organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-(4-Bromo­phenyl)-5-(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thia­zole

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 March 2013; accepted 11 April 2013; online 17 April 2013)

In the title compound, C24H17BrFN3S, the pyrazole ring is almost planar (r.m.s. deviation = 0.043 Å), with all but the perpendicular fluoro­benzene ring substituents [dihedral angle = 77.9 (3)°] being very approximately coplanar [dihedral angle with the 2-thienyl ring = 19.4 (3)° and with the bromo­benzene ring = 20.3 (3)°; dihedral angle between the 2-thienyl and attached phenyl ring = 11.0 (4)°], so that the mol­ecule has a T-shape. In the crystal, supra­molecular chains along the b-axis direction are sustained by C—H⋯S and C—Br⋯π inter­actions.

Related literature

For the biological activities and synthesis of pyrazolin-1-carbo­thio­amides, see: Abdel-Wahab et al. (2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]); Lv et al. (2011[Lv, P.-C., Li, D.-D., Li, Q.-S., Lu, X., Xiao, Z.-P. & Zhu, H.-L. (2011). Bioorg. Med. Chem. Lett. 21, 5374-5377.]). For a related structure, see: Abdel-Wahab et al. (2013[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o392-o393.]).

[Scheme 1]

Experimental

Crystal data
  • C24H17BrFN3S

  • Mr = 478.38

  • Monoclinic, P 21

  • a = 13.747 (2) Å

  • b = 5.6695 (13) Å

  • c = 14.280 (3) Å

  • β = 106.94 (2)°

  • V = 1064.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 295 K

  • 0.30 × 0.10 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.937, Tmax = 1.000

  • 7430 measured reflections

  • 4124 independent reflections

  • 1947 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.136

  • S = 0.95

  • 4124 reflections

  • 271 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1440 Friedel pairs

  • Flack parameter: −0.022 (15)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S1i 0.98 2.84 3.734 (7) 153
C22—Br1⋯Cg1ii 1.897 (6) 3.644 (3) 5.265 (7) 141.6 (3)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazolin-1-carbothioamide derivatives are known to possess biological activity (Abdel-Wahab et al., 2012; Lv et al., 2011) and in connection of on-going studies in this area, the title compound(I) was characterized.

In (I), the pyrazolyl ring is planar with a r.m.s. deviation of 0.043 Å; maximum deviations: 0.035 (7) Å [C5] and -0.034 (6) Å [C4]. The adjacent 2-thienyl ring is inclined [dihedral angle = 19.4 (3)°] as is the bromo-benzene ring [dihedral angle = 20.3 (3)°] but the fluoro-benzene ring is approximately perpendicular [77.9 (3)°]. Finally, a twist exists between the 2-thienyl and attached phenyl ring [11.0 (4)°]. The structure resembles the T-shapes observed for the two independent molecules of the recently determined closely related derivative where the bromo-benzene substituent in (I) is now a p-tolyl group (Abdel-Wahab et al., 2013).

Supramolecular chains along the b axis are formed in the crystal packing by C—H···S and C—Br···π interactions, Fig. 2 and Table 1. These stack in the crystal structure with no specific interactions between them, Fig. 3.

Related literature top

For the biological activities and synthesis of pyrazolin-1-carbothioamides, see: Abdel-Wahab et al. (2012); Lv et al. (2011). For a related structure, see: Abdel-Wahab et al. (2013).

Experimental top

The title compound was prepared according to the reported method (Lv et al., 2011). Yellow crystals were obtained from its ethanol solution by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Uequiv(C).

Structure description top

Pyrazolin-1-carbothioamide derivatives are known to possess biological activity (Abdel-Wahab et al., 2012; Lv et al., 2011) and in connection of on-going studies in this area, the title compound(I) was characterized.

In (I), the pyrazolyl ring is planar with a r.m.s. deviation of 0.043 Å; maximum deviations: 0.035 (7) Å [C5] and -0.034 (6) Å [C4]. The adjacent 2-thienyl ring is inclined [dihedral angle = 19.4 (3)°] as is the bromo-benzene ring [dihedral angle = 20.3 (3)°] but the fluoro-benzene ring is approximately perpendicular [77.9 (3)°]. Finally, a twist exists between the 2-thienyl and attached phenyl ring [11.0 (4)°]. The structure resembles the T-shapes observed for the two independent molecules of the recently determined closely related derivative where the bromo-benzene substituent in (I) is now a p-tolyl group (Abdel-Wahab et al., 2013).

Supramolecular chains along the b axis are formed in the crystal packing by C—H···S and C—Br···π interactions, Fig. 2 and Table 1. These stack in the crystal structure with no specific interactions between them, Fig. 3.

For the biological activities and synthesis of pyrazolin-1-carbothioamides, see: Abdel-Wahab et al. (2012); Lv et al. (2011). For a related structure, see: Abdel-Wahab et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain along the b axis in (I) sustained by C—H···S and C—Br···.π interactions, shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view of the crystal packing in projection down the b axis. One supramolecular chain has been highlighted in space-filling mode. The C—H···S and C—Br···.π interactions are shown as orange and purple dashed lines, respectively.
2-[3-(4-Bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thiazole top
Crystal data top
C24H17BrFN3SF(000) = 484
Mr = 478.38Dx = 1.492 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1208 reflections
a = 13.747 (2) Åθ = 2.9–27.5°
b = 5.6695 (13) ŵ = 2.05 mm1
c = 14.280 (3) ÅT = 295 K
β = 106.94 (2)°Plate, yellow
V = 1064.7 (4) Å30.30 × 0.10 × 0.02 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4124 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1947 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.052
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 77
Tmin = 0.937, Tmax = 1.000l = 1718
7430 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
4124 reflectionsΔρmax = 0.26 e Å3
271 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 1440 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (15)
Crystal data top
C24H17BrFN3SV = 1064.7 (4) Å3
Mr = 478.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.747 (2) ŵ = 2.05 mm1
b = 5.6695 (13) ÅT = 295 K
c = 14.280 (3) Å0.30 × 0.10 × 0.02 mm
β = 106.94 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4124 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1947 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 1.000Rint = 0.052
7430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.136Δρmax = 0.26 e Å3
S = 0.95Δρmin = 0.32 e Å3
4124 reflectionsAbsolute structure: Flack (1983), 1440 Friedel pairs
271 parametersAbsolute structure parameter: 0.022 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.80996 (5)0.5031 (2)1.12976 (5)0.1040 (4)
S10.42126 (13)0.7866 (3)0.50255 (13)0.0748 (5)
N10.2837 (3)0.4642 (11)0.4419 (4)0.0630 (14)
N30.4367 (3)0.5425 (12)0.6880 (4)0.0660 (14)
F10.0906 (3)0.3496 (8)0.6421 (3)0.1023 (14)
N20.3571 (4)0.4670 (11)0.6112 (4)0.0710 (15)
C10.3593 (4)0.7686 (14)0.3793 (4)0.0702 (18)
H10.37150.86890.33240.084*
C20.2906 (4)0.5902 (12)0.3589 (5)0.0646 (18)
C30.3476 (4)0.5541 (12)0.5189 (5)0.0594 (16)
C40.3109 (4)0.2426 (12)0.6306 (4)0.0629 (17)
H40.31470.12330.58220.075*
C50.3835 (5)0.1799 (13)0.7310 (5)0.075 (2)
H5A0.34650.15570.77860.090*
H5B0.42180.03830.72730.090*
C60.4522 (4)0.3888 (12)0.7575 (5)0.0614 (17)
C70.2229 (4)0.5194 (15)0.2635 (4)0.0657 (16)
C80.1643 (5)0.3151 (14)0.2503 (5)0.077 (2)
H80.16930.21520.30320.092*
C90.0991 (5)0.2595 (18)0.1599 (6)0.090 (2)
H90.06080.12200.15270.108*
C100.0896 (6)0.4009 (16)0.0809 (6)0.089 (3)
H100.04480.36050.02050.107*
C110.1458 (6)0.6017 (16)0.0904 (6)0.086 (2)
H110.13990.69900.03660.103*
C120.2119 (5)0.6601 (13)0.1811 (5)0.073 (2)
H120.25010.79760.18700.088*
C130.2020 (4)0.2804 (12)0.6295 (4)0.0513 (14)
C140.1304 (4)0.1072 (11)0.5906 (4)0.0625 (17)
H140.14880.02510.56120.075*
C150.0310 (5)0.1304 (13)0.5955 (5)0.0724 (19)
H150.01760.01570.56910.087*
C160.0072 (5)0.3227 (15)0.6393 (5)0.0688 (19)
C170.0750 (5)0.4978 (15)0.6783 (4)0.0709 (16)
H170.05520.62990.70670.085*
C180.1738 (5)0.4744 (15)0.6745 (4)0.0679 (17)
H180.22170.58950.70230.081*
C190.5332 (5)0.4234 (12)0.8500 (5)0.0619 (18)
C200.5968 (5)0.6173 (13)0.8638 (5)0.074 (2)
H200.58490.73310.81560.089*
C210.6774 (5)0.6428 (13)0.9471 (5)0.077 (2)
H210.71960.77410.95480.092*
C220.6949 (5)0.4748 (17)1.0181 (4)0.0730 (19)
C230.6317 (5)0.2821 (15)1.0095 (5)0.076 (2)
H230.64310.17031.05920.091*
C240.5504 (5)0.2581 (15)0.9248 (5)0.0751 (19)
H240.50690.12950.91830.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0919 (5)0.1352 (8)0.0810 (5)0.0014 (6)0.0188 (4)0.0233 (6)
S10.0741 (10)0.0648 (12)0.0979 (12)0.0075 (10)0.0447 (10)0.0009 (10)
N10.052 (3)0.063 (4)0.081 (3)0.003 (3)0.031 (3)0.019 (3)
N30.055 (3)0.068 (4)0.080 (3)0.002 (3)0.028 (3)0.002 (4)
F10.070 (2)0.097 (3)0.157 (4)0.005 (2)0.060 (3)0.005 (3)
N20.065 (3)0.068 (4)0.081 (3)0.010 (3)0.024 (3)0.017 (3)
C10.076 (4)0.067 (5)0.079 (4)0.009 (4)0.040 (4)0.006 (4)
C20.055 (3)0.059 (5)0.090 (5)0.001 (3)0.036 (4)0.001 (4)
C30.048 (3)0.058 (5)0.081 (4)0.005 (3)0.032 (3)0.005 (4)
C40.068 (4)0.048 (4)0.077 (4)0.006 (3)0.028 (4)0.005 (3)
C50.063 (4)0.063 (5)0.100 (5)0.000 (4)0.027 (4)0.013 (4)
C60.052 (4)0.055 (4)0.080 (4)0.002 (3)0.024 (3)0.006 (4)
C70.060 (3)0.063 (5)0.083 (4)0.005 (4)0.035 (3)0.014 (5)
C80.082 (4)0.063 (5)0.092 (5)0.008 (4)0.036 (4)0.010 (4)
C90.072 (4)0.100 (7)0.094 (6)0.013 (5)0.020 (4)0.007 (5)
C100.073 (5)0.107 (8)0.087 (5)0.013 (5)0.024 (4)0.023 (5)
C110.080 (5)0.091 (7)0.094 (6)0.005 (5)0.036 (5)0.028 (5)
C120.070 (4)0.067 (5)0.088 (5)0.001 (4)0.031 (4)0.016 (4)
C130.050 (3)0.052 (4)0.052 (3)0.007 (3)0.014 (3)0.007 (3)
C140.065 (4)0.048 (4)0.071 (4)0.001 (3)0.015 (3)0.001 (3)
C150.066 (4)0.062 (5)0.091 (5)0.022 (4)0.026 (4)0.008 (4)
C160.066 (4)0.074 (6)0.074 (4)0.007 (4)0.032 (4)0.010 (4)
C170.081 (4)0.051 (4)0.085 (4)0.002 (5)0.031 (4)0.007 (4)
C180.067 (4)0.059 (5)0.083 (4)0.004 (4)0.029 (3)0.006 (4)
C190.056 (4)0.056 (5)0.081 (4)0.001 (3)0.031 (3)0.009 (4)
C200.080 (5)0.062 (5)0.084 (5)0.008 (4)0.028 (4)0.006 (4)
C210.067 (4)0.064 (5)0.098 (5)0.006 (4)0.022 (4)0.018 (5)
C220.066 (4)0.086 (6)0.074 (4)0.015 (5)0.031 (3)0.003 (5)
C230.080 (4)0.079 (5)0.074 (5)0.002 (5)0.030 (4)0.011 (4)
C240.076 (4)0.069 (5)0.085 (5)0.001 (4)0.030 (4)0.001 (4)
Geometric parameters (Å, º) top
Br1—C221.897 (6)C10—C111.360 (10)
S1—C31.719 (7)C10—H100.9300
S1—C11.720 (6)C11—C121.388 (9)
N1—C31.295 (7)C11—H110.9300
N1—C21.411 (7)C12—H120.9300
N3—C61.290 (8)C13—C181.384 (9)
N3—N21.373 (6)C13—C141.386 (8)
F1—C161.365 (7)C14—C151.395 (8)
N2—C31.378 (7)C14—H140.9300
N2—C41.483 (8)C15—C161.344 (9)
C1—C21.357 (8)C15—H150.9300
C1—H10.9300C16—C171.364 (10)
C2—C71.464 (8)C17—C181.382 (8)
C4—C131.508 (7)C17—H170.9300
C4—C51.531 (8)C18—H180.9300
C4—H40.9800C19—C241.388 (10)
C5—C61.493 (8)C19—C201.383 (9)
C5—H5A0.9700C20—C211.377 (9)
C5—H5B0.9700C20—H200.9300
C6—C191.472 (9)C21—C221.361 (10)
C7—C121.392 (8)C21—H210.9300
C7—C81.392 (10)C22—C231.379 (11)
C8—C91.377 (9)C23—C241.394 (8)
C8—H80.9300C23—H230.9300
C9—C101.358 (10)C24—H240.9300
C9—H90.9300
C3—S1—C187.6 (3)C10—C11—C12119.5 (8)
C3—N1—C2108.7 (5)C10—C11—H11120.3
C6—N3—N2108.5 (6)C12—C11—H11120.3
N3—N2—C3118.9 (5)C11—C12—C7122.1 (7)
N3—N2—C4113.8 (5)C11—C12—H12118.9
C3—N2—C4124.1 (6)C7—C12—H12118.9
C2—C1—S1111.7 (5)C18—C13—C14119.2 (5)
C2—C1—H1124.1C18—C13—C4121.2 (6)
S1—C1—H1124.1C14—C13—C4119.4 (6)
C1—C2—N1114.2 (6)C13—C14—C15120.3 (6)
C1—C2—C7128.2 (6)C13—C14—H14119.9
N1—C2—C7117.6 (6)C15—C14—H14119.9
N1—C3—N2121.5 (6)C16—C15—C14118.4 (6)
N1—C3—S1117.8 (5)C16—C15—H15120.8
N2—C3—S1120.6 (5)C14—C15—H15120.8
N2—C4—C13110.7 (5)C15—C16—F1118.7 (7)
N2—C4—C5100.2 (5)C15—C16—C17123.3 (6)
C13—C4—C5114.7 (5)F1—C16—C17118.0 (7)
N2—C4—H4110.3C16—C17—C18118.5 (7)
C13—C4—H4110.3C16—C17—H17120.8
C5—C4—H4110.3C18—C17—H17120.8
C6—C5—C4104.1 (5)C13—C18—C17120.4 (7)
C6—C5—H5A110.9C13—C18—H18119.8
C4—C5—H5A110.9C17—C18—H18119.8
C6—C5—H5B110.9C24—C19—C20117.9 (6)
C4—C5—H5B110.9C24—C19—C6121.0 (6)
H5A—C5—H5B108.9C20—C19—C6121.0 (6)
N3—C6—C19120.8 (6)C21—C20—C19121.5 (7)
N3—C6—C5113.0 (5)C21—C20—H20119.2
C19—C6—C5126.1 (6)C19—C20—H20119.2
C12—C7—C8116.5 (6)C22—C21—C20119.6 (7)
C12—C7—C2120.8 (7)C22—C21—H21120.2
C8—C7—C2122.6 (6)C20—C21—H21120.2
C9—C8—C7120.7 (7)C21—C22—C23121.2 (6)
C9—C8—H8119.7C21—C22—Br1119.4 (6)
C7—C8—H8119.7C23—C22—Br1119.5 (6)
C10—C9—C8121.5 (8)C22—C23—C24118.7 (7)
C10—C9—H9119.2C22—C23—H23120.6
C8—C9—H9119.2C24—C23—H23120.6
C9—C10—C11119.7 (8)C19—C24—C23121.0 (7)
C9—C10—H10120.1C19—C24—H24119.5
C11—C10—H10120.1C23—C24—H24119.5
C6—N3—N2—C3158.5 (6)C9—C10—C11—C120.3 (11)
C6—N3—N2—C42.0 (7)C10—C11—C12—C70.1 (11)
C3—S1—C1—C21.3 (5)C8—C7—C12—C110.4 (10)
S1—C1—C2—N11.2 (7)C2—C7—C12—C11177.8 (6)
S1—C1—C2—C7179.6 (5)N2—C4—C13—C1842.9 (8)
C3—N1—C2—C10.3 (7)C5—C4—C13—C1869.5 (8)
C3—N1—C2—C7178.9 (5)N2—C4—C13—C14143.0 (6)
C2—N1—C3—N2179.6 (5)C5—C4—C13—C14104.5 (6)
C2—N1—C3—S10.7 (7)C18—C13—C14—C151.0 (9)
N3—N2—C3—N1169.5 (6)C4—C13—C14—C15175.2 (6)
C4—N2—C3—N111.1 (9)C13—C14—C15—C160.6 (9)
N3—N2—C3—S110.2 (8)C14—C15—C16—F1178.3 (6)
C4—N2—C3—S1168.5 (4)C14—C15—C16—C170.8 (11)
C1—S1—C3—N11.2 (5)C15—C16—C17—C181.5 (10)
C1—S1—C3—N2179.1 (6)F1—C16—C17—C18179.0 (6)
N3—N2—C4—C13116.3 (5)C14—C13—C18—C171.6 (9)
C3—N2—C4—C1384.3 (7)C4—C13—C18—C17175.7 (6)
N3—N2—C4—C55.1 (6)C16—C17—C18—C131.9 (9)
C3—N2—C4—C5154.3 (6)N3—C6—C19—C24179.8 (6)
N2—C4—C5—C65.8 (6)C5—C6—C19—C242.2 (10)
C13—C4—C5—C6112.8 (6)N3—C6—C19—C202.1 (9)
N2—N3—C6—C19179.7 (5)C5—C6—C19—C20175.5 (6)
N2—N3—C6—C52.4 (7)C24—C19—C20—C212.5 (10)
C4—C5—C6—N35.5 (7)C6—C19—C20—C21175.2 (6)
C4—C5—C6—C19176.7 (6)C19—C20—C21—C220.4 (10)
C1—C2—C7—C1210.0 (10)C20—C21—C22—C231.8 (11)
N1—C2—C7—C12168.3 (6)C20—C21—C22—Br1176.9 (5)
C1—C2—C7—C8172.0 (6)C21—C22—C23—C241.8 (10)
N1—C2—C7—C89.7 (9)Br1—C22—C23—C24176.9 (5)
C12—C7—C8—C90.3 (10)C20—C19—C24—C232.5 (10)
C2—C7—C8—C9177.8 (6)C6—C19—C24—C23175.2 (6)
C7—C8—C9—C100.1 (11)C22—C23—C24—C190.4 (10)
C8—C9—C10—C110.4 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···S1i0.982.843.734 (7)153
C22—Br1···Cg1ii1.90 (1)3.64 (1)5.265 (7)142 (1)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC24H17BrFN3S
Mr478.38
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)13.747 (2), 5.6695 (13), 14.280 (3)
β (°) 106.94 (2)
V3)1064.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.30 × 0.10 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.937, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7430, 4124, 1947
Rint0.052
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.136, 0.95
No. of reflections4124
No. of parameters271
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.32
Absolute structureFlack (1983), 1440 Friedel pairs
Absolute structure parameter0.022 (15)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···S1i0.982.843.734 (7)153
C22—Br1···Cg1ii1.897 (6)3.644 (3)5.265 (7)141.6 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+2.
 

Footnotes

Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o392–o393.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLv, P.-C., Li, D.-D., Li, Q.-S., Lu, X., Xiao, Z.-P. & Zhu, H.-L. (2011). Bioorg. Med. Chem. Lett. 21, 5374–5377.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds