organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3-(10H-pheno­thia­zin-10-yl)buta-1,3-diene-1,1,4,4-tetra­carbo­nitrile

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

(Received 19 March 2013; accepted 1 April 2013; online 5 April 2013)

In the title compound, C21H11N5S, the pheno­thia­zine unit has a butterfly structure, and the central six-membered ring adopts a boat conformation. The dihedral angle between the benzene rings is 127.64 (6)°, which is smaller than those reported for similar compounds because of the steric repulsion between the pheno­thia­zine and its tetra­cyano-1,3-butadiene substituent. The di­cyano­vinyl groups are almost orthogonal to one another, making a dihedral angle of 80.58 (6)°. In the crystal, the mol­ecules are aligned along the b axis. Four kinds of weak C—H⋯N inter­actions are recognized, one of which connects the mol­ecules into a one-dimensional array and the remaining three link these arrays.

Related literature

For applications of tetra­cyano-1,3-butadienes in photonics and non-linear optics, see: Faupel et al. (2007[Faupel, F., Dimitrakopoulos, C., Kahn, A. & Wöll, C. (2007). Chem. Rev. 107, 923-1386.]). For the preparation and structure of 10-(prop-1-yn-1-yl)-10H-pheno­thia­zine, see: Zaugg et al. (1958[Zaugg, H. E., Sweett, L. R. & Stone, G. R. (1958). J. Org. Chem. 23, 1389-1390.]); Umezono & Okuno (2012[Umezono, S. & Okuno, T. (2012). Acta Cryst. E68, o2790.]). For the structures of other related N-substituted pheno­thia­zines, see: Chu & Van der Helm (1974[Chu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489-2490.], 1975[Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179-1183.]); Tokunaga & Okuno (2012[Tokunaga, E. & Okuno, T. (2012). Acta Cryst. E68, o3369.]).

[Scheme 1]

Experimental

Crystal data
  • C21H11N5S

  • Mr = 365.41

  • Monoclinic, P 21

  • a = 10.217 (3) Å

  • b = 7.848 (3) Å

  • c = 11.369 (3) Å

  • β = 97.316 (4)°

  • V = 904.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 93 K

  • 0.10 × 0.10 × 0.05 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • 7524 measured reflections

  • 3753 independent reflections

  • 3494 reflections with F2 > 2σ(F2)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.04

  • 3753 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1526 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯N4i 0.98 2.65 3.186 (3) 114
C2—H2⋯N5ii 0.95 2.59 3.352 (3) 137
C10—H10⋯N2iii 0.95 2.70 3.413 (3) 133
C8—H8⋯N2iv 0.95 2.62 3.480 (3) 151
Symmetry codes: (i) x, y+1, z; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Tetracyano-1,3-butadienes, which are prepared by TCNE addition to acetylene compounds carrying an electron donating part, have been attracted interest from the viewpoint of applications in photonics and nonlinear optics (Faupel et al., 2007). The title compound, C21H11N5S1, is a TCNE adduct of 10-(prop-1-yn-1-yl)-10H-phenothiazine which is known as the first ynamine compound (Zaugg et al., 1958).

The phenothiazine moiety has a butterfly structure, and the central six-membered ring adopts a boat conformation (Fig. 1). The dihedral angle between the C1—C6 and C7—C12 planes is 127.64 (6)°. This is smaller than angles reported for related phenothiazine systems (Chu & Helm, 1974, 1975; Umezono & Okuno, 2012; Tokunaga & Okuno, 2012), and is presumably because of the steric repulsion between the phenothiazine ring system and its tetracyano-1,3-butadiene substituent. The structure around the N1 is pyrimidal and the N1 atom lies 0.1440 (14) Å out of the C1/C12/C13 plane. This plane is inclined at 10.84 (4)° to the C13/C16—C18/N2/N3 dicyanovinyl plane (r.m.s. deviation = 0.0095 Å), indicating good π-conjugation. This latter plane is approximately orthogonal to the other C14/C19—C21/N4/N5 plane (r.m.s. deviation = 0.0170 Å), with a dihedral angle of 80.58 (6)° between them.

The molecules align along the b axis. Four kinds of weak C—H···N interactions are recognized in each molecule, one of which connects the molecules within the one-dimensional array and the ramaining three link these arrays (Fig. 2, Table 1).

Related literature top

For applications of tetracyano-1,3-butadienes in photonics and non-linear optics, see: Faupel et al. (2007). For the preparation and structure of 10-(prop-1-yn-1-yl)-10H-phenothiazine, see: Zaugg et al. (1958); Umezono & Okuno (2012). For the structures of other related N-substituted phenothiazines, see: Chu & Van der Helm (1974, 1975); Tokunaga & Okuno (2012).

Experimental top

A solution of 10-(prop-1-yn-1-yl)-10H-phenothiazine (0.50 g, 2.1 mmol) (Zaugg et al., 1958) in dichloromethane (25 ml) was added to a solution of ethene-1,1,2,2-tetracarbonitrile (0.27 g, 2.1 mmol) in dichloromethane (150 ml). The solution was stirred for a day and was concentrated by evaporation. The residue was purified by gel permeation chromatography (GPC) to give the title compound as pale blue powder (0.48 g, 62%). Single crystals with sufficient quality for X-ray crystallographic analysis were prepared by recrystallization from an acetonitrile solution.

Refinement top

The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom).

Structure description top

Tetracyano-1,3-butadienes, which are prepared by TCNE addition to acetylene compounds carrying an electron donating part, have been attracted interest from the viewpoint of applications in photonics and nonlinear optics (Faupel et al., 2007). The title compound, C21H11N5S1, is a TCNE adduct of 10-(prop-1-yn-1-yl)-10H-phenothiazine which is known as the first ynamine compound (Zaugg et al., 1958).

The phenothiazine moiety has a butterfly structure, and the central six-membered ring adopts a boat conformation (Fig. 1). The dihedral angle between the C1—C6 and C7—C12 planes is 127.64 (6)°. This is smaller than angles reported for related phenothiazine systems (Chu & Helm, 1974, 1975; Umezono & Okuno, 2012; Tokunaga & Okuno, 2012), and is presumably because of the steric repulsion between the phenothiazine ring system and its tetracyano-1,3-butadiene substituent. The structure around the N1 is pyrimidal and the N1 atom lies 0.1440 (14) Å out of the C1/C12/C13 plane. This plane is inclined at 10.84 (4)° to the C13/C16—C18/N2/N3 dicyanovinyl plane (r.m.s. deviation = 0.0095 Å), indicating good π-conjugation. This latter plane is approximately orthogonal to the other C14/C19—C21/N4/N5 plane (r.m.s. deviation = 0.0170 Å), with a dihedral angle of 80.58 (6)° between them.

The molecules align along the b axis. Four kinds of weak C—H···N interactions are recognized in each molecule, one of which connects the molecules within the one-dimensional array and the ramaining three link these arrays (Fig. 2, Table 1).

For applications of tetracyano-1,3-butadienes in photonics and non-linear optics, see: Faupel et al. (2007). For the preparation and structure of 10-(prop-1-yn-1-yl)-10H-phenothiazine, see: Zaugg et al. (1958); Umezono & Okuno (2012). For the structures of other related N-substituted phenothiazines, see: Chu & Van der Helm (1974, 1975); Tokunaga & Okuno (2012).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.
[Figure 2] Fig. 2. A view of the intermolecular interactions of the title compound. [Symmetry codes: (i) x, y + 1, z (ii) -x, y - 1/2, -z + 1 (iii) -x + 1, y - 1/2, -z (iv) -x + 1, y + 1/2, -z.]
2-Methyl-3-(10H-phenothiazin-10-yl)buta-1,3-diene-1,1,4,4-tetracarbonitrile top
Crystal data top
C21H11N5SF(000) = 376.00
Mr = 365.41Dx = 1.342 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 3683 reflections
a = 10.217 (3) Åθ = 1.8–30.7°
b = 7.848 (3) ŵ = 0.19 mm1
c = 11.369 (3) ÅT = 93 K
β = 97.316 (4)°Block, pale blue
V = 904.2 (5) Å30.10 × 0.10 × 0.05 mm
Z = 2
Data collection top
Rigaku Saturn724+
diffractometer
Rint = 0.022
Detector resolution: 28.445 pixels mm-1θmax = 27.5°
ω scansh = 1213
7524 measured reflectionsk = 910
3753 independent reflectionsl = 1414
3494 reflections with F2 > 2σ(F2)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.045P)2 + 0.1327P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3753 reflectionsΔρmax = 0.21 e Å3
244 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1526 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Secondary atom site location: difference Fourier map
Crystal data top
C21H11N5SV = 904.2 (5) Å3
Mr = 365.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.217 (3) ŵ = 0.19 mm1
b = 7.848 (3) ÅT = 93 K
c = 11.369 (3) Å0.10 × 0.10 × 0.05 mm
β = 97.316 (4)°
Data collection top
Rigaku Saturn724+
diffractometer
3494 reflections with F2 > 2σ(F2)
7524 measured reflectionsRint = 0.022
3753 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.25 e Å3
3753 reflectionsAbsolute structure: Flack (1983), 1526 Friedel pairs
244 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46875 (4)0.28150 (5)0.24265 (4)0.02108 (10)
N10.27521 (13)0.00720 (18)0.24818 (12)0.0165 (3)
N20.25743 (15)0.0784 (3)0.09700 (14)0.0250 (4)
N30.12618 (16)0.0506 (3)0.02155 (14)0.0300 (4)
N40.03764 (19)0.3121 (3)0.2637 (2)0.0404 (5)
N50.20384 (18)0.1361 (3)0.42695 (17)0.0368 (5)
C10.30948 (16)0.0842 (3)0.36326 (14)0.0173 (4)
C20.26062 (16)0.0219 (3)0.46368 (14)0.0192 (4)
C30.29033 (17)0.1081 (3)0.57034 (15)0.0239 (4)
C40.36780 (17)0.2539 (3)0.57534 (15)0.0253 (4)
C50.42255 (17)0.3100 (3)0.47617 (16)0.0235 (4)
C60.39519 (16)0.2229 (3)0.36953 (14)0.0181 (4)
C70.48704 (16)0.0732 (3)0.18623 (13)0.0167 (4)
C80.59958 (17)0.0265 (3)0.13638 (14)0.0199 (4)
C90.61205 (17)0.1403 (3)0.09858 (15)0.0209 (4)
C100.51615 (17)0.2620 (3)0.11218 (15)0.0210 (4)
C110.40235 (15)0.2157 (3)0.16050 (13)0.0190 (3)
C120.38819 (16)0.0473 (3)0.19417 (14)0.0165 (4)
C130.15512 (16)0.0349 (2)0.18619 (14)0.0162 (4)
C140.05534 (16)0.1133 (3)0.25659 (14)0.0180 (4)
C150.05982 (17)0.3019 (3)0.27492 (15)0.0218 (4)
C160.11722 (16)0.0065 (3)0.06727 (15)0.0169 (4)
C170.19996 (17)0.0424 (3)0.01964 (15)0.0190 (4)
C180.01790 (17)0.0327 (3)0.01951 (14)0.0208 (4)
C190.03508 (17)0.0124 (3)0.29768 (15)0.0202 (4)
C200.03738 (18)0.1681 (3)0.27904 (18)0.0253 (4)
C210.13076 (18)0.0814 (3)0.36816 (17)0.0260 (4)
H20.20780.07800.45930.0231*
H30.25770.06740.63980.0287*
H40.38370.31620.64740.0303*
H50.47830.40730.48140.0282*
H80.66680.10770.12840.0239*
H90.68750.17190.06270.0250*
H100.52810.37650.08860.0252*
H110.33610.29760.17020.0228*
H15A0.07280.32680.36010.0261*
H15B0.02340.35250.23890.0261*
H15C0.13300.35000.23780.0261*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0262 (2)0.0173 (2)0.0209 (2)0.00254 (18)0.00752 (15)0.00042 (16)
N10.0147 (7)0.0192 (8)0.0154 (7)0.0000 (6)0.0014 (5)0.0034 (6)
N20.0252 (8)0.0294 (9)0.0208 (8)0.0023 (7)0.0040 (6)0.0002 (7)
N30.0214 (8)0.0444 (11)0.0240 (8)0.0023 (8)0.0017 (7)0.0006 (7)
N40.0411 (11)0.0224 (10)0.0632 (14)0.0058 (8)0.0282 (10)0.0079 (9)
N50.0355 (10)0.0319 (11)0.0470 (11)0.0014 (8)0.0204 (9)0.0128 (8)
C10.0180 (8)0.0184 (9)0.0151 (8)0.0022 (7)0.0008 (6)0.0008 (7)
C20.0175 (8)0.0192 (9)0.0215 (8)0.0015 (7)0.0040 (7)0.0028 (7)
C30.0217 (9)0.0338 (11)0.0168 (8)0.0078 (8)0.0047 (7)0.0035 (7)
C40.0232 (9)0.0339 (12)0.0180 (8)0.0067 (8)0.0003 (7)0.0069 (8)
C50.0203 (8)0.0246 (11)0.0251 (9)0.0011 (8)0.0009 (7)0.0074 (7)
C60.0180 (8)0.0194 (8)0.0171 (8)0.0018 (7)0.0030 (7)0.0009 (6)
C70.0187 (8)0.0174 (8)0.0136 (7)0.0018 (7)0.0002 (6)0.0012 (6)
C80.0175 (8)0.0266 (9)0.0154 (8)0.0004 (8)0.0018 (6)0.0037 (7)
C90.0183 (8)0.0294 (10)0.0152 (8)0.0064 (8)0.0034 (6)0.0018 (7)
C100.0221 (9)0.0224 (10)0.0172 (8)0.0048 (7)0.0020 (7)0.0039 (6)
C110.0177 (8)0.0210 (8)0.0175 (7)0.0000 (8)0.0009 (6)0.0019 (7)
C120.0156 (8)0.0210 (8)0.0126 (7)0.0030 (7)0.0002 (6)0.0011 (6)
C130.0180 (8)0.0109 (8)0.0199 (8)0.0016 (7)0.0033 (6)0.0001 (6)
C140.0188 (9)0.0173 (9)0.0173 (8)0.0015 (7)0.0001 (6)0.0016 (6)
C150.0243 (9)0.0173 (10)0.0244 (8)0.0010 (8)0.0057 (7)0.0003 (7)
C160.0159 (8)0.0155 (8)0.0195 (8)0.0017 (7)0.0033 (6)0.0002 (7)
C170.0184 (8)0.0193 (9)0.0186 (8)0.0000 (7)0.0003 (7)0.0007 (6)
C180.0230 (10)0.0238 (9)0.0159 (8)0.0027 (8)0.0037 (7)0.0016 (7)
C190.0197 (8)0.0179 (9)0.0234 (8)0.0010 (7)0.0045 (7)0.0050 (7)
C200.0208 (9)0.0246 (10)0.0331 (10)0.0042 (7)0.0139 (8)0.0049 (8)
C210.0234 (10)0.0231 (10)0.0329 (10)0.0047 (8)0.0090 (8)0.0066 (8)
Geometric parameters (Å, º) top
S1—C61.7701 (18)C11—C121.389 (3)
S1—C71.7745 (19)C13—C141.505 (3)
N1—C11.443 (2)C13—C161.376 (3)
N1—C121.440 (3)C14—C151.495 (3)
N1—C131.352 (2)C14—C191.345 (3)
N2—C171.153 (3)C16—C171.432 (3)
N3—C181.153 (3)C16—C181.432 (3)
N4—C201.143 (3)C19—C201.432 (3)
N5—C211.147 (3)C19—C211.446 (3)
C1—C21.392 (3)C2—H20.950
C1—C61.393 (3)C3—H30.950
C2—C31.388 (3)C4—H40.950
C3—C41.388 (3)C5—H50.950
C4—C51.392 (3)C8—H80.950
C5—C61.389 (3)C9—H90.950
C7—C81.394 (3)C10—H100.950
C7—C121.395 (3)C11—H110.950
C8—C91.389 (3)C15—H15A0.980
C9—C101.391 (3)C15—H15B0.980
C10—C111.396 (3)C15—H15C0.980
C6—S1—C797.49 (9)C13—C16—C18119.09 (16)
C1—N1—C12113.32 (13)C17—C16—C18113.70 (15)
C1—N1—C13120.28 (14)N2—C17—C16174.02 (18)
C12—N1—C13123.30 (14)N3—C18—C16178.0 (2)
N1—C1—C2121.70 (15)C14—C19—C20122.01 (18)
N1—C1—C6116.87 (15)C14—C19—C21120.99 (18)
C2—C1—C6121.43 (15)C20—C19—C21116.93 (17)
C1—C2—C3118.95 (17)N4—C20—C19179.1 (3)
C2—C3—C4119.83 (17)N5—C21—C19178.0 (2)
C3—C4—C5120.88 (17)C1—C2—H2120.520
C4—C5—C6119.61 (17)C3—C2—H2120.526
S1—C6—C1119.39 (13)C2—C3—H3120.088
S1—C6—C5121.62 (14)C4—C3—H3120.079
C1—C6—C5118.99 (16)C3—C4—H4119.564
S1—C7—C8121.29 (14)C5—C4—H4119.554
S1—C7—C12119.38 (13)C4—C5—H5120.189
C8—C7—C12119.32 (16)C6—C5—H5120.199
C7—C8—C9119.11 (17)C7—C8—H8120.448
C8—C9—C10121.28 (17)C9—C8—H8120.446
C9—C10—C11119.94 (18)C8—C9—H9119.360
C10—C11—C12118.51 (17)C10—C9—H9119.363
N1—C12—C7116.93 (15)C9—C10—H10120.029
N1—C12—C11121.16 (15)C11—C10—H10120.035
C7—C12—C11121.71 (16)C10—C11—H11120.744
N1—C13—C14114.81 (14)C12—C11—H11120.746
N1—C13—C16127.51 (16)C14—C15—H15A109.470
C14—C13—C16117.63 (14)C14—C15—H15B109.468
C13—C14—C15117.89 (15)C14—C15—H15C109.466
C13—C14—C19119.08 (16)H15A—C15—H15B109.474
C15—C14—C19123.01 (17)H15A—C15—H15C109.475
C13—C16—C17127.17 (15)H15B—C15—H15C109.474
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···N4i0.982.653.186 (3)114
C2—H2···N5ii0.952.593.352 (3)137
C10—H10···N2iii0.952.703.413 (3)133
C8—H8···N2iv0.952.623.480 (3)151
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1; (iii) x+1, y1/2, z; (iv) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H11N5S
Mr365.41
Crystal system, space groupMonoclinic, P21
Temperature (K)93
a, b, c (Å)10.217 (3), 7.848 (3), 11.369 (3)
β (°) 97.316 (4)
V3)904.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerRigaku Saturn724+
Absorption correction
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
7524, 3753, 3494
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.04
No. of reflections3753
No. of parameters244
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25
Absolute structureFlack (1983), 1526 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: CrystalClear (Rigaku, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···N4i0.982.6543.186 (3)114
C2—H2···N5ii0.952.5933.352 (3)137
C10—H10···N2iii0.952.6963.413 (3)133
C8—H8···N2iv0.952.6203.480 (3)151
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1; (iii) x+1, y1/2, z; (iv) x+1, y+1/2, z.
 

Acknowledgements

This work was supported by Research for Promoting Technological Seeds from the Japan Science and Technology Agency (JST).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489–2490.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationChu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179–1183.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFaupel, F., Dimitrakopoulos, C., Kahn, A. & Wöll, C. (2007). Chem. Rev. 107, 923–1386.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokunaga, E. & Okuno, T. (2012). Acta Cryst. E68, o3369.  CSD CrossRef IUCr Journals Google Scholar
First citationUmezono, S. & Okuno, T. (2012). Acta Cryst. E68, o2790.  CSD CrossRef IUCr Journals Google Scholar
First citationZaugg, H. E., Sweett, L. R. & Stone, G. R. (1958). J. Org. Chem. 23, 1389–1390.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds