organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2-(2-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 15 April 2013; accepted 17 April 2013; online 24 April 2013)

In the title compound, C15H10BrFO2S, the 2-fluoro­phenyl ring makes a dihedral angle of 32.28 (6)° with the mean plane [r.m.s. deviation = 0.010 (1) Å] of the benzo­furan fragment. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds and Br⋯O contacts [3.0917 (13) Å], forming a three-dimensional network.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o104.], 2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1470.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrFO2S

  • Mr = 353.20

  • Triclinic, [P \overline 1]

  • a = 7.9877 (1) Å

  • b = 8.3523 (2) Å

  • c = 10.8908 (2) Å

  • α = 93.146 (1)°

  • β = 94.605 (1)°

  • γ = 112.150 (1)°

  • V = 667.93 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.24 mm−1

  • T = 173 K

  • 0.33 × 0.23 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.506, Tmax = 0.746

  • 12688 measured reflections

  • 3333 independent reflections

  • 3043 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.07

  • 3333 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.52 3.4633 (19) 173
C14—H14⋯O2ii 0.95 2.44 3.365 (2) 164
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing study of 5-bromo-3-methylsulfinyl-1-benzofuran derivatives containing 4-fluorophenyl (Choi et al., 2010) and 3-fluorophenyl (Choi et al., 2012) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.010 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 2-fluorophenyl ring and the mean plane of the benzofuran ring is 32.28 (6)°. In the crystal structure (Fig. 2), molecules are connected by weak C–H···O hydrogen bonds (Table 1) and by Br···O halogen-bondings between the bromine atom and the O atom of the SO unit [Br1···O2(-x+1, -y+1, -z) = 3.0917 (13) Å, C4–Br1···O2(-x+1, -y+1, -z) = 170.46 (6)°] (Politzer et al., 2007).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2012). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

3-Chloroperoxybenzoic acid (77%, 202 mg, 0.9 mmol) was added in small portions to a stirred solution of 5-bromo-2-(2-fluorophenyl)-3-methylsulfanyl-1-benzofuran (270 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane/ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 72%, m.p. 454-456 K; Rf = 0.49 (hexane/ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As part of our ongoing study of 5-bromo-3-methylsulfinyl-1-benzofuran derivatives containing 4-fluorophenyl (Choi et al., 2010) and 3-fluorophenyl (Choi et al., 2012) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.010 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 2-fluorophenyl ring and the mean plane of the benzofuran ring is 32.28 (6)°. In the crystal structure (Fig. 2), molecules are connected by weak C–H···O hydrogen bonds (Table 1) and by Br···O halogen-bondings between the bromine atom and the O atom of the SO unit [Br1···O2(-x+1, -y+1, -z) = 3.0917 (13) Å, C4–Br1···O2(-x+1, -y+1, -z) = 170.46 (6)°] (Politzer et al., 2007).

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2012). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O and Br···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z.]
5-Bromo-2-(2-fluorophenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C15H10BrFO2SZ = 2
Mr = 353.20F(000) = 352
Triclinic, P1Dx = 1.756 Mg m3
Hall symbol: -P 1Melting point = 454–456 K
a = 7.9877 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3523 (2) ÅCell parameters from 6958 reflections
c = 10.8908 (2) Åθ = 2.5–28.5°
α = 93.146 (1)°µ = 3.24 mm1
β = 94.605 (1)°T = 173 K
γ = 112.150 (1)°Block, colourless
V = 667.93 (2) Å30.33 × 0.23 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3333 independent reflections
Radiation source: rotating anode3043 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.037
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 1.9°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 119
Tmin = 0.506, Tmax = 0.746l = 1414
12688 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.068H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1931P]
where P = (Fo2 + 2Fc2)/3
3333 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C15H10BrFO2Sγ = 112.150 (1)°
Mr = 353.20V = 667.93 (2) Å3
Triclinic, P1Z = 2
a = 7.9877 (1) ÅMo Kα radiation
b = 8.3523 (2) ŵ = 3.24 mm1
c = 10.8908 (2) ÅT = 173 K
α = 93.146 (1)°0.33 × 0.23 × 0.16 mm
β = 94.605 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3333 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3043 reflections with I > 2σ(I)
Tmin = 0.506, Tmax = 0.746Rint = 0.037
12688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.07Δρmax = 0.54 e Å3
3333 reflectionsΔρmin = 0.47 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18802 (2)0.38853 (2)0.025225 (15)0.03036 (7)
S10.79138 (5)0.80682 (5)0.39342 (4)0.02209 (10)
F10.76843 (15)1.06406 (14)0.57145 (10)0.0342 (3)
O10.30062 (15)0.63538 (16)0.51032 (10)0.0230 (2)
O20.81362 (17)0.67220 (17)0.30799 (12)0.0288 (3)
C20.4102 (2)0.6196 (2)0.32587 (15)0.0204 (3)
C30.3923 (2)0.5656 (2)0.20019 (15)0.0226 (3)
H30.49400.59850.15400.027*
C40.2202 (2)0.4623 (2)0.14625 (15)0.0233 (3)
C50.0670 (2)0.4087 (2)0.21188 (17)0.0259 (4)
H50.04840.33580.17070.031*
C60.0840 (2)0.4617 (2)0.33594 (17)0.0263 (4)
H60.01770.42800.38230.032*
C70.2565 (2)0.5663 (2)0.38940 (15)0.0215 (3)
C80.4844 (2)0.7334 (2)0.52480 (15)0.0211 (3)
C90.5539 (2)0.8209 (2)0.64851 (16)0.0220 (3)
C10.5573 (2)0.7274 (2)0.41604 (15)0.0204 (3)
C100.6932 (2)0.9831 (2)0.66985 (16)0.0254 (3)
C110.7582 (3)1.0711 (3)0.78519 (18)0.0318 (4)
H110.85511.18190.79550.038*
C120.6776 (3)0.9923 (3)0.88561 (18)0.0351 (4)
H120.72051.04910.96660.042*
C130.5350 (3)0.8319 (3)0.86937 (17)0.0323 (4)
H130.47980.78040.93910.039*
C140.4722 (2)0.7457 (2)0.75239 (16)0.0253 (3)
H140.37400.63580.74210.030*
C150.7942 (3)0.9770 (3)0.2988 (2)0.0347 (4)
H15A0.91651.03460.27400.052*
H15B0.76071.06170.34590.052*
H15C0.70700.92750.22490.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02712 (10)0.04006 (13)0.02189 (10)0.01183 (8)0.00002 (7)0.00229 (7)
S10.01598 (18)0.0224 (2)0.0267 (2)0.00551 (15)0.00481 (15)0.00222 (16)
F10.0343 (6)0.0261 (6)0.0343 (6)0.0017 (4)0.0110 (5)0.0014 (5)
O10.0177 (5)0.0262 (6)0.0223 (6)0.0049 (5)0.0049 (4)0.0011 (5)
O20.0247 (6)0.0279 (7)0.0348 (7)0.0104 (5)0.0099 (5)0.0007 (5)
C20.0178 (7)0.0202 (8)0.0238 (8)0.0075 (6)0.0043 (6)0.0039 (6)
C30.0205 (7)0.0259 (9)0.0228 (8)0.0096 (6)0.0055 (6)0.0035 (6)
C40.0243 (8)0.0260 (9)0.0201 (8)0.0103 (7)0.0022 (6)0.0010 (6)
C50.0190 (7)0.0285 (9)0.0271 (9)0.0062 (6)0.0013 (6)0.0011 (7)
C60.0181 (7)0.0306 (9)0.0277 (9)0.0056 (7)0.0070 (6)0.0028 (7)
C70.0204 (7)0.0232 (8)0.0210 (8)0.0079 (6)0.0044 (6)0.0025 (6)
C80.0169 (7)0.0204 (8)0.0252 (8)0.0059 (6)0.0035 (6)0.0032 (6)
C90.0208 (7)0.0236 (8)0.0237 (8)0.0107 (6)0.0034 (6)0.0013 (6)
C10.0173 (7)0.0209 (8)0.0224 (8)0.0061 (6)0.0040 (6)0.0027 (6)
C100.0232 (8)0.0265 (9)0.0277 (9)0.0105 (7)0.0049 (6)0.0013 (7)
C110.0297 (9)0.0273 (10)0.0361 (10)0.0104 (7)0.0011 (7)0.0059 (8)
C120.0415 (11)0.0387 (11)0.0259 (9)0.0187 (9)0.0023 (8)0.0062 (8)
C130.0398 (10)0.0368 (11)0.0241 (9)0.0188 (8)0.0045 (7)0.0029 (7)
C140.0270 (8)0.0264 (9)0.0251 (8)0.0125 (7)0.0050 (7)0.0045 (7)
C150.0338 (10)0.0302 (10)0.0430 (11)0.0116 (8)0.0163 (8)0.0155 (8)
Geometric parameters (Å, º) top
Br1—C41.9001 (17)C6—H60.9500
Br1—O2i3.0917 (13)C8—C11.368 (2)
S1—O21.4912 (13)C8—C91.457 (2)
S1—C11.7756 (16)C9—C101.383 (2)
S1—C151.795 (2)C9—C141.410 (2)
F1—C101.358 (2)C10—C111.376 (3)
O1—C71.371 (2)C11—C121.384 (3)
O1—C81.3754 (19)C11—H110.9500
C2—C71.394 (2)C12—C131.384 (3)
C2—C31.396 (2)C12—H120.9500
C2—C11.441 (2)C13—C141.385 (3)
C3—C41.378 (2)C13—H130.9500
C3—H30.9500C14—H140.9500
C4—C51.404 (2)C15—H15A0.9800
C5—C61.378 (3)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
C6—C71.382 (2)
C4—Br1—O2i170.46 (6)C10—C9—C8122.76 (15)
O2—S1—C1105.91 (8)C14—C9—C8120.24 (15)
O2—S1—C15105.08 (9)C8—C1—C2106.87 (13)
C1—S1—C1597.98 (8)C8—C1—S1127.23 (13)
C7—O1—C8106.82 (12)C2—C1—S1125.23 (12)
C7—C2—C3119.08 (15)F1—C10—C11117.24 (16)
C7—C2—C1105.27 (14)F1—C10—C9118.65 (15)
C3—C2—C1135.64 (14)C11—C10—C9124.09 (17)
C4—C3—C2116.98 (14)C10—C11—C12117.63 (18)
C4—C3—H3121.5C10—C11—H11121.2
C2—C3—H3121.5C12—C11—H11121.2
C3—C4—C5123.17 (16)C13—C12—C11120.72 (18)
C3—C4—Br1118.57 (12)C13—C12—H12119.6
C5—C4—Br1118.26 (13)C11—C12—H12119.6
C6—C5—C4120.10 (16)C12—C13—C14120.58 (18)
C6—C5—H5120.0C12—C13—H13119.7
C4—C5—H5120.0C14—C13—H13119.7
C5—C6—C7116.52 (15)C13—C14—C9120.05 (17)
C5—C6—H6121.7C13—C14—H14120.0
C7—C6—H6121.7C9—C14—H14120.0
O1—C7—C6125.39 (14)S1—C15—H15A109.5
O1—C7—C2110.46 (14)S1—C15—H15B109.5
C6—C7—C2124.14 (16)H15A—C15—H15B109.5
C1—C8—O1110.58 (14)S1—C15—H15C109.5
C1—C8—C9135.33 (15)H15A—C15—H15C109.5
O1—C8—C9114.07 (13)H15B—C15—H15C109.5
C10—C9—C14116.90 (16)
C7—C2—C3—C40.5 (2)C9—C8—C1—C2177.68 (19)
C1—C2—C3—C4178.32 (19)O1—C8—C1—S1170.46 (12)
C2—C3—C4—C51.0 (3)C9—C8—C1—S111.4 (3)
C2—C3—C4—Br1178.97 (12)C7—C2—C1—C80.58 (19)
C3—C4—C5—C61.1 (3)C3—C2—C1—C8178.35 (19)
Br1—C4—C5—C6178.93 (14)C7—C2—C1—S1170.58 (13)
C4—C5—C6—C70.5 (3)C3—C2—C1—S110.5 (3)
C8—O1—C7—C6178.84 (18)O2—S1—C1—C8137.85 (16)
C8—O1—C7—C20.24 (19)C15—S1—C1—C8113.90 (17)
C5—C6—C7—O1178.44 (17)O2—S1—C1—C231.49 (17)
C5—C6—C7—C20.0 (3)C15—S1—C1—C276.75 (16)
C3—C2—C7—O1178.64 (15)C14—C9—C10—F1176.38 (15)
C1—C2—C7—O10.50 (19)C8—C9—C10—F10.1 (3)
C3—C2—C7—C60.0 (3)C14—C9—C10—C111.8 (3)
C1—C2—C7—C6179.13 (17)C8—C9—C10—C11178.11 (17)
C7—O1—C8—C10.15 (19)F1—C10—C11—C12177.61 (17)
C7—O1—C8—C9178.42 (14)C9—C10—C11—C120.6 (3)
C1—C8—C9—C1032.8 (3)C10—C11—C12—C130.9 (3)
O1—C8—C9—C10145.32 (16)C11—C12—C13—C141.0 (3)
C1—C8—C9—C14151.1 (2)C12—C13—C14—C90.2 (3)
O1—C8—C9—C1430.8 (2)C10—C9—C14—C131.6 (3)
O1—C8—C1—C20.46 (19)C8—C9—C14—C13177.98 (16)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1ii0.952.523.4633 (19)173
C14—H14···O2iii0.952.443.365 (2)164
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10BrFO2S
Mr353.20
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.9877 (1), 8.3523 (2), 10.8908 (2)
α, β, γ (°)93.146 (1), 94.605 (1), 112.150 (1)
V3)667.93 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.24
Crystal size (mm)0.33 × 0.23 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.506, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12688, 3333, 3043
Rint0.037
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.07
No. of reflections3333
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.47

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.523.4633 (19)172.6
C14—H14···O2ii0.952.443.365 (2)163.7
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1470.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds