organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-(1,3-Di­phenyl-1H-pyrazol-4-yl)-2′,3′,5′,6′,7′,7a'-hexa­hydro-1′H-di­spiro­[ace­naphthyl­ene-1,3′-pyrrolizine-2′,3′′-chromane]-2,4′′(1H)-dione

aDepartment of Physics, Meenakshi College of Engineering, West K.K. Nagar, Chennai 600 078, India, bIndustrial Chemistry Lab, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 27 February 2013; accepted 8 April 2013; online 13 April 2013)

In the title compound, C41H31N3O3, the pyrazole and pyrrolidine rings adopt twisted conformations. The mean plane of the pyrazole ring forms dihedral angles of 9.11 (12) and 39.65 (11)° with the phenyl rings. The O atoms deviate from the mean planes of the chromene and ace­naphthyl­ene ring systems by 0.194 (15) and 0.079 (15) Å, respectively. In the crystal, molecules are linked via pairs of C—H⋯O inter­actions,forming inversion dimers with an R22(12) ring motif.

Related literature

For the biological activity of pyrazole derivatives, see: Mahajan et al. (1991[Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-249.]); Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Katayama & Oshiyama (1997[Katayama, H. & Oshiyama, T. (1997). Can. J. Chem. 75, 913-919.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]). For a related structure, see: Jagadeesan et al. (2013[Jagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy, B. S. R. (2013). Acta Cryst. E69, o317.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C41H31N3O3

  • Mr = 613.69

  • Triclinic, [P \overline 1]

  • a = 10.0183 (4) Å

  • b = 12.7374 (5) Å

  • c = 13.2489 (5) Å

  • α = 114.365 (2)°

  • β = 96.960 (2)°

  • γ = 92.281 (2)°

  • V = 1521.17 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.983

  • 32812 measured reflections

  • 9207 independent reflections

  • 5094 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.166

  • S = 1.01

  • 9207 reflections

  • 424 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O3i 0.98 2.47 3.273 (2) 138
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole derivatives in general are well known nitrogen containing heterocyclic compounds and have been the subject of enormous research due to their importance in various applications and their widespread potential biological and pharmacological activities such as antimicrobial (Mahajan et al., 1991), antiviral (Baraldi et al., 1998), antitumor (Katayama & Oshiyama, 1997) and antifungal activities (Chen & Li, 1998).

The molecular structure of the title compound C41H31N3O3, is shown in Fig. 1. The mean planes of the phenyl rings (C1–C6) and (C10–C15) form a dihedral angle of 31.31 (12)° between them. The mean plane of the pyrazole ring (C7/C8/C9/N1/N2) forms dihedral angles of 9.11 (12)° and 39.65 (11)° with the mean planes of the two phenyl rings (C1–C6) and (C10–C15), respectively. The mean plane of the pyrrolizine ring (C16–C22/N3) forms dihedral angles of 63.95 (9)° and 74.46 (8)° with the mean planes of the chromene ring (C17/C23–C30/O1) and the acenaphthylene ring (C18/C31–C41), respectively. The oxygen atoms O2 and O3 deviate from the least square planes of the chromene ring (C17/C23–C30/O1) and acenaphthylene ring (C18/C31–C41) by -0.194 (15)Å and -0.079 (15)Å, respectively. The title compound exhibits structural similarities with an already reported related structure (Jagadeesan et al., 2013).

The sum of angles around the N3 atom (335.6°) indicates sp3 hybridization. The pyrrolidine ring (C16/C17/C18/C22/N3) adopts a twisted conformation on C22 and N3, with puckering parameters (Cremer & Pople, 1975) of q2 = 0.322 (18)Å and φ2 = 170.9 (3)°. Also, the atoms C22 and N3 deviate from the mean planes of the remaining ring atoms by 0.182 (2)Å and -0.201 (16)Å, respectively. The other pyrrolidine ring (C19–C22/N3) also adopts a twisted conformation on C19 and N3 with puckering parameters of q2 = 0.382 (2)Å and φ2 = 205.1 (4)°. Also, the atoms C19 and N3 deviate from the mean planes of the remaining ring atoms by 0.237 (2)Å and -0.219 (18)Å, respectively.

The crystal packing is stabilized by C22—H22···O3i intermolecular hydrogen bond interaction, which generates R22(12) graphset ring motif (Bernstein, et al., 1995). The symmetry codes: (i) -x, y-1, z-1 (Table 1). The packing view of the title compound is shown in Fig. 2.

Related literature top

For the biological activity of pyrazole derivatives, see: Mahajan et al. (1991); Baraldi et al. (1998); Katayama & Oshiyama (1997); Chen & Li (1998). For a related structure, see: Jagadeesan et al. (2013). For puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of acenaphthenequinone (1.05 mmol), L–proline (1.1 mmol) and dipolarophile (1.0 mmol) in ethanol was refluxed for 5 hrs and cooled to room temperature. The solid formed in the reaction mixture was poured into a beaker containing crushed ice and it was filtered, dried, and recrystallized from ethanol to obtain the pure product in good yield (89%) without involving column chromatography.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93Å to 0.98Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Structure description top

Pyrazole derivatives in general are well known nitrogen containing heterocyclic compounds and have been the subject of enormous research due to their importance in various applications and their widespread potential biological and pharmacological activities such as antimicrobial (Mahajan et al., 1991), antiviral (Baraldi et al., 1998), antitumor (Katayama & Oshiyama, 1997) and antifungal activities (Chen & Li, 1998).

The molecular structure of the title compound C41H31N3O3, is shown in Fig. 1. The mean planes of the phenyl rings (C1–C6) and (C10–C15) form a dihedral angle of 31.31 (12)° between them. The mean plane of the pyrazole ring (C7/C8/C9/N1/N2) forms dihedral angles of 9.11 (12)° and 39.65 (11)° with the mean planes of the two phenyl rings (C1–C6) and (C10–C15), respectively. The mean plane of the pyrrolizine ring (C16–C22/N3) forms dihedral angles of 63.95 (9)° and 74.46 (8)° with the mean planes of the chromene ring (C17/C23–C30/O1) and the acenaphthylene ring (C18/C31–C41), respectively. The oxygen atoms O2 and O3 deviate from the least square planes of the chromene ring (C17/C23–C30/O1) and acenaphthylene ring (C18/C31–C41) by -0.194 (15)Å and -0.079 (15)Å, respectively. The title compound exhibits structural similarities with an already reported related structure (Jagadeesan et al., 2013).

The sum of angles around the N3 atom (335.6°) indicates sp3 hybridization. The pyrrolidine ring (C16/C17/C18/C22/N3) adopts a twisted conformation on C22 and N3, with puckering parameters (Cremer & Pople, 1975) of q2 = 0.322 (18)Å and φ2 = 170.9 (3)°. Also, the atoms C22 and N3 deviate from the mean planes of the remaining ring atoms by 0.182 (2)Å and -0.201 (16)Å, respectively. The other pyrrolidine ring (C19–C22/N3) also adopts a twisted conformation on C19 and N3 with puckering parameters of q2 = 0.382 (2)Å and φ2 = 205.1 (4)°. Also, the atoms C19 and N3 deviate from the mean planes of the remaining ring atoms by 0.237 (2)Å and -0.219 (18)Å, respectively.

The crystal packing is stabilized by C22—H22···O3i intermolecular hydrogen bond interaction, which generates R22(12) graphset ring motif (Bernstein, et al., 1995). The symmetry codes: (i) -x, y-1, z-1 (Table 1). The packing view of the title compound is shown in Fig. 2.

For the biological activity of pyrazole derivatives, see: Mahajan et al. (1991); Baraldi et al. (1998); Katayama & Oshiyama (1997); Chen & Li (1998). For a related structure, see: Jagadeesan et al. (2013). For puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down b axis, showing the hydrogen bonds resulting in R22(12) graph–set ring motif. H atoms not involved in hydrogen bonds have been excluded for clarity.
1'-(1,3-Diphenyl-1H-pyrazol-4-yl)-2',3',5',6',7',7a'-hexahydro-1'H-dispiro[acenaphthylene-1,3'-pyrrolizine-2',3''-chromane]-2,4''(1H)-dione top
Crystal data top
C41H31N3O3Z = 2
Mr = 613.69F(000) = 644
Triclinic, P1Dx = 1.340 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0183 (4) ÅCell parameters from 9207 reflections
b = 12.7374 (5) Åθ = 2.1–30.9°
c = 13.2489 (5) ŵ = 0.09 mm1
α = 114.365 (2)°T = 295 K
β = 96.960 (2)°Block, colourless
γ = 92.281 (2)°0.30 × 0.25 × 0.20 mm
V = 1521.17 (11) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9207 independent reflections
Radiation source: fine–focus sealed tube5094 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 30.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.975, Tmax = 0.983k = 1817
32812 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.4938P]
where P = (Fo2 + 2Fc2)/3
9207 reflections(Δ/σ)max < 0.001
424 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C41H31N3O3γ = 92.281 (2)°
Mr = 613.69V = 1521.17 (11) Å3
Triclinic, P1Z = 2
a = 10.0183 (4) ÅMo Kα radiation
b = 12.7374 (5) ŵ = 0.09 mm1
c = 13.2489 (5) ÅT = 295 K
α = 114.365 (2)°0.30 × 0.25 × 0.20 mm
β = 96.960 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9207 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5094 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.036
32812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
9207 reflectionsΔρmin = 0.32 e Å3
424 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1153 (2)0.41978 (18)0.78887 (17)0.0533 (5)
H10.06160.45370.75570.064*
C20.1402 (3)0.4823 (2)0.89637 (18)0.0632 (6)
H20.10340.55900.93550.076*
C30.2181 (3)0.4336 (2)0.94646 (19)0.0736 (7)
H30.23410.47641.01930.088*
C40.2722 (3)0.3214 (2)0.8885 (2)0.0794 (8)
H40.32550.28800.92230.095*
C50.2492 (3)0.2568 (2)0.78067 (18)0.0643 (6)
H50.28650.18030.74200.077*
C60.1705 (2)0.30644 (16)0.73071 (15)0.0437 (4)
C70.09357 (19)0.27729 (16)0.54960 (15)0.0425 (4)
H70.05730.35240.56800.051*
C80.10027 (17)0.18514 (15)0.44788 (14)0.0372 (4)
C90.16394 (18)0.09198 (15)0.46325 (15)0.0403 (4)
C100.20193 (19)0.02968 (16)0.38356 (15)0.0428 (4)
C110.1185 (2)0.09176 (17)0.30846 (17)0.0525 (5)
H110.03590.05600.30810.063*
C120.1555 (3)0.20514 (19)0.2345 (2)0.0686 (6)
H120.09810.24550.18470.082*
C130.2772 (3)0.2589 (2)0.2341 (2)0.0758 (7)
H130.30300.33540.18340.091*
C140.3603 (3)0.1999 (2)0.3083 (2)0.0711 (7)
H140.44230.23680.30840.085*
C150.3240 (2)0.08581 (18)0.38343 (18)0.0553 (5)
H150.38110.04660.43390.066*
C160.06665 (17)0.18964 (14)0.34183 (13)0.0349 (4)
H160.12140.12550.27850.042*
C170.08327 (16)0.18237 (13)0.32134 (13)0.0320 (3)
C180.11508 (16)0.29091 (13)0.29340 (13)0.0323 (3)
C190.0864 (2)0.2779 (2)0.15276 (16)0.0521 (5)
H19A0.08230.19480.11790.063*
H19B0.04980.31220.10750.063*
C200.2280 (2)0.3075 (3)0.1699 (2)0.0799 (8)
H20A0.29280.25290.10820.096*
H20B0.23890.38490.17520.096*
C210.2478 (2)0.3008 (2)0.27781 (18)0.0551 (5)
H21A0.30120.22940.26320.066*
H21B0.29320.36570.32350.066*
C220.10583 (17)0.30447 (15)0.33630 (14)0.0374 (4)
H220.09210.36730.41200.045*
C230.10449 (18)0.07340 (14)0.22056 (14)0.0366 (4)
C240.24610 (18)0.04615 (14)0.21767 (15)0.0396 (4)
C250.2856 (2)0.03313 (16)0.11913 (18)0.0526 (5)
H250.22010.07700.05820.063*
C260.4192 (2)0.04729 (19)0.1109 (2)0.0639 (6)
H260.44440.09960.04450.077*
C270.5164 (2)0.0169 (2)0.2020 (2)0.0649 (6)
H270.60710.00710.19650.078*
C280.4813 (2)0.09427 (18)0.29976 (19)0.0547 (5)
H280.54750.13650.36070.066*
C290.34599 (19)0.10968 (15)0.30785 (16)0.0416 (4)
C300.17775 (17)0.18192 (15)0.42002 (14)0.0383 (4)
H30A0.16330.24640.48820.046*
H30B0.15680.11090.42800.046*
C310.20696 (17)0.28246 (14)0.20732 (14)0.0349 (4)
C320.2028 (2)0.21023 (16)0.09670 (15)0.0429 (4)
H320.13600.14850.06070.051*
C330.3023 (2)0.23111 (19)0.03788 (17)0.0535 (5)
H330.30030.18100.03700.064*
C340.4005 (2)0.3215 (2)0.0865 (2)0.0577 (6)
H340.46370.33200.04470.069*
C350.40668 (19)0.39868 (17)0.19933 (18)0.0481 (5)
C360.4972 (2)0.4997 (2)0.2628 (2)0.0623 (6)
H360.56430.51910.22900.075*
C370.4887 (2)0.5686 (2)0.3713 (2)0.0659 (6)
H370.55040.63380.40990.079*
C380.3901 (2)0.54461 (17)0.42660 (18)0.0534 (5)
H380.38500.59310.50080.064*
C390.30067 (18)0.44744 (14)0.36843 (15)0.0393 (4)
C400.18767 (18)0.39757 (14)0.40065 (14)0.0373 (4)
C410.30899 (17)0.37581 (15)0.25702 (15)0.0379 (4)
N10.14891 (16)0.24040 (13)0.61905 (12)0.0436 (4)
N20.19339 (16)0.12621 (14)0.56655 (13)0.0459 (4)
N30.01547 (14)0.32956 (12)0.26812 (11)0.0361 (3)
O10.31681 (12)0.19063 (11)0.40564 (10)0.0439 (3)
O20.01396 (13)0.01606 (11)0.14478 (11)0.0511 (3)
O30.15203 (14)0.43234 (11)0.49191 (10)0.0507 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0621 (14)0.0563 (12)0.0474 (11)0.0030 (10)0.0128 (10)0.0266 (10)
C20.0849 (17)0.0556 (12)0.0506 (12)0.0100 (12)0.0129 (11)0.0230 (10)
C30.114 (2)0.0691 (15)0.0485 (13)0.0231 (15)0.0335 (13)0.0283 (12)
C40.116 (2)0.0733 (16)0.0641 (15)0.0083 (15)0.0459 (15)0.0349 (13)
C50.0867 (18)0.0577 (13)0.0539 (13)0.0010 (12)0.0277 (12)0.0251 (11)
C60.0486 (11)0.0510 (10)0.0398 (10)0.0086 (9)0.0115 (8)0.0256 (8)
C70.0453 (11)0.0444 (9)0.0410 (10)0.0028 (8)0.0108 (8)0.0206 (8)
C80.0335 (9)0.0406 (9)0.0402 (9)0.0006 (7)0.0071 (7)0.0199 (8)
C90.0357 (10)0.0462 (10)0.0434 (10)0.0006 (8)0.0047 (7)0.0240 (8)
C100.0451 (11)0.0427 (9)0.0462 (10)0.0039 (8)0.0006 (8)0.0271 (8)
C110.0531 (12)0.0473 (11)0.0598 (12)0.0014 (9)0.0079 (10)0.0257 (10)
C120.0844 (18)0.0481 (12)0.0704 (15)0.0061 (12)0.0121 (13)0.0221 (11)
C130.101 (2)0.0458 (12)0.0721 (17)0.0132 (13)0.0039 (15)0.0224 (12)
C140.0718 (17)0.0608 (14)0.0816 (17)0.0266 (12)0.0100 (13)0.0397 (13)
C150.0515 (13)0.0581 (12)0.0623 (13)0.0097 (10)0.0008 (10)0.0349 (11)
C160.0316 (9)0.0373 (8)0.0338 (8)0.0038 (7)0.0047 (7)0.0138 (7)
C170.0308 (8)0.0325 (8)0.0314 (8)0.0023 (6)0.0039 (6)0.0130 (6)
C180.0326 (9)0.0311 (8)0.0313 (8)0.0018 (6)0.0053 (6)0.0115 (6)
C190.0418 (11)0.0764 (14)0.0397 (10)0.0079 (10)0.0046 (8)0.0261 (10)
C200.0464 (13)0.139 (2)0.0582 (14)0.0239 (15)0.0082 (11)0.0436 (16)
C210.0356 (10)0.0747 (14)0.0698 (14)0.0089 (10)0.0132 (9)0.0431 (12)
C220.0356 (9)0.0424 (9)0.0384 (9)0.0043 (7)0.0108 (7)0.0196 (7)
C230.0365 (9)0.0325 (8)0.0380 (9)0.0042 (7)0.0036 (7)0.0134 (7)
C240.0383 (10)0.0309 (8)0.0479 (10)0.0017 (7)0.0081 (8)0.0147 (7)
C250.0514 (12)0.0360 (9)0.0587 (12)0.0037 (9)0.0125 (10)0.0071 (9)
C260.0581 (14)0.0501 (12)0.0764 (16)0.0165 (11)0.0256 (12)0.0146 (11)
C270.0430 (12)0.0645 (14)0.0887 (17)0.0130 (11)0.0196 (12)0.0304 (13)
C280.0371 (11)0.0583 (12)0.0691 (14)0.0038 (9)0.0051 (10)0.0280 (11)
C290.0397 (10)0.0383 (9)0.0503 (11)0.0023 (8)0.0063 (8)0.0223 (8)
C300.0355 (9)0.0416 (9)0.0383 (9)0.0013 (7)0.0031 (7)0.0184 (7)
C310.0345 (9)0.0371 (8)0.0375 (9)0.0032 (7)0.0086 (7)0.0192 (7)
C320.0456 (11)0.0431 (9)0.0418 (10)0.0071 (8)0.0134 (8)0.0175 (8)
C330.0592 (13)0.0643 (13)0.0472 (11)0.0235 (11)0.0248 (10)0.0276 (10)
C340.0461 (12)0.0742 (14)0.0745 (15)0.0148 (11)0.0298 (11)0.0466 (13)
C350.0345 (10)0.0578 (11)0.0693 (13)0.0075 (9)0.0144 (9)0.0418 (11)
C360.0364 (11)0.0723 (15)0.0976 (19)0.0077 (10)0.0085 (11)0.0565 (15)
C370.0494 (13)0.0618 (14)0.0882 (18)0.0205 (11)0.0091 (12)0.0409 (14)
C380.0507 (12)0.0460 (11)0.0600 (12)0.0131 (9)0.0089 (10)0.0252 (10)
C390.0366 (10)0.0350 (8)0.0466 (10)0.0043 (7)0.0011 (7)0.0200 (8)
C400.0390 (10)0.0317 (8)0.0383 (9)0.0005 (7)0.0030 (7)0.0128 (7)
C410.0291 (9)0.0408 (9)0.0508 (10)0.0014 (7)0.0051 (7)0.0265 (8)
N10.0486 (9)0.0462 (8)0.0400 (8)0.0010 (7)0.0120 (7)0.0212 (7)
N20.0475 (10)0.0481 (9)0.0456 (9)0.0044 (7)0.0078 (7)0.0239 (7)
N30.0358 (8)0.0411 (7)0.0343 (7)0.0025 (6)0.0074 (6)0.0184 (6)
O10.0336 (7)0.0495 (7)0.0429 (7)0.0019 (5)0.0004 (5)0.0160 (6)
O20.0429 (8)0.0481 (7)0.0444 (7)0.0081 (6)0.0019 (6)0.0042 (6)
O30.0584 (9)0.0435 (7)0.0382 (7)0.0038 (6)0.0090 (6)0.0057 (6)
Geometric parameters (Å, º) top
C1—C21.375 (3)C20—H20A0.9700
C1—C61.378 (3)C20—H20B0.9700
C1—H10.9300C21—C221.524 (3)
C2—C31.365 (3)C21—H21A0.9700
C2—H20.9300C21—H21B0.9700
C3—C41.362 (4)C22—N31.467 (2)
C3—H30.9300C22—H220.9800
C4—C51.377 (3)C23—O21.219 (2)
C4—H40.9300C23—C241.475 (2)
C5—C61.375 (3)C24—C291.390 (3)
C5—H50.9300C24—C251.396 (2)
C6—N11.417 (2)C25—C261.369 (3)
C7—N11.354 (2)C25—H250.9300
C7—C81.366 (2)C26—C271.383 (3)
C7—H70.9300C26—H260.9300
C8—C91.424 (2)C27—C281.363 (3)
C8—C161.507 (2)C27—H270.9300
C9—N21.329 (2)C28—C291.388 (3)
C9—C101.472 (3)C28—H280.9300
C10—C111.385 (3)C29—O11.357 (2)
C10—C151.391 (3)C30—O11.435 (2)
C11—C121.373 (3)C30—H30A0.9700
C11—H110.9300C30—H30B0.9700
C12—C131.373 (4)C31—C321.366 (2)
C12—H120.9300C31—C411.409 (2)
C13—C141.366 (4)C32—C331.417 (3)
C13—H130.9300C32—H320.9300
C14—C151.382 (3)C33—C341.361 (3)
C14—H140.9300C33—H330.9300
C15—H150.9300C34—C351.402 (3)
C16—C221.558 (2)C34—H340.9300
C16—C171.558 (2)C35—C411.403 (2)
C16—H160.9800C35—C361.419 (3)
C17—C301.521 (2)C36—C371.356 (3)
C17—C231.522 (2)C36—H360.9300
C17—C181.602 (2)C37—C381.394 (3)
C18—N31.465 (2)C37—H370.9300
C18—C311.523 (2)C38—C391.373 (2)
C18—C401.572 (2)C38—H380.9300
C19—N31.464 (2)C39—C411.394 (2)
C19—C201.502 (3)C39—C401.467 (2)
C19—H19A0.9700C40—O31.209 (2)
C19—H19B0.9700N1—N21.355 (2)
C20—C211.503 (3)
C2—C1—C6119.47 (19)C20—C21—H21B110.7
C2—C1—H1120.3C22—C21—H21B110.7
C6—C1—H1120.3H21A—C21—H21B108.8
C3—C2—C1121.0 (2)N3—C22—C21104.75 (14)
C3—C2—H2119.5N3—C22—C16106.54 (13)
C1—C2—H2119.5C21—C22—C16116.12 (15)
C4—C3—C2119.2 (2)N3—C22—H22109.7
C4—C3—H3120.4C21—C22—H22109.7
C2—C3—H3120.4C16—C22—H22109.7
C3—C4—C5121.1 (2)O2—C23—C24122.01 (16)
C3—C4—H4119.4O2—C23—C17123.33 (16)
C5—C4—H4119.4C24—C23—C17114.55 (14)
C6—C5—C4119.4 (2)C29—C24—C25118.27 (18)
C6—C5—H5120.3C29—C24—C23120.62 (16)
C4—C5—H5120.3C25—C24—C23120.57 (17)
C5—C6—C1119.88 (18)C26—C25—C24121.0 (2)
C5—C6—N1119.30 (18)C26—C25—H25119.5
C1—C6—N1120.81 (16)C24—C25—H25119.5
N1—C7—C8108.18 (16)C25—C26—C27119.5 (2)
N1—C7—H7125.9C25—C26—H26120.3
C8—C7—H7125.9C27—C26—H26120.3
C7—C8—C9103.82 (15)C28—C27—C26121.0 (2)
C7—C8—C16126.18 (15)C28—C27—H27119.5
C9—C8—C16129.38 (16)C26—C27—H27119.5
N2—C9—C8111.49 (16)C27—C28—C29119.6 (2)
N2—C9—C10118.38 (15)C27—C28—H28120.2
C8—C9—C10130.12 (16)C29—C28—H28120.2
C11—C10—C15118.20 (19)O1—C29—C28117.23 (17)
C11—C10—C9121.91 (17)O1—C29—C24122.12 (17)
C15—C10—C9119.88 (18)C28—C29—C24120.63 (18)
C12—C11—C10121.2 (2)O1—C30—C17111.68 (13)
C12—C11—H11119.4O1—C30—H30A109.3
C10—C11—H11119.4C17—C30—H30A109.3
C11—C12—C13119.9 (2)O1—C30—H30B109.3
C11—C12—H12120.0C17—C30—H30B109.3
C13—C12—H12120.0H30A—C30—H30B107.9
C14—C13—C12119.8 (2)C32—C31—C41118.15 (15)
C14—C13—H13120.1C32—C31—C18133.25 (16)
C12—C13—H13120.1C41—C31—C18108.44 (14)
C13—C14—C15120.7 (2)C31—C32—C33118.75 (18)
C13—C14—H14119.6C31—C32—H32120.6
C15—C14—H14119.6C33—C32—H32120.6
C14—C15—C10120.1 (2)C34—C33—C32122.73 (19)
C14—C15—H15120.0C34—C33—H33118.6
C10—C15—H15120.0C32—C33—H33118.6
C8—C16—C22110.49 (13)C33—C34—C35120.22 (18)
C8—C16—C17117.93 (14)C33—C34—H34119.9
C22—C16—C17105.11 (12)C35—C34—H34119.9
C8—C16—H16107.6C34—C35—C41116.42 (18)
C22—C16—H16107.6C34—C35—C36128.36 (19)
C17—C16—H16107.6C41—C35—C36115.20 (19)
C30—C17—C23105.51 (13)C37—C36—C35121.91 (19)
C30—C17—C16112.68 (13)C37—C36—H36119.0
C23—C17—C16113.29 (13)C35—C36—H36119.0
C30—C17—C18114.16 (13)C36—C37—C38121.9 (2)
C23—C17—C18107.67 (12)C36—C37—H37119.1
C16—C17—C18103.64 (12)C38—C37—H37119.1
N3—C18—C31111.70 (13)C39—C38—C37118.2 (2)
N3—C18—C40103.76 (12)C39—C38—H38120.9
C31—C18—C40102.05 (13)C37—C38—H38120.9
N3—C18—C17106.68 (12)C38—C39—C41120.36 (17)
C31—C18—C17120.46 (13)C38—C39—C40132.08 (18)
C40—C18—C17110.98 (12)C41—C39—C40107.56 (15)
N3—C19—C20101.60 (16)O3—C40—C39127.25 (16)
N3—C19—H19A111.5O3—C40—C18124.79 (15)
C20—C19—H19A111.5C39—C40—C18107.92 (14)
N3—C19—H19B111.5C39—C41—C35122.50 (17)
C20—C19—H19B111.5C39—C41—C31113.72 (15)
H19A—C19—H19B109.3C35—C41—C31123.71 (17)
C19—C20—C21105.65 (18)C7—N1—N2111.42 (14)
C19—C20—H20A110.6C7—N1—C6128.37 (16)
C21—C20—H20A110.6N2—N1—C6120.09 (14)
C19—C20—H20B110.6C9—N2—N1105.09 (14)
C21—C20—H20B110.6C19—N3—C18119.16 (13)
H20A—C20—H20B108.7C19—N3—C22106.39 (14)
C20—C21—C22105.13 (16)C18—N3—C22106.33 (12)
C20—C21—H21A110.7C29—O1—C30114.24 (13)
C22—C21—H21A110.7
C6—C1—C2—C30.4 (4)C23—C24—C29—O16.7 (3)
C1—C2—C3—C40.3 (4)C25—C24—C29—C280.1 (3)
C2—C3—C4—C50.1 (4)C23—C24—C29—C28171.65 (16)
C3—C4—C5—C60.1 (4)C23—C17—C30—O163.56 (16)
C4—C5—C6—C10.2 (4)C16—C17—C30—O1172.34 (13)
C4—C5—C6—N1178.9 (2)C18—C17—C30—O154.46 (18)
C2—C1—C6—C50.4 (3)N3—C18—C31—C3268.8 (2)
C2—C1—C6—N1178.77 (19)C40—C18—C31—C32179.13 (18)
N1—C7—C8—C90.1 (2)C17—C18—C31—C3257.5 (3)
N1—C7—C8—C16171.79 (16)N3—C18—C31—C41106.35 (15)
C7—C8—C9—N20.2 (2)C40—C18—C31—C413.94 (16)
C16—C8—C9—N2171.10 (17)C17—C18—C31—C41127.31 (15)
C7—C8—C9—C10178.72 (18)C41—C31—C32—C331.2 (3)
C16—C8—C9—C107.4 (3)C18—C31—C32—C33175.98 (17)
N2—C9—C10—C11140.66 (19)C31—C32—C33—C341.2 (3)
C8—C9—C10—C1140.9 (3)C32—C33—C34—C350.1 (3)
N2—C9—C10—C1538.5 (2)C33—C34—C35—C411.0 (3)
C8—C9—C10—C15140.0 (2)C33—C34—C35—C36177.2 (2)
C15—C10—C11—C121.0 (3)C34—C35—C36—C37178.0 (2)
C9—C10—C11—C12179.88 (19)C41—C35—C36—C370.2 (3)
C10—C11—C12—C130.1 (3)C35—C36—C37—C380.3 (4)
C11—C12—C13—C140.9 (4)C36—C37—C38—C390.6 (3)
C12—C13—C14—C150.6 (4)C37—C38—C39—C410.3 (3)
C13—C14—C15—C100.4 (3)C37—C38—C39—C40179.67 (19)
C11—C10—C15—C141.2 (3)C38—C39—C40—O33.1 (3)
C9—C10—C15—C14179.65 (18)C41—C39—C40—O3176.84 (17)
C7—C8—C16—C2234.1 (2)C38—C39—C40—C18174.97 (19)
C9—C8—C16—C22135.43 (18)C41—C39—C40—C185.06 (18)
C7—C8—C16—C1786.8 (2)N3—C18—C40—O367.4 (2)
C9—C8—C16—C17103.7 (2)C31—C18—C40—O3176.41 (17)
C8—C16—C17—C305.0 (2)C17—C18—C40—O346.9 (2)
C22—C16—C17—C30118.65 (15)N3—C18—C40—C39110.78 (14)
C8—C16—C17—C23114.74 (16)C31—C18—C40—C395.43 (16)
C22—C16—C17—C23121.65 (14)C17—C18—C40—C39134.99 (14)
C8—C16—C17—C18128.87 (14)C38—C39—C41—C350.2 (3)
C22—C16—C17—C185.26 (15)C40—C39—C41—C35179.83 (16)
C30—C17—C18—N3138.42 (14)C38—C39—C41—C31177.43 (16)
C23—C17—C18—N3104.79 (14)C40—C39—C41—C312.6 (2)
C16—C17—C18—N315.49 (15)C34—C35—C41—C39177.94 (17)
C30—C17—C18—C3192.96 (18)C36—C35—C41—C390.4 (3)
C23—C17—C18—C3123.82 (19)C34—C35—C41—C311.0 (3)
C16—C17—C18—C31144.10 (15)C36—C35—C41—C31177.37 (17)
C30—C17—C18—C4026.04 (18)C32—C31—C41—C39177.11 (15)
C23—C17—C18—C40142.82 (14)C18—C31—C41—C391.1 (2)
C16—C17—C18—C4096.90 (14)C32—C31—C41—C350.1 (3)
N3—C19—C20—C2135.3 (3)C18—C31—C41—C35176.11 (15)
C19—C20—C21—C2217.0 (3)C8—C7—N1—N20.4 (2)
C20—C21—C22—N37.8 (2)C8—C7—N1—C6176.41 (17)
C20—C21—C22—C16109.3 (2)C5—C6—N1—C7168.8 (2)
C8—C16—C22—N3152.70 (14)C1—C6—N1—C710.3 (3)
C17—C16—C22—N324.48 (17)C5—C6—N1—N26.9 (3)
C8—C16—C22—C2191.11 (18)C1—C6—N1—N2173.96 (17)
C17—C16—C22—C21140.67 (15)C8—C9—N2—N10.4 (2)
C30—C17—C23—O2144.65 (17)C10—C9—N2—N1179.14 (15)
C16—C17—C23—O220.9 (2)C7—N1—N2—C90.5 (2)
C18—C17—C23—O293.06 (19)C6—N1—N2—C9176.88 (16)
C30—C17—C23—C2439.16 (18)C20—C19—N3—C18161.15 (17)
C16—C17—C23—C24162.88 (14)C20—C19—N3—C2241.2 (2)
C18—C17—C23—C2483.13 (16)C31—C18—N3—C1945.1 (2)
O2—C23—C24—C29176.82 (17)C40—C18—N3—C19154.27 (15)
C17—C23—C24—C296.9 (2)C17—C18—N3—C1988.46 (17)
O2—C23—C24—C2511.8 (3)C31—C18—N3—C22165.10 (13)
C17—C23—C24—C25164.43 (16)C40—C18—N3—C2285.70 (14)
C29—C24—C25—C260.7 (3)C17—C18—N3—C2231.56 (16)
C23—C24—C25—C26170.91 (19)C21—C22—N3—C1930.85 (19)
C24—C25—C26—C270.8 (3)C16—C22—N3—C1992.72 (16)
C25—C26—C27—C280.3 (4)C21—C22—N3—C18158.84 (14)
C26—C27—C28—C290.5 (3)C16—C22—N3—C1835.27 (16)
C27—C28—C29—O1177.77 (18)C28—C29—O1—C30164.59 (15)
C27—C28—C29—C240.6 (3)C24—C29—O1—C3017.0 (2)
C25—C24—C29—O1178.25 (16)C17—C30—O1—C2953.90 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O3i0.982.473.273 (2)138
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC41H31N3O3
Mr613.69
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.0183 (4), 12.7374 (5), 13.2489 (5)
α, β, γ (°)114.365 (2), 96.960 (2), 92.281 (2)
V3)1521.17 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
32812, 9207, 5094
Rint0.036
(sin θ/λ)max1)0.723
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.166, 1.01
No. of reflections9207
No. of parameters424
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O3i0.982.473.273 (2)138
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection. KS thanks the University Grant Commission (UGC), India, for a Minor Research Project.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy, B. S. R. (2013). Acta Cryst. E69, o317.  CSD CrossRef IUCr Journals Google Scholar
First citationKatayama, H. & Oshiyama, T. (1997). Can. J. Chem. 75, 913–919.  CrossRef CAS Web of Science Google Scholar
First citationMahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245–249.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds