organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-2-oxo­ethyl naphthalene-1-carboxyl­ate

aNational Institute of Technology-Karnataka, Department of Chemistry, Surathkal, Mangalore 575 025, India, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 26 February 2013; accepted 27 March 2013; online 5 April 2013)

In the title compound, C19H13BrO3, an ester of 1-naphthoic acid with an aromatic alcohol, the least-squares planes defined by the C atoms of the respective aromatic systems enclose an angle of 77.20 (5)°. In the crystal, C—H⋯O contacts connect the mol­ecules into undulating sheets parallel (100).

Related literature

For general information about phenacyl bromide derivatives, see: Rather & Reid (1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]). For the photolytic properties of phenyl benzoates, see: Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]). For synthetic applications of phenyl benzoates, see: Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13BrO3

  • Mr = 369.20

  • Monoclinic, P 21 /c

  • a = 5.2888 (2) Å

  • b = 14.9139 (6) Å

  • c = 20.0275 (8) Å

  • β = 100.867 (2)°

  • V = 1551.37 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 200 K

  • 0.35 × 0.16 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.]) Tmin = 0.656, Tmax = 0.746

  • 14937 measured reflections

  • 3848 independent reflections

  • 2712 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.080

  • S = 1.02

  • 3848 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.41 3.240 (3) 146
C23—H23⋯O3ii 0.95 2.51 3.292 (3) 140
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For decades, phenacyl bromide derivatives have found ample application in the identification of organic acids (Rather & Reid, 1919). These compounds can be photolysed under neutral and mild conditions (Sheehan & Umezaw, 1973; Ruzicka et al., 2002; Litera et al., 2006). They also find application in the field of synthetic chemistry such as in the synthesis of oxazoles and imidazoles (Huang et al., 1996) as well as benzoxazepine (Gandhi et al., 1995). In continuation of our research focused on the crystal structures of medical compounds, the title compound was synthesized.

The planes defined by the atoms of the carboxy group on the one hand and the non-hydrogen atoms of the CH2–CO moiety intersect at an angle of 78.8 (3) °. The least-squares planes defined by the carbon atoms of the respective aromatic systems enclose an angle of 77.20 (5) ° (Fig. 1).

In the crystal, intermolecular C–H···O contacts are observed whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the atoms participating. One of the hydrogen atoms of the brominated phenyl moiety and the oxygen atom of the keto group give rise to centrosymmetric dimers. Additionally, the hydrogen atom in para position to the carboxy moiety forms a C–H···O contact to the double bonded oxygen atom of exactly this group in a neighbouring molecule. In total, the molecules are connected to undulated sheets parallel (100). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is C11(7)R22(10) on the unary level. Information about metrical parameters as well as the symmetry of those contacts has been summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 4.7943 (14) Å and is apparent between the two different rings in the naphthoic acid moiety and its symmetry-generated equivalents (Fig. 2).

Related literature top

For general information about phenacyl bromide derivatives, see: Rather & Reid (1919). For the photolytic properties of phenyl benzoates, see: Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006). For synthetic applications of phenyl benzoates, see: Huang et al. (1996); Gandhi et al. (1995). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

A mixture of naphthalene-1-carboxylic acid (0.1 g, 0.5 mmol), potassium carbonate (0.087 g, 0.63 mmol) and 2-bromo-1-(4-bromophenyl)ethanone (0.174 g, 0.63 mmol) in dimethylformamide (5 ml) was stirred at room temperature for 2 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered, washed with water and recrystallized from ethanol (yield: 0.19 g, 90.4%).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms and C–H 0.99 Å for the methylene group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Structure description top

For decades, phenacyl bromide derivatives have found ample application in the identification of organic acids (Rather & Reid, 1919). These compounds can be photolysed under neutral and mild conditions (Sheehan & Umezaw, 1973; Ruzicka et al., 2002; Litera et al., 2006). They also find application in the field of synthetic chemistry such as in the synthesis of oxazoles and imidazoles (Huang et al., 1996) as well as benzoxazepine (Gandhi et al., 1995). In continuation of our research focused on the crystal structures of medical compounds, the title compound was synthesized.

The planes defined by the atoms of the carboxy group on the one hand and the non-hydrogen atoms of the CH2–CO moiety intersect at an angle of 78.8 (3) °. The least-squares planes defined by the carbon atoms of the respective aromatic systems enclose an angle of 77.20 (5) ° (Fig. 1).

In the crystal, intermolecular C–H···O contacts are observed whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the atoms participating. One of the hydrogen atoms of the brominated phenyl moiety and the oxygen atom of the keto group give rise to centrosymmetric dimers. Additionally, the hydrogen atom in para position to the carboxy moiety forms a C–H···O contact to the double bonded oxygen atom of exactly this group in a neighbouring molecule. In total, the molecules are connected to undulated sheets parallel (100). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is C11(7)R22(10) on the unary level. Information about metrical parameters as well as the symmetry of those contacts has been summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 4.7943 (14) Å and is apparent between the two different rings in the naphthoic acid moiety and its symmetry-generated equivalents (Fig. 2).

For general information about phenacyl bromide derivatives, see: Rather & Reid (1919). For the photolytic properties of phenyl benzoates, see: Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006). For synthetic applications of phenyl benzoates, see: Huang et al. (1996); Gandhi et al. (1995). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. Symmetry operators: i -x + 1, y - 1/2, -z + 1/2; ii -x + 1, y + 1/2, -z + 1/2; iii -x + 1, -y, -z.
2-(4-Bromophenyl)-2-oxoethyl naphthalene-1-carboxylate top
Crystal data top
C19H13BrO3F(000) = 744
Mr = 369.20Dx = 1.581 Mg m3
Monoclinic, P21/cMelting point = 406–404 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.2888 (2) ÅCell parameters from 4237 reflections
b = 14.9139 (6) Åθ = 2.5–24.2°
c = 20.0275 (8) ŵ = 2.66 mm1
β = 100.867 (2)°T = 200 K
V = 1551.37 (11) Å3Platelet, colourless
Z = 40.35 × 0.16 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
3848 independent reflections
Radiation source: fine-focus sealed tube2712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 67
Tmin = 0.656, Tmax = 0.746k = 1919
14937 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.6176P]
where P = (Fo2 + 2Fc2)/3
3848 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C19H13BrO3V = 1551.37 (11) Å3
Mr = 369.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2888 (2) ŵ = 2.66 mm1
b = 14.9139 (6) ÅT = 200 K
c = 20.0275 (8) Å0.35 × 0.16 × 0.07 mm
β = 100.867 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3848 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
2712 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.746Rint = 0.026
14937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.02Δρmax = 0.55 e Å3
3848 reflectionsΔρmin = 0.56 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.05155 (5)0.337459 (17)0.082915 (14)0.05483 (11)
O10.7161 (3)0.01926 (12)0.09358 (8)0.0504 (4)
O21.0379 (3)0.07451 (10)0.20022 (7)0.0383 (3)
O30.8211 (3)0.03018 (11)0.24600 (9)0.0561 (5)
C10.9200 (4)0.02042 (15)0.10258 (10)0.0324 (5)
C21.1300 (4)0.00494 (16)0.16236 (11)0.0392 (5)
H2A1.17840.04800.19180.047*
H2B1.28470.02570.14570.047*
C30.8587 (4)0.04763 (15)0.23606 (11)0.0356 (5)
C110.9659 (4)0.09457 (14)0.05693 (10)0.0301 (4)
C120.7748 (4)0.11433 (15)0.00128 (11)0.0364 (5)
H120.62420.07820.00780.044*
C130.7996 (4)0.18520 (15)0.04088 (12)0.0396 (5)
H130.66790.19810.07890.047*
C141.0190 (4)0.23729 (14)0.02702 (11)0.0359 (5)
C151.2131 (4)0.21891 (16)0.02701 (12)0.0411 (5)
H151.36370.25500.03560.049*
C161.1865 (4)0.14699 (15)0.06894 (11)0.0376 (5)
H161.32060.13350.10630.045*
C200.7119 (4)0.12388 (14)0.25724 (10)0.0317 (4)
C210.6958 (4)0.20194 (15)0.22036 (11)0.0401 (5)
H210.79540.20860.18580.048*
C220.5341 (5)0.27215 (16)0.23293 (13)0.0505 (6)
H220.52770.32630.20770.061*
C230.3868 (5)0.26250 (17)0.28116 (13)0.0486 (6)
H230.27270.30930.28800.058*
C240.3998 (4)0.18466 (16)0.32119 (12)0.0397 (5)
C250.2488 (4)0.17481 (19)0.37226 (14)0.0517 (7)
H250.13120.22080.37850.062*
C260.2694 (5)0.1008 (2)0.41240 (14)0.0572 (7)
H260.16560.09500.44600.069*
C270.4432 (5)0.03358 (19)0.40408 (13)0.0525 (7)
H270.46200.01690.43350.063*
C280.5868 (4)0.03887 (16)0.35440 (11)0.0406 (5)
H280.70110.00860.34910.049*
C290.5685 (4)0.11383 (14)0.31069 (10)0.0316 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0741 (2)0.04066 (15)0.05347 (17)0.00681 (13)0.02159 (13)0.00796 (12)
O10.0365 (9)0.0641 (12)0.0454 (10)0.0178 (8)0.0056 (7)0.0172 (8)
O20.0327 (8)0.0439 (9)0.0381 (8)0.0067 (7)0.0063 (6)0.0090 (7)
O30.0770 (12)0.0334 (10)0.0665 (12)0.0033 (9)0.0357 (10)0.0005 (8)
C10.0258 (10)0.0375 (12)0.0325 (11)0.0027 (9)0.0020 (8)0.0001 (9)
C20.0280 (11)0.0523 (14)0.0365 (12)0.0004 (10)0.0040 (9)0.0084 (10)
C30.0354 (11)0.0387 (13)0.0314 (11)0.0017 (9)0.0029 (9)0.0038 (9)
C110.0241 (10)0.0378 (12)0.0280 (10)0.0017 (8)0.0045 (8)0.0034 (9)
C120.0293 (11)0.0410 (13)0.0367 (12)0.0059 (9)0.0007 (9)0.0017 (9)
C130.0378 (12)0.0413 (13)0.0365 (12)0.0011 (10)0.0009 (9)0.0036 (10)
C140.0439 (12)0.0322 (12)0.0349 (12)0.0037 (10)0.0156 (10)0.0017 (9)
C150.0343 (11)0.0449 (14)0.0443 (13)0.0134 (10)0.0083 (10)0.0025 (10)
C160.0258 (10)0.0519 (15)0.0333 (11)0.0064 (9)0.0009 (9)0.0000 (10)
C200.0306 (10)0.0303 (11)0.0311 (11)0.0012 (9)0.0020 (8)0.0042 (9)
C210.0464 (13)0.0365 (12)0.0344 (12)0.0041 (10)0.0002 (10)0.0003 (10)
C220.0635 (16)0.0312 (13)0.0491 (15)0.0058 (12)0.0093 (13)0.0008 (11)
C230.0470 (14)0.0399 (14)0.0519 (15)0.0100 (11)0.0082 (12)0.0152 (11)
C240.0323 (11)0.0432 (13)0.0390 (12)0.0018 (10)0.0046 (9)0.0175 (10)
C250.0337 (12)0.0657 (19)0.0556 (16)0.0054 (12)0.0080 (11)0.0334 (14)
C260.0491 (15)0.076 (2)0.0510 (16)0.0235 (14)0.0201 (12)0.0227 (14)
C270.0607 (16)0.0560 (17)0.0428 (14)0.0237 (13)0.0147 (12)0.0050 (12)
C280.0440 (12)0.0374 (13)0.0404 (13)0.0073 (10)0.0078 (10)0.0025 (10)
C290.0279 (10)0.0334 (12)0.0302 (11)0.0044 (9)0.0025 (8)0.0079 (8)
Geometric parameters (Å, º) top
Br1—C141.894 (2)C16—H160.9500
O1—C11.213 (2)C20—C211.373 (3)
O2—C31.353 (3)C20—C291.432 (3)
O2—C21.424 (2)C21—C221.404 (3)
O3—C31.200 (3)C21—H210.9500
C1—C111.484 (3)C22—C231.358 (4)
C1—C21.520 (3)C22—H220.9500
C2—H2A0.9900C23—C241.405 (3)
C2—H2B0.9900C23—H230.9500
C3—C201.483 (3)C24—C251.419 (3)
C11—C161.387 (3)C24—C291.424 (3)
C11—C121.388 (3)C25—C261.357 (4)
C12—C131.374 (3)C25—H250.9500
C12—H120.9500C26—C271.392 (4)
C13—C141.380 (3)C26—H260.9500
C13—H130.9500C27—C281.363 (3)
C14—C151.371 (3)C27—H270.9500
C15—C161.386 (3)C28—C291.412 (3)
C15—H150.9500C28—H280.9500
C3—O2—C2114.25 (17)C21—C20—C29120.2 (2)
O1—C1—C11121.08 (18)C21—C20—C3118.6 (2)
O1—C1—C2119.53 (19)C29—C20—C3120.87 (19)
C11—C1—C2119.38 (17)C20—C21—C22120.9 (2)
O2—C2—C1109.17 (16)C20—C21—H21119.5
O2—C2—H2A109.8C22—C21—H21119.5
C1—C2—H2A109.8C23—C22—C21119.9 (2)
O2—C2—H2B109.8C23—C22—H22120.0
C1—C2—H2B109.8C21—C22—H22120.0
H2A—C2—H2B108.3C22—C23—C24121.4 (2)
O3—C3—O2121.9 (2)C22—C23—H23119.3
O3—C3—C20125.6 (2)C24—C23—H23119.3
O2—C3—C20112.42 (19)C23—C24—C25121.6 (2)
C16—C11—C12118.8 (2)C23—C24—C29119.6 (2)
C16—C11—C1122.91 (18)C25—C24—C29118.9 (2)
C12—C11—C1118.29 (17)C26—C25—C24121.2 (2)
C13—C12—C11121.14 (19)C26—C25—H25119.4
C13—C12—H12119.4C24—C25—H25119.4
C11—C12—H12119.4C25—C26—C27119.7 (2)
C12—C13—C14118.9 (2)C25—C26—H26120.1
C12—C13—H13120.6C27—C26—H26120.1
C14—C13—H13120.6C28—C27—C26121.1 (3)
C15—C14—C13121.5 (2)C28—C27—H27119.4
C15—C14—Br1119.07 (16)C26—C27—H27119.4
C13—C14—Br1119.46 (17)C27—C28—C29121.0 (2)
C14—C15—C16119.11 (19)C27—C28—H28119.5
C14—C15—H15120.4C29—C28—H28119.5
C16—C15—H15120.4C28—C29—C24117.9 (2)
C15—C16—C11120.6 (2)C28—C29—C20124.22 (19)
C15—C16—H16119.7C24—C29—C20117.9 (2)
C11—C16—H16119.7
C3—O2—C2—C171.6 (2)O2—C3—C20—C29162.04 (17)
O1—C1—C2—O21.4 (3)C29—C20—C21—C221.7 (3)
C11—C1—C2—O2177.41 (18)C3—C20—C21—C22172.2 (2)
C2—O2—C3—O314.5 (3)C20—C21—C22—C231.4 (3)
C2—O2—C3—C20162.58 (16)C21—C22—C23—C242.6 (4)
O1—C1—C11—C16173.9 (2)C22—C23—C24—C25179.1 (2)
C2—C1—C11—C164.9 (3)C22—C23—C24—C290.7 (3)
O1—C1—C11—C123.5 (3)C23—C24—C25—C26177.5 (2)
C2—C1—C11—C12177.7 (2)C29—C24—C25—C262.3 (3)
C16—C11—C12—C131.0 (3)C24—C25—C26—C270.7 (4)
C1—C11—C12—C13176.5 (2)C25—C26—C27—C282.6 (4)
C11—C12—C13—C140.2 (3)C26—C27—C28—C291.5 (4)
C12—C13—C14—C151.1 (3)C27—C28—C29—C241.5 (3)
C12—C13—C14—Br1178.04 (17)C27—C28—C29—C20179.7 (2)
C13—C14—C15—C160.7 (3)C23—C24—C29—C28176.54 (19)
Br1—C14—C15—C16178.38 (17)C25—C24—C29—C283.3 (3)
C14—C15—C16—C110.5 (3)C23—C24—C29—C202.4 (3)
C12—C11—C16—C151.4 (3)C25—C24—C29—C20177.78 (19)
C1—C11—C16—C15176.0 (2)C21—C20—C29—C28175.28 (19)
O3—C3—C20—C21152.8 (2)C3—C20—C29—C2811.0 (3)
O2—C3—C20—C2124.1 (3)C21—C20—C29—C243.6 (3)
O3—C3—C20—C2921.0 (3)C3—C20—C29—C24170.16 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.413.240 (3)146
C23—H23···O3ii0.952.513.292 (3)140
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H13BrO3
Mr369.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.2888 (2), 14.9139 (6), 20.0275 (8)
β (°) 100.867 (2)
V3)1551.37 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.66
Crystal size (mm)0.35 × 0.16 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.656, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14937, 3848, 2712
Rint0.026
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.080, 1.02
No. of reflections3848
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.56

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.413.240 (3)146.2
C23—H23···O3ii0.952.513.292 (3)139.5
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

AMI thanks Professor Swapan Bhattacharya, Director of the National Institute of Technology Karnataka, Surathkal, India, for his encouragement and providing the research facilities. AMI also thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the 'Young Scientist' award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds