organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,7-Dieth­­oxy-8-(4-fluoro­benzo­yl)naphthalen-1-yl](4-fluoro­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan, and bInternational Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 15 March 2013; accepted 26 March 2013; online 5 April 2013)

In the mol­ecule of the title compound, C28H22F2O4, the benzoyl groups are aligned almost anti­parallel and the fluorobenzene rings form a dihedral angle of 14.12 (7)°. The dihedral angles between the 2,7-dieth­oxy­naphthalene ring system and the benzene rings are 70.00 (4) and 67.28 (4)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming layers parallel to the ab plane. The layers are further connected by ππ inter­actions [centroid–centroid distances of 3.6115 (10) Å] into a three-dimensional structure.

Related literature

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Watanabe et al. (2010[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.]), Isogai et al. (2013[Isogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.]).

[Scheme 1]

Experimental

Crystal data
  • C28H22F2O4

  • Mr = 460.46

  • Monoclinic, P 21 /n

  • a = 7.8592 (18) Å

  • b = 21.243 (5) Å

  • c = 13.941 (3) Å

  • β = 105.141 (3)°

  • V = 2246.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn70 diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.980, Tmax = 0.980

  • 14368 measured reflections

  • 3836 independent reflections

  • 3439 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.108

  • S = 1.00

  • 3836 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.95 2.30 3.1939 (17) 156
C23—H23⋯O2ii 0.95 2.37 3.3214 (18) 176
C6—H6⋯F1iii 0.95 2.44 3.1937 (17) 136
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies on the selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). The two aroyl groups at the 1,8-positions of the naphthalene ring in the resulting compounds are attached in perpendicular fashion to the naphthalene ring and oriented in opposite direction. Recently, we have reported the X-ray crystal structures of 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene [(2,7-dimethoxynaphthalene-1,8-diyl)-bis(4-fluorobenzoyl)dimethanone; Watanabe et al., 2010], and 1,8-dibenzoyl-2,7-diethoxynaphthalene [(8-benzoyl-2,7-diethoxynaphthalen-1-yl)-(phenyl)methanone (Isogai et al., 2013). In the crystal of 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), the molecule lies across a crystallographic twofold axis so that the asymmetric unit contains one-half of the molecule. The dihedral angle between the benzene ring and the naphthalene ring is 83.59 (5)°. In the case of 1,8-dibenzoyl-2,7-diethoxynaphthalene (Isogai et al., 2013), the dihedral angles are 68.42 (5)° and 71.69 (5)°. On the other hand, two aroyl groups in 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene (Watanabe et al., 2010) are attached to the naphthalene ring with appreciably different dihedral angles of 66.88 (7)° and 88.09 (6)°.

In the crystal packing of 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008) and analogous compounds (Watanabe et al., 2010, Isogai et al., 2013), the molecules are linked by C—H···O hydrogen bonds between the benzene rings and the ketonic carbonyl groups forming a three-dimensional network. The distances are shorter in the order of 1,8-dibenzoyl-2,7-dimethoxynaphthalene (2.60 Å), 1,8-bis(4-fluorobenzoyl) analogue (2.55 Å), and the 2,7-diethoxy analogue (2.37 Å).

As a part of our continuous studies on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of the title compound, 1,8-bis(4-fluorobenzoyl)-2,7-diethoxynaphthalene is discussed in this article.

In the molecule (Fig. 1), two aroyl groups are non-coplanarly attached to the naphthalene ring and are oriented in opposite direction. The dihedral angles between the planes of the benzene rings [C12—C17 and C19—C24] and the naphthalene ring system (C1—C10) are 70.00 (4)° and 67.28 (4)°, respectively. Besides, the dihedral angle between the benzene rings is 14.12 (7)°.

The molecular packing of the title compound is mainly stabilized by dual C—H···O hydrogen bonds between the benzene rings and the ketonic carbonyl groups along the a axis (C16—H16···O1i=2.30 Å and C23—H23···O2ii=2.37 Å; Table 1 and Fig. 2) and by C—H···F hydrogen bonds between the naphthalene rings and the fluorine atoms on the benzene rings (C6—H6···F1iii=2.44 Å; Table 1 and Fig. 3), resulting in the formation of molecular layers parallel to the ab plane. In addition, the layers interact through ππ interactions with centroid–centroid distances of 3.6115 (10) Å to form a three-dimensional structure.

The above mentioned results suggest that the title compound has similarities with 1,8-dibenzoyl-2,7-diethoxynaphthalene (Isogai et al., 2013) in the dihedral angles between the benzene rings and the naphthalene ring and the distance of the C—H···O hydrogen bond between the benzene ring and the ketonic carbonyl group.

Related literature top

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Watanabe et al. (2010), Isogai et al. (2013).

Experimental top

To a 50 ml flask, 2,7-diethoxynaphthalene (2.0 mmol, 489 mg), 4-fluorobenzoic acid (5.6 mmol, 785 mg), and phosphorus pentoxide–methanesulfonic acid (8.8 ml) were placed. The reaction mixture was stirred at 60°C for 1.5 h. After the reaction, the mixture was poured into ice-cold water and extracted with 25 ml of CHCl3 for three times. The combined extracts were washed with water, and 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by reprecipitation (CHCl3/methanol; isolated yield 91%). Furthermore, the isolated product was crystallized from CHCl3 to give single-crystal suitable for X-ray analysis, m.p. 482.7–483.3 K.

Refinement top

All H atoms were located in a difference Fourier map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 (methylene) Å, and with Uiso(H) = 1.2Ueq(C). The positions of methyl H atoms were rotationally optimized.

Structure description top

In the course of our studies on the selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). The two aroyl groups at the 1,8-positions of the naphthalene ring in the resulting compounds are attached in perpendicular fashion to the naphthalene ring and oriented in opposite direction. Recently, we have reported the X-ray crystal structures of 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene [(2,7-dimethoxynaphthalene-1,8-diyl)-bis(4-fluorobenzoyl)dimethanone; Watanabe et al., 2010], and 1,8-dibenzoyl-2,7-diethoxynaphthalene [(8-benzoyl-2,7-diethoxynaphthalen-1-yl)-(phenyl)methanone (Isogai et al., 2013). In the crystal of 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), the molecule lies across a crystallographic twofold axis so that the asymmetric unit contains one-half of the molecule. The dihedral angle between the benzene ring and the naphthalene ring is 83.59 (5)°. In the case of 1,8-dibenzoyl-2,7-diethoxynaphthalene (Isogai et al., 2013), the dihedral angles are 68.42 (5)° and 71.69 (5)°. On the other hand, two aroyl groups in 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene (Watanabe et al., 2010) are attached to the naphthalene ring with appreciably different dihedral angles of 66.88 (7)° and 88.09 (6)°.

In the crystal packing of 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008) and analogous compounds (Watanabe et al., 2010, Isogai et al., 2013), the molecules are linked by C—H···O hydrogen bonds between the benzene rings and the ketonic carbonyl groups forming a three-dimensional network. The distances are shorter in the order of 1,8-dibenzoyl-2,7-dimethoxynaphthalene (2.60 Å), 1,8-bis(4-fluorobenzoyl) analogue (2.55 Å), and the 2,7-diethoxy analogue (2.37 Å).

As a part of our continuous studies on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of the title compound, 1,8-bis(4-fluorobenzoyl)-2,7-diethoxynaphthalene is discussed in this article.

In the molecule (Fig. 1), two aroyl groups are non-coplanarly attached to the naphthalene ring and are oriented in opposite direction. The dihedral angles between the planes of the benzene rings [C12—C17 and C19—C24] and the naphthalene ring system (C1—C10) are 70.00 (4)° and 67.28 (4)°, respectively. Besides, the dihedral angle between the benzene rings is 14.12 (7)°.

The molecular packing of the title compound is mainly stabilized by dual C—H···O hydrogen bonds between the benzene rings and the ketonic carbonyl groups along the a axis (C16—H16···O1i=2.30 Å and C23—H23···O2ii=2.37 Å; Table 1 and Fig. 2) and by C—H···F hydrogen bonds between the naphthalene rings and the fluorine atoms on the benzene rings (C6—H6···F1iii=2.44 Å; Table 1 and Fig. 3), resulting in the formation of molecular layers parallel to the ab plane. In addition, the layers interact through ππ interactions with centroid–centroid distances of 3.6115 (10) Å to form a three-dimensional structure.

The above mentioned results suggest that the title compound has similarities with 1,8-dibenzoyl-2,7-diethoxynaphthalene (Isogai et al., 2013) in the dihedral angles between the benzene rings and the naphthalene ring and the distance of the C—H···O hydrogen bond between the benzene ring and the ketonic carbonyl group.

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Watanabe et al. (2010), Isogai et al. (2013).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title molecule, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the intermolecular C—H···O hydrogen bonds (see Table 1 for details; symmetry codes: (i) -1 + x, y, z; (ii) 1 + x, y, z).
[Figure 3] Fig. 3. A partial view of the crystal packing of the title compound, showing the intermolecular C—H···F hydrogen bonds (see Table 1 for details; symmetry codes: (iii) 1/2 - x, 1/2 + y, 1/2 - z).
[2,7-Diethoxy-8-(4-fluorobenzoyl)naphthalen-1-yl](4-fluorophenyl)methanone top
Crystal data top
C28H22F2O4F(000) = 960
Mr = 460.46Dx = 1.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 7582 reflections
a = 7.8592 (18) Åθ = 1.8–31.3°
b = 21.243 (5) ŵ = 0.10 mm1
c = 13.941 (3) ÅT = 173 K
β = 105.141 (3)°Block, colorless
V = 2246.6 (9) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn70
diffractometer
3836 independent reflections
Radiation source: fine-focus sealed tube3439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 7.314 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2524
Tmin = 0.980, Tmax = 0.980l = 1416
14368 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0756P)2 + 0.3064P]
where P = (Fo2 + 2Fc2)/3
3836 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C28H22F2O4V = 2246.6 (9) Å3
Mr = 460.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8592 (18) ŵ = 0.10 mm1
b = 21.243 (5) ÅT = 173 K
c = 13.941 (3) Å0.20 × 0.20 × 0.20 mm
β = 105.141 (3)°
Data collection top
Rigaku Saturn70
diffractometer
3836 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3439 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.980Rint = 0.031
14368 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
3836 reflectionsΔρmin = 0.18 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.20117 (11)0.21137 (4)0.11577 (9)0.0549 (3)
F21.12357 (11)0.23089 (4)0.40563 (7)0.0453 (2)
O10.52489 (11)0.33949 (4)0.12884 (7)0.0287 (2)
O20.39925 (11)0.37322 (4)0.32983 (7)0.0300 (2)
O30.19889 (11)0.41165 (4)0.05336 (6)0.0281 (2)
O40.71334 (12)0.48080 (4)0.44235 (7)0.0332 (2)
C10.36340 (14)0.43375 (6)0.10775 (9)0.0207 (3)
C20.27492 (15)0.45634 (6)0.01510 (9)0.0235 (3)
C30.27392 (16)0.52098 (6)0.00825 (9)0.0261 (3)
H30.21240.53570.07230.031*
C40.36247 (16)0.56209 (6)0.06242 (10)0.0269 (3)
H40.36260.60560.04670.032*
C50.54467 (17)0.58524 (6)0.23023 (10)0.0279 (3)
H50.54340.62860.21310.033*
C60.63394 (17)0.56678 (6)0.32334 (10)0.0287 (3)
H60.69490.59680.37040.034*
C70.63480 (16)0.50247 (6)0.34901 (9)0.0257 (3)
C80.55115 (15)0.45756 (5)0.28119 (9)0.0216 (3)
C90.45706 (14)0.47612 (5)0.18297 (9)0.0208 (3)
C100.45389 (15)0.54162 (6)0.15839 (9)0.0240 (3)
C110.37995 (15)0.36319 (5)0.11976 (8)0.0210 (3)
C120.22361 (15)0.32380 (5)0.11927 (9)0.0220 (3)
C130.24445 (17)0.25880 (6)0.12850 (11)0.0324 (3)
H130.35750.24060.13580.039*
C140.10147 (19)0.22059 (7)0.12717 (13)0.0412 (4)
H140.11450.17620.13310.049*
C150.06047 (17)0.24858 (7)0.11706 (11)0.0346 (3)
C160.08619 (16)0.31241 (6)0.10869 (10)0.0305 (3)
H160.19950.33030.10210.037*
C170.05794 (16)0.34984 (6)0.11013 (9)0.0260 (3)
H170.04370.39420.10480.031*
C180.54065 (15)0.39165 (6)0.32057 (8)0.0223 (3)
C190.70005 (15)0.35089 (6)0.34630 (8)0.0224 (3)
C200.68344 (17)0.28956 (6)0.37819 (10)0.0307 (3)
H200.57310.27550.38590.037*
C210.82595 (19)0.24894 (6)0.39870 (11)0.0354 (3)
H210.81480.20700.41990.042*
C220.98441 (17)0.27100 (6)0.38757 (10)0.0306 (3)
C231.00746 (17)0.33129 (6)0.35714 (10)0.0312 (3)
H231.11890.34520.35080.037*
C240.86278 (16)0.37107 (6)0.33609 (9)0.0274 (3)
H240.87490.41280.31430.033*
C250.06420 (17)0.43112 (7)0.13949 (10)0.0302 (3)
H25A0.11710.45420.18630.036*
H25B0.02160.45910.11990.036*
C260.0255 (2)0.37232 (7)0.18738 (12)0.0454 (4)
H26A0.06730.34790.13840.055*
H26B0.05820.34700.21210.055*
H26C0.12590.38370.24290.055*
C270.76537 (19)0.52558 (7)0.52180 (10)0.0344 (3)
H27A0.66550.55360.52340.041*
H27B0.86410.55180.51270.041*
C280.82134 (19)0.48859 (8)0.61620 (10)0.0383 (3)
H28A0.85080.51750.67290.046*
H28B0.92500.46320.61540.046*
H28C0.72490.46090.62210.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0318 (5)0.0366 (5)0.0949 (8)0.0117 (4)0.0141 (5)0.0159 (5)
F20.0370 (5)0.0385 (5)0.0562 (6)0.0174 (4)0.0046 (4)0.0041 (4)
O10.0185 (4)0.0284 (5)0.0384 (5)0.0045 (3)0.0059 (4)0.0015 (4)
O20.0231 (5)0.0318 (5)0.0367 (5)0.0034 (4)0.0105 (4)0.0029 (4)
O30.0288 (5)0.0281 (5)0.0231 (5)0.0021 (4)0.0008 (4)0.0001 (3)
O40.0414 (5)0.0268 (5)0.0251 (5)0.0018 (4)0.0025 (4)0.0040 (4)
C10.0162 (5)0.0229 (6)0.0242 (6)0.0004 (4)0.0073 (5)0.0013 (5)
C20.0178 (6)0.0274 (6)0.0256 (6)0.0010 (5)0.0062 (5)0.0011 (5)
C30.0242 (6)0.0279 (6)0.0262 (6)0.0053 (5)0.0067 (5)0.0060 (5)
C40.0260 (6)0.0229 (6)0.0331 (7)0.0032 (5)0.0102 (5)0.0063 (5)
C50.0291 (6)0.0192 (6)0.0365 (7)0.0005 (5)0.0104 (5)0.0005 (5)
C60.0283 (6)0.0227 (6)0.0341 (7)0.0019 (5)0.0062 (5)0.0064 (5)
C70.0231 (6)0.0259 (6)0.0272 (7)0.0022 (5)0.0048 (5)0.0014 (5)
C80.0181 (5)0.0210 (6)0.0260 (6)0.0017 (5)0.0062 (5)0.0006 (5)
C90.0162 (5)0.0217 (6)0.0258 (6)0.0011 (4)0.0078 (5)0.0002 (5)
C100.0211 (6)0.0222 (6)0.0303 (7)0.0016 (5)0.0094 (5)0.0016 (5)
C110.0190 (6)0.0232 (6)0.0198 (6)0.0016 (5)0.0035 (4)0.0014 (5)
C120.0216 (6)0.0218 (6)0.0207 (6)0.0009 (5)0.0024 (4)0.0004 (4)
C130.0253 (6)0.0258 (7)0.0447 (8)0.0046 (5)0.0066 (6)0.0056 (6)
C140.0355 (8)0.0223 (7)0.0637 (10)0.0003 (6)0.0094 (7)0.0088 (6)
C150.0265 (7)0.0309 (7)0.0440 (8)0.0084 (6)0.0052 (6)0.0077 (6)
C160.0207 (6)0.0326 (7)0.0369 (7)0.0014 (5)0.0054 (5)0.0052 (6)
C170.0229 (6)0.0222 (6)0.0324 (7)0.0018 (5)0.0065 (5)0.0021 (5)
C180.0229 (6)0.0244 (6)0.0190 (6)0.0019 (5)0.0044 (5)0.0019 (5)
C190.0235 (6)0.0226 (6)0.0198 (6)0.0005 (5)0.0034 (5)0.0001 (5)
C200.0293 (7)0.0288 (7)0.0347 (7)0.0012 (5)0.0092 (5)0.0063 (5)
C210.0410 (8)0.0244 (6)0.0394 (8)0.0032 (6)0.0082 (6)0.0084 (6)
C220.0302 (7)0.0292 (7)0.0284 (7)0.0100 (5)0.0006 (5)0.0004 (5)
C230.0221 (6)0.0328 (7)0.0374 (7)0.0005 (5)0.0057 (5)0.0011 (6)
C240.0255 (6)0.0225 (6)0.0333 (7)0.0015 (5)0.0059 (5)0.0020 (5)
C250.0260 (6)0.0348 (7)0.0259 (7)0.0028 (5)0.0003 (5)0.0029 (5)
C260.0436 (8)0.0419 (9)0.0395 (8)0.0017 (7)0.0094 (7)0.0002 (7)
C270.0387 (7)0.0339 (7)0.0285 (7)0.0037 (6)0.0049 (6)0.0085 (6)
C280.0374 (8)0.0470 (9)0.0280 (7)0.0011 (6)0.0041 (6)0.0037 (6)
Geometric parameters (Å, º) top
F1—C151.3555 (15)C14—C151.378 (2)
F2—C221.3571 (15)C14—H140.9500
O1—C111.2213 (14)C15—C161.371 (2)
O2—C181.2165 (15)C16—C171.3799 (18)
O3—C21.3680 (15)C16—H160.9500
O3—C251.4385 (15)C17—H170.9500
O4—C71.3662 (16)C18—C191.4876 (16)
O4—C271.4360 (16)C19—C241.3909 (17)
C1—C21.3831 (17)C19—C201.3936 (18)
C1—C91.4313 (17)C20—C211.3833 (19)
C1—C111.5100 (16)C20—H200.9500
C2—C31.4107 (17)C21—C221.377 (2)
C3—C41.3636 (19)C21—H210.9500
C3—H30.9500C22—C231.3760 (19)
C4—C101.4118 (18)C23—C241.3852 (18)
C4—H40.9500C23—H230.9500
C5—C61.3619 (19)C24—H240.9500
C5—C101.4132 (18)C25—C261.502 (2)
C5—H50.9500C25—H25A0.9900
C6—C71.4118 (18)C25—H25B0.9900
C6—H60.9500C26—H26A0.9800
C7—C81.3826 (17)C26—H26B0.9800
C8—C91.4311 (17)C26—H26C0.9800
C8—C181.5140 (16)C27—C281.497 (2)
C9—C101.4316 (17)C27—H27A0.9900
C11—C121.4851 (16)C27—H27B0.9900
C12—C171.3896 (17)C28—H28A0.9800
C12—C131.3925 (18)C28—H28B0.9800
C13—C141.3823 (19)C28—H28C0.9800
C13—H130.9500
C2—O3—C25118.36 (10)C17—C16—H16121.1
C7—O4—C27118.57 (10)C16—C17—C12121.19 (12)
C2—C1—C9120.19 (11)C16—C17—H17119.4
C2—C1—C11117.11 (10)C12—C17—H17119.4
C9—C1—C11122.02 (10)O2—C18—C19121.48 (11)
O3—C2—C1115.60 (11)O2—C18—C8118.29 (11)
O3—C2—C3122.64 (11)C19—C18—C8120.23 (10)
C1—C2—C3121.63 (11)C24—C19—C20119.08 (11)
C4—C3—C2119.05 (11)C24—C19—C18122.33 (11)
C4—C3—H3120.5C20—C19—C18118.55 (11)
C2—C3—H3120.5C21—C20—C19120.72 (12)
C3—C4—C10121.66 (12)C21—C20—H20119.6
C3—C4—H4119.2C19—C20—H20119.6
C10—C4—H4119.2C22—C21—C20118.15 (12)
C6—C5—C10121.71 (12)C22—C21—H21120.9
C6—C5—H5119.1C20—C21—H21120.9
C10—C5—H5119.1F2—C22—C23118.49 (12)
C5—C6—C7119.17 (12)F2—C22—C21118.31 (12)
C5—C6—H6120.4C23—C22—C21123.19 (12)
C7—C6—H6120.4C22—C23—C24117.79 (12)
O4—C7—C8115.77 (11)C22—C23—H23121.1
O4—C7—C6122.58 (11)C24—C23—H23121.1
C8—C7—C6121.62 (12)C23—C24—C19121.07 (12)
C7—C8—C9119.92 (11)C23—C24—H24119.5
C7—C8—C18116.83 (11)C19—C24—H24119.5
C9—C8—C18122.57 (10)O3—C25—C26106.83 (11)
C8—C9—C1124.47 (11)O3—C25—H25A110.4
C8—C9—C10117.98 (11)C26—C25—H25A110.4
C1—C9—C10117.54 (11)O3—C25—H25B110.4
C4—C10—C5120.50 (11)C26—C25—H25B110.4
C4—C10—C9119.92 (11)H25A—C25—H25B108.6
C5—C10—C9119.57 (11)C25—C26—H26A109.5
O1—C11—C12121.09 (11)C25—C26—H26B109.5
O1—C11—C1118.14 (10)H26A—C26—H26B109.5
C12—C11—C1120.77 (9)C25—C26—H26C109.5
C17—C12—C13119.21 (11)H26A—C26—H26C109.5
C17—C12—C11122.03 (11)H26B—C26—H26C109.5
C13—C12—C11118.76 (11)O4—C27—C28106.82 (12)
C14—C13—C12120.36 (12)O4—C27—H27A110.4
C14—C13—H13119.8C28—C27—H27A110.4
C12—C13—H13119.8O4—C27—H27B110.4
C15—C14—C13118.29 (13)C28—C27—H27B110.4
C15—C14—H14120.9H27A—C27—H27B108.6
C13—C14—H14120.9C27—C28—H28A109.5
F1—C15—C16118.28 (12)C27—C28—H28B109.5
F1—C15—C14118.57 (12)H28A—C28—H28B109.5
C16—C15—C14123.15 (12)C27—C28—H28C109.5
C15—C16—C17117.80 (12)H28A—C28—H28C109.5
C15—C16—H16121.1H28B—C28—H28C109.5
C25—O3—C2—C1162.02 (10)C2—C1—C11—C1270.49 (14)
C25—O3—C2—C321.99 (16)C9—C1—C11—C12118.99 (12)
C9—C1—C2—O3176.08 (9)O1—C11—C12—C17179.27 (11)
C11—C1—C2—O35.37 (15)C1—C11—C12—C171.48 (17)
C9—C1—C2—C30.05 (17)O1—C11—C12—C130.57 (17)
C11—C1—C2—C3170.66 (10)C1—C11—C12—C13178.68 (11)
O3—C2—C3—C4175.76 (11)C17—C12—C13—C140.9 (2)
C1—C2—C3—C40.01 (18)C11—C12—C13—C14179.24 (13)
C2—C3—C4—C100.45 (18)C12—C13—C14—C150.3 (2)
C10—C5—C6—C70.46 (18)C13—C14—C15—F1179.95 (13)
C27—O4—C7—C8165.39 (11)C13—C14—C15—C160.3 (2)
C27—O4—C7—C612.87 (17)F1—C15—C16—C17179.97 (12)
C5—C6—C7—O4176.44 (11)C14—C15—C16—C170.3 (2)
C5—C6—C7—C81.72 (19)C15—C16—C17—C120.31 (19)
O4—C7—C8—C9176.68 (10)C13—C12—C17—C160.90 (19)
C6—C7—C8—C91.59 (18)C11—C12—C17—C16179.25 (11)
O4—C7—C8—C185.96 (16)C7—C8—C18—O2106.26 (13)
C6—C7—C8—C18172.32 (11)C9—C8—C18—O264.20 (15)
C7—C8—C9—C1178.81 (11)C7—C8—C18—C1974.15 (14)
C18—C8—C9—C18.64 (17)C9—C8—C18—C19115.39 (12)
C7—C8—C9—C100.23 (16)O2—C18—C19—C24179.91 (11)
C18—C8—C9—C10170.41 (10)C8—C18—C19—C240.33 (17)
C2—C1—C9—C8179.41 (11)O2—C18—C19—C202.35 (18)
C11—C1—C9—C810.35 (17)C8—C18—C19—C20177.23 (11)
C2—C1—C9—C100.36 (16)C24—C19—C20—C210.56 (19)
C11—C1—C9—C10170.60 (10)C18—C19—C20—C21177.08 (12)
C3—C4—C10—C5179.97 (11)C19—C20—C21—C220.6 (2)
C3—C4—C10—C90.86 (18)C20—C21—C22—F2178.65 (12)
C6—C5—C10—C4179.98 (12)C20—C21—C22—C230.0 (2)
C6—C5—C10—C90.87 (18)F2—C22—C23—C24178.07 (11)
C8—C9—C10—C4179.91 (10)C21—C22—C23—C240.6 (2)
C1—C9—C10—C40.80 (16)C22—C23—C24—C190.60 (19)
C8—C9—C10—C50.97 (16)C20—C19—C24—C230.05 (19)
C1—C9—C10—C5179.92 (10)C18—C19—C24—C23177.59 (11)
C2—C1—C11—O1108.79 (12)C2—O3—C25—C26166.28 (11)
C9—C1—C11—O161.74 (15)C7—O4—C27—C28171.67 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.303.1939 (17)156
C23—H23···O2ii0.952.373.3214 (18)176
C6—H6···F1iii0.952.443.1937 (17)136
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H22F2O4
Mr460.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.8592 (18), 21.243 (5), 13.941 (3)
β (°) 105.141 (3)
V3)2246.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn70
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.980, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
14368, 3836, 3439
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.108, 1.00
No. of reflections3836
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2006), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.303.1939 (17)156
C23—H23···O2ii0.952.373.3214 (18)176
C6—H6···F1iii0.952.443.1937 (17)136
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors express their gratitude to Associate Professor Hikaru Takaya and Professor Masaharu Nakamura, Institute for Chemical Research, Kyoto University, for their kind advice. This work was partially supported by the Collaborative Research Program of the Institute for Chemical Research, Kyoto University (grant No. 2012–72).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIsogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.  CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds