organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(Propane-1,3-di­yl)bis­­(2-amino­benzamide)

aDepartment of Chemistry, Kakatiya University, Warangal 506 009, India
*Correspondence e-mail: sj_swamy@yahoo.com

(Received 28 January 2013; accepted 1 April 2013; online 10 April 2013)

The title compound, C17H20N4O2, was prepared by the reaction between 1,3-di­amino­propane and isatoic anhydride in water. The carbonyl O atoms are involved in intra­molecular hydrogen bonding with the amine group and inter­molecular hydrogen bonding with an amide H atom of an adjacent mol­ecule. In the crystal, pairs of N—H⋯O hydrogen bonds link mol­ecules into inversion dimers and further N—H⋯O hydrogen bonds link the dimers into ladder-like chains along the a axis.

Related literature

For related mol­ecules and syntheses, see: Clark & Wagner (1944[Clark, R. H. & Wagner, E. C. (1944). J. Org. Chem. 09, 55-67.]); Swamy & Kumar (1996[Swamy, S. J. & Kumar, B. K. (1996). Indian J. Chem. Sect. A, 35, 489-493.]); Swamy et al. (2003[Swamy, S. J., Veerapratap, B., Nagaraju, D., Suresh, K. & Someshwar, P. (2003). Tetrahedron, 59, 10093-10096.], 2004[Swamy, S. J., Suresh, K., Someshwar, P. & Nagaraju, D. (2004). Synth. Commun. 34, 1847-1853.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N4O2

  • Mr = 312.37

  • Triclinic, [P \overline 1]

  • a = 5.6590 (7) Å

  • b = 9.8279 (12) Å

  • c = 14.6732 (18) Å

  • α = 95.258 (2)°

  • β = 95.263 (2)°

  • γ = 98.888 (2)°

  • V = 798.21 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.32 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.983

  • 6168 measured reflections

  • 3048 independent reflections

  • 2539 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.06

  • 3048 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯O2 0.87 (2) 2.10 (2) 2.711 (3) 126.6 (18)
N1—H2N1⋯O1 0.89 (2) 2.20 (2) 2.851 (2) 130.2 (19)
N3—H3N3⋯O1i 0.902 (19) 2.055 (19) 2.9286 (16) 162.8 (15)
N2—H2N2⋯O2ii 0.882 (17) 1.942 (18) 2.7872 (17) 160.3 (16)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The reactions of isatoic anhydride with amines have been very interesting and yield molecules with amine and amide functional groups (Clark et al., 1944). We have adopted the reaction of isatoic anhydride with different diamines to obtain a good number of organic molecules having two amine and two amide groups (Swamy & Kumar, 1996; Swamy et al., 2003; 2004). The N,N'–propyl–bis–(2–aminobenzamide) I was prepared by the reaction between isatoic anhydride and 1,3–diaminopropane (Swamy & Kumar, 1996). We recrystallized I from water/methanol mixture to obtain block shaped single crystals. Herein we report the molecular and crystal structures of the title compound. The molecular structure of I is shown in Fig. 1 and the packing diagram with inter– and intra–molecular H–bonds resulting in supramolecular assembly and the formation of ladder like chain is shown in Fig. 2. The carbonyl oxygen is involved in the formation of intramolecular H–bond with amine hydrogen and intermolecular H–bond with amide hydrogen of the adjacent molecule. These intermolecular H–bonds lead to the formation of ladder like chain as shown in Fig. 2.

Related literature top

For related molecules and syntheses, see: Clark & Wagner (1944); Swamy & Kumar (1996); Swamy et al. (2003, 2004).

Experimental top

The title compound was synthesized by adding 1.15 mg of 1,3–diamminopropane (12.25 mmol) in 15 ml water to 4.0 mg of isatoic anhydride (24.5 mmol) with continuous stirring. Effervescence was observed while warming the reaction mixture on water bath that ceased after one hour. Microcrystalline solid product was obtained on allowing the mixture to stand overnight. The product was purified and recrystallized from methanol / water mixture to obtain block shaped crystals, m.p. 341 K.

Refinement top

The H atoms based on C atoms were positioned geometrically with C—H = 0.93Å for aromatic H and C—H = 0.97Å for methylene H, refined using a riding model with Uiso(H) = 1.2Ueq(C). The H atoms based on N atoms were found from difference Fourier map and refined freely.

Structure description top

The reactions of isatoic anhydride with amines have been very interesting and yield molecules with amine and amide functional groups (Clark et al., 1944). We have adopted the reaction of isatoic anhydride with different diamines to obtain a good number of organic molecules having two amine and two amide groups (Swamy & Kumar, 1996; Swamy et al., 2003; 2004). The N,N'–propyl–bis–(2–aminobenzamide) I was prepared by the reaction between isatoic anhydride and 1,3–diaminopropane (Swamy & Kumar, 1996). We recrystallized I from water/methanol mixture to obtain block shaped single crystals. Herein we report the molecular and crystal structures of the title compound. The molecular structure of I is shown in Fig. 1 and the packing diagram with inter– and intra–molecular H–bonds resulting in supramolecular assembly and the formation of ladder like chain is shown in Fig. 2. The carbonyl oxygen is involved in the formation of intramolecular H–bond with amine hydrogen and intermolecular H–bond with amide hydrogen of the adjacent molecule. These intermolecular H–bonds lead to the formation of ladder like chain as shown in Fig. 2.

For related molecules and syntheses, see: Clark & Wagner (1944); Swamy & Kumar (1996); Swamy et al. (2003, 2004).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The formation of centrosymmetrical dimers by classical H bonds (N—H···O type) in crystal structure of title compound - dotted lines. Intramolecular H bonds are indicated by dotted lines too. Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.
N,N'-(Propane-1,3-diyl)bis(2-aminobenzamide) top
Crystal data top
C17H20N4O2Z = 2
Mr = 312.37F(000) = 332
Triclinic, P1Dx = 1.300 Mg m3
Hall symbol: -P 1Melting point: 341 K
a = 5.6590 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8279 (12) ÅCell parameters from 3048 reflections
c = 14.6732 (18) Åθ = 1.4–25.9°
α = 95.258 (2)°µ = 0.09 mm1
β = 95.263 (2)°T = 298 K
γ = 98.888 (2)°Block, colourless
V = 798.21 (17) Å30.32 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3048 independent reflections
Radiation source: fine-focus sealed tube2539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.9°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.972, Tmax = 0.983k = 1111
6168 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.080P]
where P = (Fo2 + 2Fc2)/3
3048 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H20N4O2γ = 98.888 (2)°
Mr = 312.37V = 798.21 (17) Å3
Triclinic, P1Z = 2
a = 5.6590 (7) ÅMo Kα radiation
b = 9.8279 (12) ŵ = 0.09 mm1
c = 14.6732 (18) ÅT = 298 K
α = 95.258 (2)°0.32 × 0.22 × 0.20 mm
β = 95.263 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3048 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2539 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.026
6168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
3048 reflectionsΔρmin = 0.17 e Å3
232 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.4816 (3)0.29498 (16)0.43832 (11)0.0499 (4)
H10A0.41760.37760.42440.060*
H10B0.58460.31660.49610.060*
N41.1893 (4)0.48736 (19)0.26329 (15)0.0742 (5)
C80.1199 (3)0.21672 (16)0.52086 (10)0.0429 (4)
H8A0.04530.29470.50410.052*
H8B0.00760.13880.52180.052*
C90.2779 (3)0.18047 (15)0.44755 (10)0.0422 (4)
H9A0.34420.09870.46190.051*
H9B0.17930.15770.38890.051*
N10.7649 (3)0.08392 (17)0.74199 (12)0.0577 (4)
O10.3165 (2)0.03649 (10)0.62896 (7)0.0508 (3)
N30.6215 (2)0.25310 (13)0.36539 (9)0.0447 (3)
N20.2451 (2)0.25147 (13)0.61277 (8)0.0397 (3)
C70.3267 (3)0.15789 (14)0.66164 (10)0.0371 (3)
C10.6397 (3)0.16352 (15)0.79517 (10)0.0421 (4)
C60.4305 (3)0.20735 (14)0.75834 (10)0.0373 (3)
C50.3172 (3)0.29381 (15)0.81381 (10)0.0446 (4)
H50.17890.32350.78930.053*
C130.7777 (3)0.16008 (16)0.19449 (11)0.0462 (4)
H130.63360.11220.20920.055*
O20.7750 (3)0.46872 (11)0.34395 (10)0.0759 (5)
C110.7537 (3)0.34344 (15)0.32101 (11)0.0434 (4)
C120.8745 (3)0.28706 (15)0.24415 (10)0.0406 (4)
C20.7255 (3)0.20792 (18)0.88686 (11)0.0534 (4)
H20.86420.17970.91230.064*
C171.0877 (3)0.36121 (17)0.21943 (12)0.0499 (4)
C40.4052 (3)0.33631 (18)0.90419 (11)0.0552 (4)
H40.32740.39410.94040.066*
C30.6096 (3)0.2922 (2)0.94020 (11)0.0584 (5)
H30.66960.31991.00130.070*
C140.8889 (4)0.10349 (19)0.12450 (12)0.0585 (5)
H140.82070.01870.09200.070*
C151.1026 (4)0.1739 (2)0.10312 (13)0.0661 (5)
H151.18160.13530.05690.079*
C161.1994 (3)0.2992 (2)0.14894 (13)0.0632 (5)
H161.34370.34520.13310.076*
H2N41.307 (5)0.526 (3)0.2455 (16)0.090 (8)*
H1N41.121 (4)0.530 (2)0.3056 (14)0.067 (7)*
H1N10.874 (4)0.051 (2)0.7690 (15)0.075 (7)*
H2N10.691 (4)0.048 (2)0.6872 (15)0.068 (6)*
H3N30.635 (3)0.163 (2)0.3542 (11)0.056 (5)*
H2N20.264 (3)0.3384 (18)0.6371 (11)0.050 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.0631 (10)0.0392 (8)0.0490 (9)0.0105 (7)0.0169 (8)0.0008 (7)
N40.0630 (11)0.0602 (11)0.0935 (14)0.0136 (9)0.0212 (10)0.0051 (10)
C80.0455 (9)0.0428 (8)0.0415 (8)0.0113 (7)0.0038 (7)0.0034 (7)
C90.0510 (9)0.0395 (8)0.0362 (8)0.0107 (7)0.0028 (7)0.0013 (6)
N10.0526 (9)0.0666 (10)0.0551 (10)0.0235 (8)0.0004 (8)0.0054 (8)
O10.0739 (8)0.0280 (6)0.0488 (6)0.0120 (5)0.0041 (6)0.0009 (5)
N30.0601 (8)0.0292 (7)0.0478 (8)0.0098 (6)0.0173 (6)0.0040 (6)
N20.0539 (8)0.0288 (7)0.0372 (7)0.0100 (5)0.0065 (6)0.0007 (5)
C70.0422 (8)0.0288 (7)0.0402 (8)0.0040 (6)0.0072 (6)0.0035 (6)
C10.0444 (8)0.0385 (8)0.0424 (8)0.0010 (6)0.0075 (7)0.0054 (6)
C60.0434 (8)0.0305 (7)0.0372 (8)0.0015 (6)0.0067 (6)0.0048 (6)
C50.0493 (9)0.0413 (8)0.0434 (9)0.0065 (7)0.0099 (7)0.0033 (7)
C130.0529 (9)0.0410 (9)0.0457 (9)0.0079 (7)0.0072 (7)0.0075 (7)
O20.0973 (10)0.0261 (6)0.1097 (11)0.0086 (6)0.0463 (9)0.0033 (6)
C110.0495 (9)0.0292 (8)0.0534 (9)0.0086 (6)0.0085 (7)0.0074 (6)
C120.0451 (8)0.0365 (8)0.0434 (8)0.0102 (6)0.0063 (7)0.0133 (6)
C20.0526 (10)0.0605 (11)0.0450 (9)0.0072 (8)0.0010 (8)0.0050 (8)
C170.0474 (9)0.0507 (10)0.0534 (10)0.0066 (7)0.0048 (8)0.0184 (8)
C40.0664 (11)0.0561 (10)0.0430 (9)0.0097 (9)0.0149 (8)0.0043 (8)
C30.0677 (12)0.0676 (12)0.0351 (8)0.0025 (9)0.0022 (8)0.0024 (8)
C140.0770 (13)0.0562 (11)0.0436 (9)0.0165 (9)0.0082 (9)0.0017 (8)
C150.0751 (13)0.0834 (15)0.0485 (10)0.0289 (11)0.0214 (9)0.0112 (10)
C160.0525 (11)0.0830 (14)0.0604 (11)0.0139 (10)0.0203 (9)0.0233 (10)
Geometric parameters (Å, º) top
C10—N31.4548 (19)C1—C21.394 (2)
C10—C91.507 (2)C1—C61.401 (2)
C10—H10A0.9700C6—C51.391 (2)
C10—H10B0.9700C5—C41.376 (2)
N4—C171.359 (2)C5—H50.9300
N4—H2N40.79 (3)C13—C141.372 (2)
N4—H1N40.87 (2)C13—C121.392 (2)
C8—N21.4502 (19)C13—H130.9300
C8—C91.512 (2)O2—C111.2306 (18)
C8—H8A0.9700C11—C121.480 (2)
C8—H8B0.9700C12—C171.406 (2)
C9—H9A0.9700C2—C31.368 (2)
C9—H9B0.9700C2—H20.9300
N1—C11.372 (2)C17—C161.401 (2)
N1—H1N10.82 (2)C4—C31.375 (3)
N1—H2N10.89 (2)C4—H40.9300
O1—C71.2351 (17)C3—H30.9300
N3—C111.3275 (19)C14—C151.375 (3)
N3—H3N30.900 (18)C14—H140.9300
N2—C71.3283 (18)C15—C161.357 (3)
N2—H2N20.882 (17)C15—H150.9300
C7—C61.492 (2)C16—H160.9300
N3—C10—C9110.24 (13)C5—C6—C1119.20 (14)
N3—C10—H10A109.6C5—C6—C7120.55 (13)
C9—C10—H10A109.6C1—C6—C7120.22 (13)
N3—C10—H10B109.6C4—C5—C6121.39 (16)
C9—C10—H10B109.6C4—C5—H5119.3
H10A—C10—H10B108.1C6—C5—H5119.3
C17—N4—H2N4118.3 (18)C14—C13—C12121.85 (16)
C17—N4—H1N4122.2 (14)C14—C13—H13119.1
H2N4—N4—H1N4119 (2)C12—C13—H13119.1
N2—C8—C9114.52 (12)O2—C11—N3120.76 (15)
N2—C8—H8A108.6O2—C11—C12121.93 (14)
C9—C8—H8A108.6N3—C11—C12117.30 (13)
N2—C8—H8B108.6C13—C12—C17118.79 (15)
C9—C8—H8B108.6C13—C12—C11120.54 (13)
H8A—C8—H8B107.6C17—C12—C11120.67 (14)
C10—C9—C8113.67 (12)C3—C2—C1121.29 (16)
C10—C9—H9A108.8C3—C2—H2119.4
C8—C9—H9A108.8C1—C2—H2119.4
C10—C9—H9B108.8N4—C17—C16120.07 (17)
C8—C9—H9B108.8N4—C17—C12122.05 (17)
H9A—C9—H9B107.7C16—C17—C12117.85 (16)
C1—N1—H1N1116.9 (15)C3—C4—C5119.17 (16)
C1—N1—H2N1116.2 (13)C3—C4—H4120.4
H1N1—N1—H2N1123 (2)C5—C4—H4120.4
C11—N3—C10122.79 (13)C2—C3—C4120.57 (16)
C11—N3—H3N3117.6 (11)C2—C3—H3119.7
C10—N3—H3N3119.2 (11)C4—C3—H3119.7
C7—N2—C8122.81 (13)C13—C14—C15119.07 (18)
C7—N2—H2N2119.3 (11)C13—C14—H14120.5
C8—N2—H2N2117.9 (11)C15—C14—H14120.5
O1—C7—N2121.85 (14)C16—C15—C14120.55 (17)
O1—C7—C6121.82 (13)C16—C15—H15119.7
N2—C7—C6116.33 (12)C14—C15—H15119.7
N1—C1—C2120.17 (16)C15—C16—C17121.79 (17)
N1—C1—C6121.40 (15)C15—C16—H16119.1
C2—C1—C6118.37 (15)C17—C16—H16119.1
N3—C10—C9—C8178.84 (12)C14—C13—C12—C11178.25 (14)
N2—C8—C9—C1059.28 (17)O2—C11—C12—C13152.89 (16)
C9—C10—N3—C11156.19 (15)N3—C11—C12—C1327.7 (2)
C9—C8—N2—C771.30 (18)O2—C11—C12—C1726.6 (2)
C8—N2—C7—O15.5 (2)N3—C11—C12—C17152.90 (15)
C8—N2—C7—C6174.30 (12)N1—C1—C2—C3177.18 (16)
N1—C1—C6—C5176.68 (14)C6—C1—C2—C30.0 (2)
C2—C1—C6—C50.5 (2)C13—C12—C17—N4178.33 (16)
N1—C1—C6—C75.3 (2)C11—C12—C17—N41.1 (2)
C2—C1—C6—C7177.56 (13)C13—C12—C17—C163.5 (2)
O1—C7—C6—C5136.72 (15)C11—C12—C17—C16177.02 (14)
N2—C7—C6—C543.05 (18)C6—C5—C4—C30.0 (2)
O1—C7—C6—C141.3 (2)C1—C2—C3—C40.5 (3)
N2—C7—C6—C1138.96 (14)C5—C4—C3—C20.5 (3)
C1—C6—C5—C40.5 (2)C12—C13—C14—C150.3 (3)
C7—C6—C5—C4177.54 (14)C13—C14—C15—C161.7 (3)
C10—N3—C11—O24.5 (3)C14—C15—C16—C170.3 (3)
C10—N3—C11—C12176.08 (14)N4—C17—C16—C15179.51 (18)
C14—C13—C12—C172.3 (2)C12—C17—C16—C152.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O20.87 (2)2.10 (2)2.711 (3)126.6 (18)
N1—H2N1···O10.89 (2)2.20 (2)2.851 (2)130.2 (19)
N3—H3N3···O1i0.902 (19)2.055 (19)2.9286 (16)162.8 (15)
N2—H2N2···O2ii0.882 (17)1.942 (18)2.7872 (17)160.3 (16)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H20N4O2
Mr312.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.6590 (7), 9.8279 (12), 14.6732 (18)
α, β, γ (°)95.258 (2), 95.263 (2), 98.888 (2)
V3)798.21 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.972, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6168, 3048, 2539
Rint0.026
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.06
No. of reflections3048
No. of parameters232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O20.87 (2)2.10 (2)2.711 (3)126.6 (18)
N1—H2N1···O10.89 (2)2.20 (2)2.851 (2)130.2 (19)
N3—H3N3···O1i0.902 (19)2.055 (19)2.9286 (16)162.8 (15)
N2—H2N2···O2ii0.882 (17)1.942 (18)2.7872 (17)160.3 (16)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

SJ thanks the University Grants Commission, New Delhi, India, for financial assistance (No. MRP–359/11).

References

First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, R. H. & Wagner, E. C. (1944). J. Org. Chem. 09, 55–67.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, S. J. & Kumar, B. K. (1996). Indian J. Chem. Sect. A, 35, 489–493.  Google Scholar
First citationSwamy, S. J., Suresh, K., Someshwar, P. & Nagaraju, D. (2004). Synth. Commun. 34, 1847–1853.  Web of Science CrossRef CAS Google Scholar
First citationSwamy, S. J., Veerapratap, B., Nagaraju, D., Suresh, K. & Someshwar, P. (2003). Tetrahedron, 59, 10093–10096.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds