organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 4-(2-meth­­oxy­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aCatalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: chrc@zjut.edu.cn

(Received 21 March 2013; accepted 11 April 2013; online 24 April 2013)

In the title compound, C20H25NO5, the di­hydro­pyridine ring adopts a flattened boat conformation. The meth­oxy­phenyl ring is almost perpendicular to the mean plane of the pyridine ring [dihedral angle = 88.42 (3)°]. The two carbonyl units adopt a synperiplanar conformation with respect to the double bonds in the di­hydro­pyridine ring. In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds into R44(24) tetra­meric rings. A region of disordered electron density, located at the center of four adjacent mol­ecules, was treated with the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. It is probably the result of traces of the solvent of crystallization and was not taken into account during the structure refinement.

Related literature

For general background to 1,4-di­hydro­pyridine compounds, see: Franke et al. (2008[Franke, P. T., Johansen, R. L., Bertelsen, S. & Jorgensen, K. A. (2008). Chem. Asian J. 3, 216-224.]); Takemoto et al. (2010[Takemoto, Y., Yoshida, K., Inokuma, T. & Takasu, K. (2010). Synlett, pp. 1865-1869.]). For related structures, see: Fun et al. (2012[Fun, H.-K., Hemamalini, M., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2012). Acta Cryst. E68, o287-o288.]); Kapoor et al. (2011[Kapoor, K., Gupta, V. K., Kant, R., Pawar, M. P. & Joshi, H. S. (2011). Acta Cryst. E67, o2979.]).

[Scheme 1]

Experimental

Crystal data
  • C20H25NO5

  • Mr = 359.41

  • Tetragonal, [P \overline 42_1 c ]

  • a = 22.4689 (7) Å

  • c = 8.2443 (3) Å

  • V = 4162.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.47 × 0.31 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.952, Tmax = 0.982

  • 60800 measured reflections

  • 4755 independent reflections

  • 3128 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.167

  • S = 1.00

  • 4755 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.86 2.07 2.924 (3) 170
Symmetry code: (i) y, -x+1, -z.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS_AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2102).

Supporting information


Comment top

1,4-Dihydropyridine compounds are important drugs by virtue of their pharmacological activities, and they are used in the treatment of a number of diseases, such as cardiovascular diseases and Alzheimer's disease. In this article, the crystal structure of the dihydropyridine compoud diethyl 4-(2-methoxyphenyl)-2,6- dimethyl-1,4-dihydropyridine-3,5-dicarboxylate is described (Fig. 1). The dihydropyridine ring adopts a flattened boat conformation. The methoxyphenyl ring is almost perpendicular to the mean plane of the pyridine ring [dihedral angle = 88.42 (3)°]. The two carbonyl units adopt a synperiplanar conformation with respect to the double bonds in the dihydropyridine ring. In the crystal, the molecules are connected by intermolecular N—H···O hydrogen bonds into R44(24) tetrameric rings. A region of disordered electron density, located at the center of four adjacent molecules, was treated using the SQUEEZE routine in PLATON (Spek, 2009), which indicated a solvent-accessible void of of 178 Å3. It is probably due to traces of the solvent of crystallization and was not taken into account during structure refinement.

Related literature top

For general background to 1,4-dihydropyridine compounds, see: Franke et al. (2008); Takemoto et al. (2010). For related structures, see: Fun et al. (2012); Kapoor et al. (2011).

Experimental top

The mixture of 2-methoxybenzaldehyde (1 mmol), ethylacetoacetate (2 mmol) and ammonium acetate(1 mmol) was stirred at at 343 K for 3 h (monitored by TLC). Then the mixture was purified by flash column chromatography (silica gel, Hex/AcOEt, v/v, 3:1) giving the title compound. Single crystals were obtained by slow evaporation of a CH2Cl2 and n-Hexane solution.

Refinement top

A region of disordered electron density, located at the center of four adjacent molecules, was treated using the SQUEEZE routine in PLATON (Spek, 2009). It gave a solvent-accessible void of of 178 Å3. It is probably due to traces of the solvent of crystallization and was not taken into account during structure refinement. H atoms were placed in calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.98 Å (sp), C—H = 0.97 Å (sp2), C—H = 0.96 Å (sp3) and C—H = 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq (N, C).

Structure description top

1,4-Dihydropyridine compounds are important drugs by virtue of their pharmacological activities, and they are used in the treatment of a number of diseases, such as cardiovascular diseases and Alzheimer's disease. In this article, the crystal structure of the dihydropyridine compoud diethyl 4-(2-methoxyphenyl)-2,6- dimethyl-1,4-dihydropyridine-3,5-dicarboxylate is described (Fig. 1). The dihydropyridine ring adopts a flattened boat conformation. The methoxyphenyl ring is almost perpendicular to the mean plane of the pyridine ring [dihedral angle = 88.42 (3)°]. The two carbonyl units adopt a synperiplanar conformation with respect to the double bonds in the dihydropyridine ring. In the crystal, the molecules are connected by intermolecular N—H···O hydrogen bonds into R44(24) tetrameric rings. A region of disordered electron density, located at the center of four adjacent molecules, was treated using the SQUEEZE routine in PLATON (Spek, 2009), which indicated a solvent-accessible void of of 178 Å3. It is probably due to traces of the solvent of crystallization and was not taken into account during structure refinement.

For general background to 1,4-dihydropyridine compounds, see: Franke et al. (2008); Takemoto et al. (2010). For related structures, see: Fun et al. (2012); Kapoor et al. (2011).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2102).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound showing the R44(24) tetrameric rings, with N1—H1···O5 hydrogen bonds shown as dashed lines.
Diethyl 4-(2-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C20H25NO5Dx = 1.147 Mg m3
Mr = 359.41Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 36625 reflections
Hall symbol: P -4 2nθ = 3.1–27.4°
a = 22.4689 (7) ŵ = 0.08 mm1
c = 8.2443 (3) ÅT = 296 K
V = 4162.1 (2) Å3Block, colorless
Z = 80.47 × 0.31 × 0.22 mm
F(000) = 1536
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
4755 independent reflections
Radiation source: rotating anode3128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 2020
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 029
Tmin = 0.952, Tmax = 0.982l = 010
60800 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0855P)2 + 0.9222P]
where P = (Fo2 + 2Fc2)/3
4755 reflections(Δ/σ)max = 0.008
241 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H25NO5Z = 8
Mr = 359.41Mo Kα radiation
Tetragonal, P421cµ = 0.08 mm1
a = 22.4689 (7) ÅT = 296 K
c = 8.2443 (3) Å0.47 × 0.31 × 0.22 mm
V = 4162.1 (2) Å3
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
4755 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3128 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.982Rint = 0.078
60800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
4755 reflectionsΔρmin = 0.20 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48258 (11)0.26476 (11)0.3185 (3)0.0488 (6)
H10.51830.26580.38660.059*
C20.43244 (11)0.29128 (12)0.4187 (3)0.0487 (6)
C30.39385 (13)0.33091 (13)0.3545 (4)0.0559 (7)
C40.45445 (13)0.34162 (12)0.1122 (3)0.0524 (7)
C50.49582 (12)0.30287 (11)0.1698 (3)0.0482 (6)
C60.47208 (12)0.19936 (12)0.2738 (3)0.0485 (6)
C70.51178 (14)0.15615 (13)0.3240 (4)0.0623 (8)
H70.54420.16730.38720.075*
C80.50466 (18)0.09635 (15)0.2830 (5)0.0797 (10)
H80.53160.06810.32070.096*
C90.45815 (16)0.07942 (15)0.1875 (5)0.0802 (10)
H90.45400.03970.15750.096*
C100.41693 (16)0.12109 (14)0.1349 (4)0.0705 (8)
H100.38510.10950.07000.085*
C110.42368 (13)0.18025 (12)0.1801 (4)0.0546 (7)
C120.33177 (15)0.20776 (18)0.0506 (5)0.0826 (11)
H12A0.34150.18780.04900.124*
H12B0.30880.24280.02730.124*
H12C0.30900.18150.11840.124*
C130.42649 (12)0.27102 (13)0.5869 (3)0.0515 (6)
C140.47214 (15)0.21103 (14)0.7908 (3)0.0628 (8)
H14A0.43870.18400.80190.075*
H14B0.46850.24200.87220.075*
C150.52918 (17)0.17829 (16)0.8121 (5)0.0817 (10)
H15A0.53050.14530.73830.123*
H15B0.53190.16390.92150.123*
H15C0.56190.20460.79040.123*
C160.34108 (15)0.35877 (18)0.4346 (5)0.0817 (10)
H16A0.31390.32820.46830.123*
H16B0.32150.38490.35940.123*
H16C0.35390.38110.52750.123*
C170.45761 (16)0.37777 (15)0.0409 (4)0.0698 (9)
H17A0.47390.41630.01710.105*
H17B0.41840.38230.08530.105*
H17C0.48260.35790.11820.105*
C180.55359 (12)0.29701 (12)0.0932 (4)0.0525 (7)
C190.65098 (15)0.2576 (2)0.1250 (5)0.0846 (11)
H19A0.67220.29490.13830.102*
H19B0.65120.24710.01080.102*
C200.6793 (2)0.2111 (3)0.2197 (7)0.140 (2)
H20A0.66770.21490.33130.210*
H20B0.72180.21480.21100.210*
H20C0.66720.17290.17940.210*
N10.40319 (10)0.35131 (11)0.1988 (3)0.0599 (6)
H1A0.37520.37130.15320.072*
O10.38505 (9)0.22427 (9)0.1319 (3)0.0636 (6)
O20.47297 (9)0.23683 (10)0.6302 (2)0.0633 (6)
O30.38594 (9)0.28131 (11)0.6811 (3)0.0712 (6)
O40.59075 (8)0.26366 (10)0.1817 (3)0.0654 (6)
O50.56955 (10)0.31897 (11)0.0357 (3)0.0738 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0473 (14)0.0528 (14)0.0462 (13)0.0037 (11)0.0026 (12)0.0049 (12)
C20.0461 (14)0.0570 (15)0.0429 (13)0.0004 (11)0.0039 (11)0.0004 (12)
C30.0520 (15)0.0602 (17)0.0554 (16)0.0044 (13)0.0034 (13)0.0039 (13)
C40.0585 (16)0.0496 (14)0.0490 (15)0.0008 (12)0.0007 (13)0.0047 (12)
C50.0511 (14)0.0492 (14)0.0442 (14)0.0067 (12)0.0027 (12)0.0024 (11)
C60.0525 (14)0.0499 (14)0.0432 (13)0.0026 (11)0.0073 (12)0.0077 (11)
C70.0605 (17)0.0605 (17)0.0659 (18)0.0080 (14)0.0056 (15)0.0099 (15)
C80.086 (2)0.0608 (19)0.092 (3)0.0170 (17)0.011 (2)0.0100 (18)
C90.089 (2)0.0545 (18)0.097 (3)0.0006 (17)0.012 (2)0.0019 (19)
C100.081 (2)0.0586 (18)0.072 (2)0.0094 (16)0.0081 (17)0.0001 (16)
C110.0564 (15)0.0543 (15)0.0530 (15)0.0003 (13)0.0088 (13)0.0092 (13)
C120.063 (2)0.088 (2)0.096 (3)0.0112 (18)0.0207 (18)0.013 (2)
C130.0530 (15)0.0578 (15)0.0439 (14)0.0028 (13)0.0014 (12)0.0015 (12)
C140.0764 (19)0.0706 (18)0.0415 (14)0.0027 (15)0.0005 (14)0.0091 (14)
C150.102 (3)0.080 (2)0.063 (2)0.017 (2)0.004 (2)0.0156 (18)
C160.0598 (19)0.102 (3)0.084 (2)0.0253 (19)0.0137 (18)0.006 (2)
C170.083 (2)0.0630 (18)0.0630 (19)0.0057 (17)0.0066 (17)0.0187 (16)
C180.0548 (15)0.0510 (14)0.0516 (15)0.0058 (12)0.0025 (13)0.0010 (13)
C190.0505 (17)0.123 (3)0.080 (2)0.0072 (19)0.0162 (17)0.003 (2)
C200.088 (3)0.194 (6)0.139 (4)0.073 (3)0.026 (3)0.045 (4)
N10.0559 (14)0.0657 (15)0.0580 (15)0.0110 (11)0.0007 (12)0.0094 (12)
O10.0616 (12)0.0581 (12)0.0711 (13)0.0028 (9)0.0114 (10)0.0088 (10)
O20.0647 (12)0.0804 (14)0.0447 (10)0.0107 (11)0.0054 (9)0.0094 (10)
O30.0668 (13)0.0950 (16)0.0517 (12)0.0103 (12)0.0162 (11)0.0039 (11)
O40.0472 (10)0.0853 (14)0.0637 (13)0.0086 (10)0.0097 (10)0.0092 (11)
O50.0707 (14)0.0829 (15)0.0678 (14)0.0057 (12)0.0180 (11)0.0189 (12)
Geometric parameters (Å, º) top
C1—C21.519 (4)C12—H12C0.9600
C1—C51.525 (4)C13—O31.220 (3)
C1—C61.533 (4)C13—O21.345 (3)
C1—H10.9800C14—O21.446 (3)
C2—C31.351 (4)C14—C151.488 (5)
C2—C131.466 (4)C14—H14A0.9700
C3—N11.379 (4)C14—H14B0.9700
C3—C161.494 (4)C15—H15A0.9600
C4—C51.359 (4)C15—H15B0.9600
C4—N11.373 (4)C15—H15C0.9600
C4—C171.503 (4)C16—H16A0.9600
C5—C181.449 (4)C16—H16B0.9600
C6—C71.382 (4)C16—H16C0.9600
C6—C111.401 (4)C17—H17A0.9600
C7—C81.395 (5)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C8—C91.363 (5)C18—O51.225 (3)
C8—H80.9300C18—O41.338 (3)
C9—C101.387 (5)C19—O41.438 (4)
C9—H90.9300C19—C201.451 (6)
C10—C111.389 (4)C19—H19A0.9700
C10—H100.9300C19—H19B0.9700
C11—O11.374 (3)C20—H20A0.9600
C12—O11.422 (4)C20—H20B0.9600
C12—H12A0.9600C20—H20C0.9600
C12—H12B0.9600N1—H1A0.8600
C2—C1—C5111.2 (2)O2—C14—C15107.2 (3)
C2—C1—C6113.1 (2)O2—C14—H14A110.3
C5—C1—C6112.0 (2)C15—C14—H14A110.3
C2—C1—H1106.7O2—C14—H14B110.3
C5—C1—H1106.7C15—C14—H14B110.3
C6—C1—H1106.7H14A—C14—H14B108.5
C3—C2—C13121.1 (2)C14—C15—H15A109.5
C3—C2—C1121.5 (2)C14—C15—H15B109.5
C13—C2—C1117.4 (2)H15A—C15—H15B109.5
C2—C3—N1119.1 (3)C14—C15—H15C109.5
C2—C3—C16127.8 (3)H15A—C15—H15C109.5
N1—C3—C16113.1 (3)H15B—C15—H15C109.5
C5—C4—N1119.6 (2)C3—C16—H16A109.5
C5—C4—C17127.4 (3)C3—C16—H16B109.5
N1—C4—C17113.0 (2)H16A—C16—H16B109.5
C4—C5—C18121.2 (2)C3—C16—H16C109.5
C4—C5—C1120.5 (2)H16A—C16—H16C109.5
C18—C5—C1118.3 (2)H16B—C16—H16C109.5
C7—C6—C11116.8 (3)C4—C17—H17A109.5
C7—C6—C1120.1 (3)C4—C17—H17B109.5
C11—C6—C1123.1 (2)H17A—C17—H17B109.5
C6—C7—C8122.0 (3)C4—C17—H17C109.5
C6—C7—H7119.0H17A—C17—H17C109.5
C8—C7—H7119.0H17B—C17—H17C109.5
C9—C8—C7119.8 (3)O5—C18—O4121.1 (3)
C9—C8—H8120.1O5—C18—C5127.1 (3)
C7—C8—H8120.1O4—C18—C5111.8 (2)
C8—C9—C10120.3 (3)O4—C19—C20107.8 (3)
C8—C9—H9119.9O4—C19—H19A110.1
C10—C9—H9119.9C20—C19—H19A110.1
C9—C10—C11119.3 (3)O4—C19—H19B110.1
C9—C10—H10120.3C20—C19—H19B110.1
C11—C10—H10120.3H19A—C19—H19B108.5
O1—C11—C10122.9 (3)C19—C20—H20A109.5
O1—C11—C6115.4 (2)C19—C20—H20B109.5
C10—C11—C6121.7 (3)H20A—C20—H20B109.5
O1—C12—H12A109.5C19—C20—H20C109.5
O1—C12—H12B109.5H20A—C20—H20C109.5
H12A—C12—H12B109.5H20B—C20—H20C109.5
O1—C12—H12C109.5C4—N1—C3124.0 (2)
H12A—C12—H12C109.5C4—N1—H1A118.0
H12B—C12—H12C109.5C3—N1—H1A118.0
O3—C13—O2121.3 (3)C11—O1—C12118.7 (3)
O3—C13—C2127.7 (3)C13—O2—C14117.5 (2)
O2—C13—C2111.0 (2)C18—O4—C19117.5 (3)
C5—C1—C2—C319.7 (4)C9—C10—C11—C61.9 (5)
C6—C1—C2—C3107.3 (3)C7—C6—C11—O1180.0 (2)
C5—C1—C2—C13161.9 (2)C1—C6—C11—O10.9 (4)
C6—C1—C2—C1371.1 (3)C7—C6—C11—C102.2 (4)
C13—C2—C3—N1176.3 (3)C1—C6—C11—C10176.8 (3)
C1—C2—C3—N15.4 (4)C3—C2—C13—O37.5 (5)
C13—C2—C3—C161.2 (5)C1—C2—C13—O3171.0 (3)
C1—C2—C3—C16177.1 (3)C3—C2—C13—O2173.4 (3)
N1—C4—C5—C18172.1 (2)C1—C2—C13—O28.2 (3)
C17—C4—C5—C187.1 (4)C4—C5—C18—O59.0 (4)
N1—C4—C5—C17.3 (4)C1—C5—C18—O5171.6 (3)
C17—C4—C5—C1173.4 (3)C4—C5—C18—O4170.5 (3)
C2—C1—C5—C420.6 (3)C1—C5—C18—O48.9 (3)
C6—C1—C5—C4107.0 (3)C5—C4—N1—C39.9 (4)
C2—C1—C5—C18158.8 (2)C17—C4—N1—C3169.4 (3)
C6—C1—C5—C1873.5 (3)C2—C3—N1—C411.0 (4)
C2—C1—C6—C7119.7 (3)C16—C3—N1—C4166.8 (3)
C5—C1—C6—C7113.7 (3)C10—C11—O1—C128.5 (4)
C2—C1—C6—C1161.3 (3)C6—C11—O1—C12173.8 (3)
C5—C1—C6—C1165.3 (3)O3—C13—O2—C142.1 (4)
C11—C6—C7—C80.5 (4)C2—C13—O2—C14177.1 (2)
C1—C6—C7—C8178.5 (3)C15—C14—O2—C13177.1 (3)
C6—C7—C8—C91.5 (5)O5—C18—O4—C193.7 (4)
C7—C8—C9—C101.9 (6)C5—C18—O4—C19175.9 (3)
C8—C9—C10—C110.2 (5)C20—C19—O4—C18169.0 (4)
C9—C10—C11—O1179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.862.072.924 (3)170
Symmetry code: (i) y, x+1, z.

Experimental details

Crystal data
Chemical formulaC20H25NO5
Mr359.41
Crystal system, space groupTetragonal, P421c
Temperature (K)296
a, c (Å)22.4689 (7), 8.2443 (3)
V3)4162.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.31 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.952, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
60800, 4755, 3128
Rint0.078
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.167, 1.00
No. of reflections4755
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2102).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.862.072.924 (3)170
Symmetry code: (i) y, x+1, z.
 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y4110373). We are also grateful for the help of Professor Jian-Ming Gu of Zhejiang University.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFranke, P. T., Johansen, R. L., Bertelsen, S. & Jorgensen, K. A. (2008). Chem. Asian J. 3, 216–224.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Hemamalini, M., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2012). Acta Cryst. E68, o287–o288.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKapoor, K., Gupta, V. K., Kant, R., Pawar, M. P. & Joshi, H. S. (2011). Acta Cryst. E67, o2979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS_AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakemoto, Y., Yoshida, K., Inokuma, T. & Takasu, K. (2010). Synlett, pp. 1865–1869.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds