Siemens P4
diffractometer
3297 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
profile data from θ/2θ scansh = 028
Absorption correction: ψ scan
(North et al., 1968)
k = 220
Tmin = 0.00, Tmax = 0.881l = 014
4738 measured reflections3 standard reflections every 200 reflections
4738 independent reflections intensity decay: 0(1)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0322P)2 + 3.4175P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4738 reflectionsΔρmax = 0.38 e Å3
340 parametersΔρmin = 0.29 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00052 (6)
Crystal data top
[Rh(C10H15)(C7H7O3S)2(H2O)]·H2OV = 5367 (3) Å3
Mr = 616.53Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 23.550 (8) ŵ = 0.84 mm1
b = 18.814 (7) ÅT = 295 K
c = 12.114 (5) Å0.4 × 0.4 × 0.4 mm
Data collection top
Siemens P4
diffractometer
3297 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.00, Tmax = 0.8813 standard reflections every 200 reflections
4738 measured reflections intensity decay: 0(1)
4738 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
4738 reflectionsΔρmin = 0.29 e Å3
340 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.666388 (12)0.645607 (15)0.50870 (2)0.03433 (11)
S10.65268 (5)0.82532 (6)0.52292 (9)0.0465 (3)
S20.62414 (6)0.60927 (6)0.25074 (9)0.0538 (3)
O10.62955 (11)0.75207 (14)0.5237 (2)0.0451 (7)
O20.63499 (15)0.86471 (18)0.6196 (3)0.0677 (10)
O30.71402 (13)0.82661 (17)0.5072 (3)0.0635 (9)
O40.63324 (16)0.65843 (16)0.3441 (2)0.0660 (10)
O50.67723 (16)0.57892 (19)0.2134 (3)0.0802 (11)
O60.58036 (17)0.55830 (19)0.2723 (3)0.0822 (11)
O70.74332 (15)0.6962 (2)0.4484 (3)0.0604 (9)
H7A0.736 (2)0.681 (3)0.384 (5)0.09 (2)*
H7B0.730 (3)0.753 (4)0.442 (6)0.17 (3)*
O80.7836 (2)0.6195 (3)0.2870 (4)0.0896 (15)
H8D0.802 (3)0.632 (4)0.238 (6)0.13 (3)*
H8E0.754 (3)0.602 (3)0.252 (5)0.09 (2)*
C10.6733 (2)0.5351 (2)0.5370 (3)0.0510 (12)
C20.71567 (19)0.5703 (2)0.5983 (4)0.0505 (11)
C30.68878 (19)0.6193 (2)0.6720 (3)0.0470 (11)
C40.62904 (18)0.6102 (2)0.6596 (3)0.0482 (11)
C50.6187 (2)0.5592 (2)0.5754 (4)0.0512 (12)
C60.6836 (3)0.4784 (3)0.4526 (4)0.097 (2)
H6A0.71280.49370.40270.146*
H6B0.64930.46970.41220.146*
H6C0.69540.43550.48890.146*
C70.7786 (2)0.5599 (4)0.5867 (5)0.097 (2)
H7C0.79810.60070.61540.145*
H7D0.78790.55390.51010.145*
H7E0.78990.51830.62710.145*
C80.7184 (3)0.6679 (3)0.7509 (4)0.0870 (19)
H8A0.70380.71530.74240.130*
H8B0.75840.66770.73580.130*
H8C0.71190.65200.82510.130*
C90.5840 (3)0.6498 (3)0.7230 (5)0.098 (2)
H9A0.54860.64680.68410.147*
H9B0.59500.69870.73030.147*
H9C0.57990.62900.79490.147*
C100.5612 (2)0.5339 (3)0.5388 (5)0.091 (2)
H10A0.56410.51310.46660.136*
H10B0.53540.57330.53660.136*
H10C0.54740.49890.58990.136*
C110.62207 (17)0.8673 (2)0.4062 (3)0.0427 (10)
C120.6297 (2)0.9397 (2)0.3923 (4)0.0576 (12)
H120.64980.96560.44460.069*
C130.6074 (2)0.9732 (3)0.3013 (4)0.0639 (14)
H130.61281.02190.29310.077*
C140.5773 (2)0.9366 (3)0.2217 (4)0.0554 (12)
C150.5711 (2)0.8643 (2)0.2361 (4)0.0571 (12)
H150.55120.83830.18340.068*
C160.59347 (19)0.8292 (2)0.3267 (4)0.0510 (11)
H160.58920.78020.33380.061*
C170.5522 (2)0.9735 (3)0.1226 (4)0.0834 (18)
H17A0.57540.96410.05890.125*
H17B0.55091.02380.13580.125*
H17C0.51450.95610.10980.125*
C180.59902 (19)0.6660 (2)0.1437 (3)0.0475 (11)
C190.63637 (19)0.7094 (3)0.0871 (4)0.0543 (12)
H190.67490.70800.10350.065*
C200.6164 (2)0.7548 (3)0.0061 (4)0.0591 (12)
H200.64190.78340.03230.071*
C210.5590 (2)0.7586 (3)0.0189 (4)0.0584 (12)
C220.5227 (2)0.7139 (3)0.0370 (4)0.0575 (13)
H220.48420.71480.02000.069*
C230.54202 (19)0.6675 (2)0.1184 (3)0.0519 (12)
H230.51670.63790.15530.062*
C240.5368 (3)0.8104 (3)0.1051 (4)0.0871 (19)
H24A0.55590.80240.17390.131*
H24B0.54370.85830.08090.131*
H24C0.49670.80340.11470.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.03743 (17)0.03487 (17)0.03068 (16)0.00144 (14)0.00110 (14)0.00030 (14)
S10.0509 (6)0.0401 (5)0.0485 (6)0.0032 (5)0.0098 (5)0.0090 (5)
S20.0766 (8)0.0486 (7)0.0362 (6)0.0044 (6)0.0117 (6)0.0066 (5)
O10.0436 (16)0.0396 (16)0.0522 (17)0.0031 (12)0.0028 (13)0.0010 (13)
O20.092 (3)0.060 (2)0.0503 (18)0.0172 (19)0.0182 (18)0.0173 (16)
O30.0477 (17)0.0533 (18)0.090 (2)0.0023 (15)0.0137 (18)0.0075 (19)
O40.113 (3)0.049 (2)0.0358 (16)0.0138 (19)0.0241 (17)0.0100 (14)
O50.097 (3)0.080 (3)0.064 (2)0.035 (2)0.008 (2)0.0091 (19)
O60.118 (3)0.070 (2)0.059 (2)0.027 (2)0.018 (2)0.0126 (18)
O70.054 (2)0.055 (2)0.072 (2)0.0047 (17)0.0159 (19)0.0070 (19)
O80.087 (3)0.119 (4)0.063 (3)0.008 (3)0.025 (3)0.002 (3)
C10.084 (4)0.029 (2)0.040 (2)0.010 (2)0.006 (2)0.0060 (17)
C20.051 (3)0.054 (3)0.047 (2)0.009 (2)0.007 (2)0.015 (2)
C30.058 (3)0.049 (3)0.034 (2)0.010 (2)0.007 (2)0.0047 (19)
C40.051 (3)0.053 (3)0.040 (2)0.004 (2)0.014 (2)0.014 (2)
C50.055 (3)0.052 (3)0.047 (3)0.015 (2)0.011 (2)0.017 (2)
C60.184 (7)0.049 (3)0.058 (3)0.022 (4)0.008 (4)0.006 (3)
C70.059 (4)0.129 (6)0.102 (5)0.037 (4)0.003 (3)0.030 (4)
C80.126 (5)0.081 (4)0.054 (3)0.043 (4)0.034 (3)0.008 (3)
C90.103 (5)0.116 (5)0.075 (4)0.048 (4)0.046 (4)0.023 (4)
C100.080 (4)0.096 (4)0.097 (4)0.043 (3)0.039 (3)0.044 (4)
C110.043 (2)0.036 (2)0.049 (2)0.0010 (19)0.0031 (19)0.0045 (19)
C120.062 (3)0.047 (3)0.064 (3)0.008 (2)0.006 (2)0.010 (2)
C130.074 (4)0.043 (3)0.074 (3)0.002 (3)0.007 (3)0.014 (3)
C140.051 (3)0.065 (3)0.050 (3)0.002 (3)0.008 (2)0.011 (2)
C150.066 (3)0.057 (3)0.049 (3)0.001 (2)0.011 (2)0.003 (2)
C160.063 (3)0.034 (2)0.055 (3)0.003 (2)0.010 (2)0.008 (2)
C170.086 (4)0.091 (4)0.073 (4)0.006 (3)0.000 (3)0.034 (3)
C180.059 (3)0.054 (3)0.029 (2)0.002 (2)0.006 (2)0.0066 (19)
C190.045 (3)0.070 (3)0.047 (3)0.002 (2)0.006 (2)0.004 (2)
C200.065 (3)0.069 (3)0.043 (3)0.008 (2)0.002 (2)0.004 (2)
C210.077 (3)0.060 (3)0.038 (2)0.008 (3)0.008 (2)0.003 (2)
C220.052 (3)0.073 (3)0.047 (3)0.009 (3)0.014 (2)0.015 (2)
C230.055 (3)0.061 (3)0.040 (2)0.007 (2)0.001 (2)0.008 (2)
C240.112 (5)0.091 (4)0.059 (3)0.018 (4)0.021 (3)0.010 (3)
Geometric parameters (Å, º) top
Rh1—O12.190 (3)C8—H8B0.9600
Rh1—O42.155 (3)C8—H8C0.9600
Rh1—O72.173 (3)C9—H9A0.9600
Rh1—C12.113 (4)C9—H9B0.9600
Rh1—C22.129 (4)C9—H9C0.9600
Rh1—C32.106 (4)C10—H10A0.9600
Rh1—C42.135 (4)C10—H10B0.9600
Rh1—C52.135 (4)C10—H10C0.9600
S1—O11.482 (3)C11—C121.384 (6)
S1—O21.447 (3)C11—C161.377 (6)
S1—O31.457 (3)C12—H120.9300
S1—C111.773 (4)C12—C131.373 (6)
S2—O41.476 (3)C13—H130.9300
S2—O51.447 (4)C13—C141.382 (6)
S2—O61.432 (4)C14—C151.380 (6)
S2—C181.781 (4)C14—C171.507 (6)
O7—H7A0.85 (5)C15—H150.9300
O7—H7B1.11 (8)C15—C161.386 (6)
O8—H8D0.77 (8)C16—H160.9300
O8—H8E0.88 (6)C17—H17A0.9600
C1—C21.410 (6)C17—H17B0.9600
C1—C51.439 (6)C17—H17C0.9600
C1—C61.498 (6)C18—C191.382 (6)
C2—C31.431 (6)C18—C231.377 (6)
C2—C71.501 (6)C19—H190.9300
C3—C41.425 (6)C19—C201.384 (6)
C3—C81.495 (6)C20—H200.9300
C4—C51.422 (6)C20—C211.387 (7)
C4—C91.506 (6)C21—C221.377 (7)
C5—C101.501 (6)C21—C241.523 (6)
C6—H6A0.9600C22—H220.9300
C6—H6B0.9600C22—C231.394 (6)
C6—H6C0.9600C23—H230.9300
C7—H7C0.9600C24—H24A0.9600
C7—H7D0.9600C24—H24B0.9600
C7—H7E0.9600C24—H24C0.9600
C8—H8A0.9600
O4—Rh1—O180.25 (11)C1—C6—H6B109.5
O4—Rh1—O786.66 (15)C1—C6—H6C109.5
O7—Rh1—O187.57 (13)H6A—C6—H6B109.5
C1—Rh1—O1156.42 (15)H6A—C6—H6C109.5
C1—Rh1—O4106.75 (14)H6B—C6—H6C109.5
C1—Rh1—O7114.93 (17)C2—C7—H7C109.5
C1—Rh1—C238.81 (17)C2—C7—H7D109.5
C1—Rh1—C465.50 (17)C2—C7—H7E109.5
C1—Rh1—C539.60 (17)H7C—C7—H7D109.5
C2—Rh1—O1141.46 (15)H7C—C7—H7E109.5
C2—Rh1—O4138.06 (15)H7D—C7—H7E109.5
C2—Rh1—O790.48 (16)C3—C8—H8A109.5
C2—Rh1—C465.18 (17)C3—C8—H8B109.5
C2—Rh1—C565.60 (17)C3—C8—H8C109.5
C3—Rh1—O1103.66 (15)H8A—C8—H8B109.5
C3—Rh1—O4170.43 (15)H8A—C8—H8C109.5
C3—Rh1—O7102.12 (16)H8B—C8—H8C109.5
C3—Rh1—C166.24 (16)C4—C9—H9A109.5
C3—Rh1—C239.49 (16)C4—C9—H9B109.5
C3—Rh1—C439.27 (16)C4—C9—H9C109.5
C3—Rh1—C566.26 (16)H9A—C9—H9B109.5
C4—Rh1—O192.95 (14)H9A—C9—H9C109.5
C4—Rh1—O4132.68 (17)H9B—C9—H9C109.5
C4—Rh1—O7140.18 (17)C5—C10—H10A109.5
C4—Rh1—C538.89 (17)C5—C10—H10B109.5
C5—Rh1—O1117.19 (16)C5—C10—H10C109.5
C5—Rh1—O4104.17 (15)H10A—C10—H10B109.5
C5—Rh1—O7154.07 (17)H10A—C10—H10C109.5
O1—S1—C11105.65 (18)H10B—C10—H10C109.5
O2—S1—O1111.4 (2)C12—C11—S1118.9 (3)
O2—S1—O3112.5 (2)C16—C11—S1121.6 (3)
O2—S1—C11107.48 (19)C16—C11—C12119.4 (4)
O3—S1—O1112.37 (17)C11—C12—H12120.0
O3—S1—C11107.0 (2)C13—C12—C11120.0 (4)
O4—S2—C18103.32 (18)C13—C12—H12120.0
O5—S2—O4111.2 (2)C12—C13—H13119.1
O5—S2—C18107.2 (2)C12—C13—C14121.8 (4)
O6—S2—O4112.6 (2)C14—C13—H13119.1
O6—S2—O5114.5 (2)C13—C14—C17121.9 (5)
O6—S2—C18107.1 (2)C15—C14—C13117.2 (4)
S1—O1—Rh1134.78 (17)C15—C14—C17120.9 (5)
S2—O4—Rh1133.72 (19)C14—C15—H15119.0
Rh1—O7—H7A89 (4)C14—C15—C16122.0 (4)
Rh1—O7—H7B102 (4)C16—C15—H15119.0
H7A—O7—H7B102 (5)C11—C16—C15119.5 (4)
H8D—O8—H8E101 (6)C11—C16—H16120.3
C2—C1—Rh171.2 (2)C15—C16—H16120.3
C2—C1—C5108.4 (4)C14—C17—H17A109.5
C2—C1—C6125.4 (5)C14—C17—H17B109.5
C5—C1—Rh171.0 (2)C14—C17—H17C109.5
C5—C1—C6126.1 (5)H17A—C17—H17B109.5
C6—C1—Rh1127.0 (3)H17A—C17—H17C109.5
C1—C2—Rh170.0 (2)H17B—C17—H17C109.5
C1—C2—C3108.5 (4)C19—C18—S2120.2 (3)
C1—C2—C7126.0 (5)C23—C18—S2119.9 (4)
C3—C2—Rh169.4 (2)C23—C18—C19119.9 (4)
C3—C2—C7125.4 (5)C18—C19—H19120.0
C7—C2—Rh1125.3 (3)C18—C19—C20120.0 (4)
C2—C3—Rh171.1 (2)C20—C19—H19120.0
C2—C3—C8125.9 (5)C19—C20—H20119.4
C4—C3—Rh171.5 (2)C19—C20—C21121.1 (5)
C4—C3—C2107.1 (4)C21—C20—H20119.4
C4—C3—C8127.0 (5)C20—C21—C24121.2 (5)
C8—C3—Rh1125.0 (3)C22—C21—C20117.9 (4)
C3—C4—Rh169.3 (2)C22—C21—C24120.9 (5)
C3—C4—C9125.5 (5)C21—C22—H22119.1
C5—C4—Rh170.6 (2)C21—C22—C23121.8 (4)
C5—C4—C3109.0 (4)C23—C22—H22119.1
C5—C4—C9125.4 (5)C18—C23—C22119.2 (4)
C9—C4—Rh1124.9 (3)C18—C23—H23120.4
C1—C5—Rh169.4 (2)C22—C23—H23120.4
C1—C5—C10127.6 (5)C21—C24—H24A109.5
C4—C5—Rh170.6 (2)C21—C24—H24B109.5
C4—C5—C1106.9 (4)C21—C24—H24C109.5
C4—C5—C10125.5 (5)H24A—C24—H24B109.5
C10—C5—Rh1127.2 (3)H24A—C24—H24C109.5
C1—C6—H6A109.5H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O80.85 (5)1.99 (6)2.608 (6)128 (5)
O7—H7B···O31.11 (8)1.64 (8)2.647 (5)147 (7)
O8—H8D···O2i0.77 (8)2.06 (8)2.807 (6)162 (8)
O8—H8E···O50.88 (6)1.91 (6)2.766 (7)162 (6)
Symmetry code: (i) x+3/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Rh(C10H15)(C7H7O3S)2(H2O)]·H2O
Mr616.53
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)23.550 (8), 18.814 (7), 12.114 (5)
V3)5367 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.4 × 0.4 × 0.4
Data collection
DiffractometerSiemens P4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.00, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
4738, 4738, 3297
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.086, 1.03
No. of reflections4738
No. of parameters340
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.29

Computer programs: XSCANS (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O80.85 (5)1.99 (6)2.608 (6)128 (5)
O7—H7B···O31.11 (8)1.64 (8)2.647 (5)147 (7)
O8—H8D···O2i0.77 (8)2.06 (8)2.807 (6)162 (8)
O8—H8E···O50.88 (6)1.91 (6)2.766 (7)162 (6)
Symmetry code: (i) x+3/2, y+3/2, z1/2.
 

Acknowledgements

We acknowledge the financial support of the NSF (CHE 9214027) and ACS–PRF (23961-ACl). PMB acknowledges an ACS–PRF undergraduate summer fellowship. Funds for the purchase of the diffractometer used in this work were provided by the Commonwealth of Virginia.

References

First citationBergmeister, J. J., Hanson, B. E. & Merola, J. S. (1990). Inorg. Chem. 29, 4831–4833.  CSD CrossRef CAS Web of Science Google Scholar
First citationBoyer, P. M., Roy, C. P. & Merola, J. S. (1996). Inorg. Chim. Acta, 245, 7–15.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerraris, G. & Franchini-Angela, M. (1972). Acta Cryst. B28, 3572–3583.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLuo, X. L., Schulte, G. K. & Crabtree, R. H. (1990). Inorg. Chem. 29, 682–686.  CSD CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZaitsev, A. B., Gruber, S., Pluss, P. A., Pregosin, P. S., Verlos, L. F. & Worle, M. (2008). J. Am. Chem. Soc. 130, 11604–11605.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds