organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phen­yl)-1-cyclo­propyl-2-(2-fluoro­phen­yl)-5-phenyl­pentane-1,5-dione

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Tamilnadu, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 2 April 2013; accepted 25 April 2013; online 30 April 2013)

In the title compound, C26H22ClFO2, the cyclo­propane ring is disordered over two orientations, with site-occupancy factors of 0.64 (2) and 0.36 (2). The major occupancy component of the cyclo­propane ring makes dihedral angles of 47.6 (7), 50.4 (7) and 65.4 (7)° with the fluoro-, chloro- and unsubstituted benzene rings, respectively [the corresponding values for the minor occupancy component are 47.6 (12), 51.0 (12) and 60.9 (12)°]. An intra­molecular C—H⋯O hydrogen bond occurs. The F and Cl atoms deviate by 0.0508 (12) and 0.0592 (7) Å from the planes of their attached benzene rings. In the crystal, C—H⋯F hydrogen bonds link the mol­ecules into chains along the b-axis direction.

Related literature

For the uses and biological importance of diketones, see: Bennett et al. (1999[Bennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847-1852.]); Sato et al. (2008[Sato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405-2408.]). For a related structure, see: Li et al. (2008[Li, K.-Z., Chen, Y.-T., Zhao, C.-W., Wei, G.-D. & He, Q.-P. (2008). Acta Cryst. E64, o1665.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22ClFO2

  • Mr = 420.89

  • Monoclinic, C 2/c

  • a = 40.0712 (18) Å

  • b = 5.6840 (2) Å

  • c = 18.6470 (8) Å

  • β = 92.903 (2)°

  • V = 4241.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.959

  • 20059 measured reflections

  • 5298 independent reflections

  • 3397 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.02

  • 5298 reflections

  • 299 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F1i 0.98 2.52 3.440 (2) 155
C7—H7⋯O1 0.93 2.57 3.152 (2) 121
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diketones are popular in organic synthesis for their applications in biology and medicine. They are known to exhibit antioxidants, antitumour and antibacterial activities (Bennett et al., 1999). They are also key intermediates in the preparation of various heterocyclic compounds (Sato et al., 2008).

In the title compound (Fig. 1), the cyclopropane ring (C1-C3) is disordered over two positions with the site occupancy factors of 0.64 (2):0.36 (2), representing to major and minor components, respectively. The cyclopropane ring (C1-C3) makes a dihedral angle of 47.6 (7)° with the fluoro substituted phenyl ring (C6-C11). It makes a dihedral angle of 50.4 (7)° with the chloro substituted phenyl ring (C13-C18) and a dihedral angle of 65.4 (7)° with the unsubstituted phenyl ring (C21-C26). The fluorine atom (F1) attached with the phenyl ring deviates by 0.0508 (12)Å.

The dihedral angle between the fluoro substituted phenyl ring and the chloro substituted phenyl ring is 6.50 (9)° and the dihedral angle between the fluoro substituted phenyl ring and the unsubstituted phenyl ring is 64.52 (10)°. The dihedral angle between the chloro substituted phenyl ring and the unsubstituted phenyl ring is 70.89 (10)°. The chlorine atom (Cl1) attached with the phenyl ring deviates by 0.0592 (7)Å. The packing of the crystal is stabilized by C–H···F hydrogen bonds.

Related literature top

For the uses and biological importance of diketones, see: Bennett et al. (1999); Sato et al. (2008). For a related structure, see: Li et al. (2008).

Experimental top

A mixture of acetophenone (0.01 mole), 4-chlorobenzaldehyde (0.01 mole), cyclopropyl 2-fluorobenzyl ketone (0.01 mole) and sodium hydroxide solution (10 ml, 10%) in ethanol (50 ml) was stirred for 3 hrs at room temperature. The solid that separated was filtered and washed with distilled water. The product was recrystallised from ethanol. Yield=96%, melting point = 418-421 K. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement top

The cyclopropane ring was disordered over two positions with the site occupancy factors of 0.64 (2):0.36 (2). The bond distances of the disordered components were restrained using standard similarity restraints SADI [SHELXL97, Sheldrick, 2008] with s.u. of 0.01 Å. The hydrogen atoms were placed in calculated positions with C—H = 0.93 to 0.98 Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Structure description top

Diketones are popular in organic synthesis for their applications in biology and medicine. They are known to exhibit antioxidants, antitumour and antibacterial activities (Bennett et al., 1999). They are also key intermediates in the preparation of various heterocyclic compounds (Sato et al., 2008).

In the title compound (Fig. 1), the cyclopropane ring (C1-C3) is disordered over two positions with the site occupancy factors of 0.64 (2):0.36 (2), representing to major and minor components, respectively. The cyclopropane ring (C1-C3) makes a dihedral angle of 47.6 (7)° with the fluoro substituted phenyl ring (C6-C11). It makes a dihedral angle of 50.4 (7)° with the chloro substituted phenyl ring (C13-C18) and a dihedral angle of 65.4 (7)° with the unsubstituted phenyl ring (C21-C26). The fluorine atom (F1) attached with the phenyl ring deviates by 0.0508 (12)Å.

The dihedral angle between the fluoro substituted phenyl ring and the chloro substituted phenyl ring is 6.50 (9)° and the dihedral angle between the fluoro substituted phenyl ring and the unsubstituted phenyl ring is 64.52 (10)°. The dihedral angle between the chloro substituted phenyl ring and the unsubstituted phenyl ring is 70.89 (10)°. The chlorine atom (Cl1) attached with the phenyl ring deviates by 0.0592 (7)Å. The packing of the crystal is stabilized by C–H···F hydrogen bonds.

For the uses and biological importance of diketones, see: Bennett et al. (1999); Sato et al. (2008). For a related structure, see: Li et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. The minor components of the cyclopropane ring have been represented by broken bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down b axis. H-atoms not involved in H-bonds have been excluded for clarity.
3-(4-Chlorophenyl)-1-cyclopropyl-2-(2-fluorophenyl)-5-phenylpentane-1,5-dione top
Crystal data top
C26H22ClFO2F(000) = 1760
Mr = 420.89Dx = 1.318 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5298 reflections
a = 40.0712 (18) Åθ = 2.0–28.4°
b = 5.6840 (2) ŵ = 0.21 mm1
c = 18.6470 (8) ÅT = 293 K
β = 92.903 (2)°Block, colourless
V = 4241.7 (3) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5298 independent reflections
Radiation source: fine-focus sealed tube3397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and φ scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 5346
Tmin = 0.940, Tmax = 0.959k = 67
20059 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0482P)2 + 2.4951P]
where P = (Fo2 + 2Fc2)/3
5298 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.30 e Å3
40 restraintsΔρmin = 0.41 e Å3
Crystal data top
C26H22ClFO2V = 4241.7 (3) Å3
Mr = 420.89Z = 8
Monoclinic, C2/cMo Kα radiation
a = 40.0712 (18) ŵ = 0.21 mm1
b = 5.6840 (2) ÅT = 293 K
c = 18.6470 (8) Å0.30 × 0.25 × 0.20 mm
β = 92.903 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5298 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3397 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.959Rint = 0.033
20059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04440 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
5298 reflectionsΔρmin = 0.41 e Å3
299 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4715 (2)0.5122 (16)0.0640 (6)0.096 (2)0.64 (2)
H1A0.47090.39170.02720.115*0.64 (2)
H1B0.47700.66870.04760.115*0.64 (2)
C20.48333 (18)0.4440 (17)0.1374 (7)0.087 (2)0.64 (2)
H2A0.49620.55880.16560.104*0.64 (2)
H2B0.49010.28200.14520.104*0.64 (2)
C30.44683 (13)0.4917 (11)0.1227 (6)0.061 (2)0.64 (2)
H30.43780.63800.14170.074*0.64 (2)
C1'0.4818 (4)0.455 (3)0.0871 (9)0.095 (3)0.36 (2)
H1'10.48490.31870.05680.114*0.36 (2)
H1'20.49230.59810.07110.114*0.36 (2)
C2'0.4808 (4)0.416 (3)0.1652 (9)0.082 (3)0.36 (2)
H2'10.49080.53470.19680.098*0.36 (2)
H2'20.48340.25550.18260.098*0.36 (2)
C3'0.4489 (3)0.477 (2)0.1234 (11)0.076 (4)0.36 (2)
H3'0.44050.63750.12960.092*0.36 (2)
C40.42390 (4)0.2929 (3)0.11268 (8)0.0460 (4)
C50.38759 (4)0.3590 (3)0.09542 (8)0.0401 (4)
H50.38720.51880.07570.048*
C60.36916 (4)0.3639 (3)0.16514 (8)0.0402 (4)
C70.37293 (5)0.1868 (3)0.21654 (8)0.0471 (4)
H70.38670.05940.20790.057*
C80.35657 (5)0.1965 (4)0.28028 (9)0.0538 (5)
H80.35930.07550.31360.065*
C90.33630 (5)0.3840 (4)0.29427 (9)0.0548 (5)
H90.32550.39070.33720.066*
C100.33198 (5)0.5618 (3)0.24466 (10)0.0539 (5)
H100.31840.69000.25360.065*
C110.34822 (5)0.5464 (3)0.18149 (9)0.0460 (4)
C120.37113 (4)0.1936 (3)0.03779 (8)0.0412 (4)
H120.36930.03700.05920.049*
C130.39268 (4)0.1719 (3)0.02688 (8)0.0396 (4)
C140.39404 (5)0.3478 (3)0.07800 (9)0.0483 (4)
H140.38150.48390.07300.058*
C150.41382 (5)0.3247 (4)0.13672 (9)0.0547 (5)
H150.41430.44340.17100.066*
C160.43258 (5)0.1254 (4)0.14354 (9)0.0512 (4)
C170.43202 (5)0.0512 (4)0.09335 (10)0.0568 (5)
H170.44500.18540.09810.068*
C180.41202 (5)0.0269 (3)0.03580 (10)0.0524 (4)
H180.41150.14720.00210.063*
C190.33593 (4)0.2781 (3)0.01664 (9)0.0471 (4)
H19A0.32340.29130.05960.056*
H19B0.33730.43400.00420.056*
C200.31696 (4)0.1198 (3)0.03613 (9)0.0462 (4)
C210.28700 (4)0.2161 (3)0.07669 (8)0.0440 (4)
C220.27314 (5)0.0884 (4)0.13424 (10)0.0583 (5)
H220.28300.05230.14730.070*
C230.24508 (5)0.1663 (5)0.17219 (12)0.0718 (6)
H230.23640.07970.21110.086*
C240.22983 (5)0.3707 (4)0.15316 (12)0.0690 (6)
H240.21040.42070.17820.083*
C250.24318 (5)0.5017 (4)0.09711 (12)0.0663 (6)
H250.23300.64160.08450.080*
C260.27181 (5)0.4263 (4)0.05916 (11)0.0567 (5)
H260.28090.51740.02160.068*
O10.43244 (4)0.0882 (2)0.11642 (7)0.0627 (4)
O20.32562 (4)0.0827 (2)0.04499 (8)0.0632 (4)
F10.34265 (3)0.72072 (19)0.13225 (6)0.0685 (3)
Cl10.456570 (16)0.08923 (13)0.21778 (3)0.0826 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (3)0.113 (4)0.118 (4)0.011 (3)0.019 (3)0.030 (3)
C20.049 (3)0.104 (4)0.106 (5)0.015 (2)0.001 (4)0.000 (5)
C30.044 (3)0.055 (3)0.084 (4)0.008 (3)0.002 (3)0.013 (3)
C1'0.069 (6)0.128 (7)0.091 (6)0.017 (5)0.018 (5)0.026 (6)
C2'0.060 (5)0.107 (6)0.078 (6)0.021 (4)0.000 (5)0.006 (5)
C3'0.062 (7)0.094 (8)0.074 (7)0.012 (6)0.005 (6)0.003 (6)
C40.0513 (10)0.0538 (11)0.0331 (7)0.0001 (9)0.0035 (7)0.0024 (7)
C50.0479 (9)0.0374 (8)0.0352 (7)0.0046 (7)0.0027 (6)0.0009 (6)
C60.0447 (9)0.0410 (9)0.0345 (7)0.0061 (7)0.0004 (6)0.0028 (7)
C70.0522 (10)0.0487 (10)0.0404 (8)0.0009 (8)0.0019 (7)0.0019 (7)
C80.0603 (11)0.0629 (12)0.0381 (8)0.0090 (10)0.0010 (8)0.0072 (8)
C90.0550 (11)0.0699 (13)0.0403 (9)0.0131 (10)0.0094 (8)0.0109 (9)
C100.0535 (11)0.0524 (11)0.0566 (10)0.0019 (9)0.0094 (8)0.0145 (9)
C110.0534 (10)0.0403 (9)0.0444 (8)0.0045 (8)0.0015 (7)0.0017 (7)
C120.0506 (10)0.0390 (8)0.0343 (7)0.0064 (7)0.0032 (6)0.0005 (6)
C130.0449 (9)0.0397 (9)0.0341 (7)0.0055 (7)0.0001 (6)0.0002 (6)
C140.0578 (11)0.0458 (10)0.0415 (8)0.0020 (8)0.0034 (7)0.0048 (7)
C150.0659 (12)0.0577 (11)0.0409 (9)0.0092 (10)0.0057 (8)0.0086 (8)
C160.0481 (10)0.0661 (12)0.0398 (8)0.0115 (9)0.0062 (7)0.0094 (8)
C170.0609 (12)0.0533 (11)0.0567 (10)0.0063 (9)0.0078 (9)0.0075 (9)
C180.0680 (12)0.0433 (10)0.0464 (9)0.0020 (9)0.0073 (8)0.0044 (8)
C190.0477 (10)0.0527 (10)0.0410 (8)0.0043 (8)0.0044 (7)0.0070 (8)
C200.0484 (10)0.0488 (10)0.0417 (8)0.0093 (8)0.0064 (7)0.0020 (8)
C210.0423 (9)0.0481 (10)0.0423 (8)0.0095 (8)0.0079 (7)0.0012 (7)
C220.0518 (11)0.0647 (12)0.0581 (11)0.0049 (9)0.0001 (9)0.0122 (10)
C230.0571 (13)0.0924 (17)0.0646 (13)0.0050 (12)0.0094 (10)0.0107 (12)
C240.0518 (12)0.0860 (16)0.0686 (13)0.0023 (12)0.0044 (10)0.0138 (12)
C250.0580 (13)0.0586 (12)0.0831 (14)0.0038 (10)0.0100 (11)0.0095 (11)
C260.0561 (12)0.0543 (11)0.0599 (11)0.0073 (9)0.0043 (9)0.0038 (9)
O10.0640 (9)0.0567 (9)0.0663 (8)0.0095 (7)0.0058 (7)0.0002 (7)
O20.0662 (9)0.0488 (8)0.0732 (9)0.0011 (7)0.0107 (7)0.0074 (7)
F10.0872 (8)0.0500 (6)0.0693 (7)0.0144 (6)0.0138 (6)0.0116 (6)
Cl10.0771 (4)0.1152 (5)0.0580 (3)0.0121 (3)0.0268 (3)0.0149 (3)
Geometric parameters (Å, º) top
C1—C21.476 (7)C10—H100.9300
C1—C31.515 (7)C11—F11.3615 (19)
C1—H1A0.9700C12—C191.523 (2)
C1—H1B0.9700C12—C131.524 (2)
C2—C31.499 (5)C12—H120.9800
C2—H2A0.9700C13—C181.385 (2)
C2—H2B0.9700C13—C141.384 (2)
C3—C41.463 (4)C14—C151.390 (2)
C3—H30.9800C14—H140.9300
C1'—C2'1.475 (9)C15—C161.369 (3)
C1'—C3'1.516 (8)C15—H150.9300
C1'—H1'10.9700C16—C171.373 (3)
C1'—H1'20.9700C16—Cl11.7371 (17)
C2'—C3'1.505 (9)C17—C181.379 (3)
C2'—H2'10.9700C17—H170.9300
C2'—H2'20.9700C18—H180.9300
C3'—C41.458 (7)C19—C201.510 (2)
C3'—H3'0.9800C19—H19A0.9700
C4—O11.214 (2)C19—H19B0.9700
C4—C51.521 (2)C20—O21.216 (2)
C5—C61.528 (2)C20—C211.491 (2)
C5—C121.550 (2)C21—C261.387 (3)
C5—H50.9800C21—C221.388 (2)
C6—C111.378 (2)C22—C231.372 (3)
C6—C71.393 (2)C22—H220.9300
C7—C81.387 (2)C23—C241.368 (3)
C7—H70.9300C23—H230.9300
C8—C91.373 (3)C24—C251.370 (3)
C8—H80.9300C24—H240.9300
C9—C101.375 (3)C25—C261.385 (3)
C9—H90.9300C25—H250.9300
C10—C111.377 (2)C26—H260.9300
C2—C1—C360.1 (3)C10—C9—H9120.1
C2—C1—H1A117.8C9—C10—C11118.67 (17)
C3—C1—H1A117.8C9—C10—H10120.7
C2—C1—H1B117.8C11—C10—H10120.7
C3—C1—H1B117.8F1—C11—C10117.53 (16)
H1A—C1—H1B114.9F1—C11—C6118.65 (14)
C1—C2—C361.2 (3)C10—C11—C6123.81 (16)
C1—C2—H2A117.6C19—C12—C13112.05 (13)
C3—C2—H2A117.6C19—C12—C5110.16 (13)
C1—C2—H2B117.6C13—C12—C5111.07 (13)
C3—C2—H2B117.6C19—C12—H12107.8
H2A—C2—H2B114.8C13—C12—H12107.8
C4—C3—C2119.0 (6)C5—C12—H12107.8
C4—C3—C1113.3 (6)C18—C13—C14117.70 (15)
C2—C3—C158.6 (3)C18—C13—C12120.29 (14)
C4—C3—H3117.5C14—C13—C12122.00 (15)
C2—C3—H3117.5C13—C14—C15121.21 (17)
C1—C3—H3117.5C13—C14—H14119.4
C2'—C1'—C3'60.4 (4)C15—C14—H14119.4
C2'—C1'—H1'1117.7C16—C15—C14119.26 (17)
C3'—C1'—H1'1117.7C16—C15—H15120.4
C2'—C1'—H1'2117.7C14—C15—H15120.4
C3'—C1'—H1'2117.7C15—C16—C17120.91 (16)
H1'1—C1'—H1'2114.9C15—C16—Cl1120.03 (15)
C1'—C2'—C3'61.2 (4)C17—C16—Cl1119.04 (16)
C1'—C2'—H2'1117.7C16—C17—C18119.19 (18)
C3'—C2'—H2'1117.7C16—C17—H17120.4
C1'—C2'—H2'2117.7C18—C17—H17120.4
C3'—C2'—H2'2117.7C17—C18—C13121.73 (17)
H2'1—C2'—H2'2114.8C17—C18—H18119.1
C4—C3'—C2'117.6 (13)C13—C18—H18119.1
C4—C3'—C1'119.1 (10)C20—C19—C12114.19 (15)
C2'—C3'—C1'58.4 (4)C20—C19—H19A108.7
C4—C3'—H3'116.4C12—C19—H19A108.7
C2'—C3'—H3'116.4C20—C19—H19B108.7
C1'—C3'—H3'116.4C12—C19—H19B108.7
O1—C4—C3'119.4 (7)H19A—C19—H19B107.6
O1—C4—C3124.0 (3)O2—C20—C21120.46 (16)
O1—C4—C5120.85 (16)O2—C20—C19121.01 (17)
C3'—C4—C5119.7 (7)C21—C20—C19118.53 (15)
C3—C4—C5115.1 (3)C26—C21—C22118.03 (17)
C4—C5—C6108.84 (12)C26—C21—C20123.26 (16)
C4—C5—C12111.47 (14)C22—C21—C20118.70 (16)
C6—C5—C12113.19 (13)C23—C22—C21121.0 (2)
C4—C5—H5107.7C23—C22—H22119.5
C6—C5—H5107.7C21—C22—H22119.5
C12—C5—H5107.7C24—C23—C22120.4 (2)
C11—C6—C7115.96 (15)C24—C23—H23119.8
C11—C6—C5121.87 (14)C22—C23—H23119.8
C7—C6—C5122.16 (15)C23—C24—C25119.8 (2)
C8—C7—C6121.44 (17)C23—C24—H24120.1
C8—C7—H7119.3C25—C24—H24120.1
C6—C7—H7119.3C24—C25—C26120.2 (2)
C9—C8—C7120.20 (17)C24—C25—H25119.9
C9—C8—H8119.9C26—C25—H25119.9
C7—C8—H8119.9C25—C26—C21120.50 (19)
C8—C9—C10119.89 (16)C25—C26—H26119.7
C8—C9—H9120.1C21—C26—H26119.7
C1—C2—C3—C4101.0 (8)C5—C6—C11—C10177.77 (16)
C2—C1—C3—C4110.8 (7)C4—C5—C12—C19174.70 (13)
C1'—C2'—C3'—C4108.8 (13)C6—C5—C12—C1962.20 (17)
C2'—C1'—C3'—C4106.3 (17)C4—C5—C12—C1349.96 (18)
C2'—C3'—C4—O123 (2)C6—C5—C12—C13173.05 (13)
C1'—C3'—C4—O144 (2)C19—C12—C13—C18133.75 (17)
C2'—C3'—C4—C3155 (17)C5—C12—C13—C18102.58 (18)
C1'—C3'—C4—C3138 (17)C19—C12—C13—C1446.9 (2)
C2'—C3'—C4—C5158.4 (12)C5—C12—C13—C1476.75 (19)
C1'—C3'—C4—C5134.2 (14)C18—C13—C14—C150.7 (3)
C2—C3—C4—O11.1 (11)C12—C13—C14—C15179.92 (16)
C1—C3—C4—O166.9 (9)C13—C14—C15—C160.8 (3)
C2—C3—C4—C3'1 (15)C14—C15—C16—C170.1 (3)
C1—C3—C4—C3'64 (15)C14—C15—C16—Cl1178.20 (14)
C2—C3—C4—C5177.9 (7)C15—C16—C17—C180.6 (3)
C1—C3—C4—C5112.0 (7)Cl1—C16—C17—C18177.55 (15)
O1—C4—C5—C686.48 (19)C16—C17—C18—C130.6 (3)
C3'—C4—C5—C694.9 (9)C14—C13—C18—C170.1 (3)
C3—C4—C5—C694.5 (5)C12—C13—C18—C17179.41 (17)
O1—C4—C5—C1239.1 (2)C13—C12—C19—C2059.33 (19)
C3'—C4—C5—C12139.6 (9)C5—C12—C19—C20176.48 (13)
C3—C4—C5—C12139.9 (5)C12—C19—C20—O218.5 (2)
C4—C5—C6—C11133.68 (16)C12—C19—C20—C21162.26 (14)
C12—C5—C6—C11101.78 (18)O2—C20—C21—C26166.47 (17)
C4—C5—C6—C745.1 (2)C19—C20—C21—C2612.7 (2)
C12—C5—C6—C779.41 (19)O2—C20—C21—C2212.5 (3)
C11—C6—C7—C80.3 (2)C19—C20—C21—C22168.31 (16)
C5—C6—C7—C8178.58 (15)C26—C21—C22—C230.6 (3)
C6—C7—C8—C90.5 (3)C20—C21—C22—C23178.36 (19)
C7—C8—C9—C100.6 (3)C21—C22—C23—C241.1 (3)
C8—C9—C10—C110.2 (3)C22—C23—C24—C251.8 (3)
C9—C10—C11—F1177.85 (16)C23—C24—C25—C260.8 (3)
C9—C10—C11—C61.1 (3)C24—C25—C26—C211.0 (3)
C7—C6—C11—F1177.82 (15)C22—C21—C26—C251.7 (3)
C5—C6—C11—F13.3 (2)C20—C21—C26—C25177.30 (17)
C7—C6—C11—C101.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.982.523.440 (2)155
C5—H5···F10.982.412.840 (2)106
C7—H7···O10.932.573.152 (2)121
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC26H22ClFO2
Mr420.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)40.0712 (18), 5.6840 (2), 18.6470 (8)
β (°) 92.903 (2)
V3)4241.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.940, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
20059, 5298, 3397
Rint0.033
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.02
No. of reflections5298
No. of parameters299
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.41

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.982.523.440 (2)155
C5—H5···F10.982.412.840 (2)106
C7—H7···O10.932.573.152 (2)121
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS and DV thank the UGC (SAP–CAS) for the departmental facilties. TS also thanks the DST Inspire program for financial assistance.

References

First citationBennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, K.-Z., Chen, Y.-T., Zhao, C.-W., Wei, G.-D. & He, Q.-P. (2008). Acta Cryst. E64, o1665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405–2408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds