organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-oxo-3-(3-phthalimidoprop­yl)-2,3-di­hydro-1H-1,3-benzimidazole-1-carboxyl­ate

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014 Rabat, Morocco, cInstitute of Nanomaterials and Nanotechnology, MASCIR, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Université Mohammed V-Agdal, Faculté des Sciences, Avenue Ibn Battouta, BP 1014 Rabat, Morocco
*Correspondence e-mail: d_belaziz@yahoo.fr

(Received 19 March 2013; accepted 26 March 2013; online 5 April 2013)

In the title compound, C21H19N3O5, the phthalimide and benzamidazole ring systems are linked by a propyl chain. The benzamidazole unit also carries an eth­oxy­carbonyl substit­uent. The phthalimido and benzimidazole ring systems are essentially planar, the maximum deviations from their mean planes being 0.008 (2) and 0.020 (2) Å, respectively. The two ring systems are almost orthogonal to one another, making a dihedral angle of 82.37 (8)°. In the crystal, C—H⋯O hydrogen bonds and C—H⋯π contacts stack the mol­ecules along the b axis.

Related literature

For the pharmacological and biochemical properties of benzamidazoles, see: Gravatt et al. (1994[Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338-4345.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Kim et al. (1996[Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992-998.]); Roth et al. (1997[Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.]); Zarrinmayeh et al. (1998[Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709-2719.]); Spasov et al. (1999[Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232-243.]). For their use as inter­mediates in many organic reactions, see: Bai et al. (2001[Bai, Y., Lu, J., Shi, Z. & Yang, B. (2001). Synlett, 12, 544-546.]); Hasegawa et al. (1999[Hasegawa, E., Yoneoka, A., Suzuki, K., Kato, T., Kitazume, T. & Yangi, K. (1999). Tetrahedron, 55, 12957-12968.]). For their use as ligands to transition metals, see: Bouwman et al. (1990[Bouwman, E., Driessen, W. L. & Reedjik, J. (1990). Coord. Chem. Rev. 104, 143-172.]). For a related structure, see: Belaziz et al. (2013[Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19N3O5

  • Mr = 393.39

  • Triclinic, [P \overline 1]

  • a = 5.2850 (7) Å

  • b = 10.6663 (12) Å

  • c = 16.505 (2) Å

  • α = 86.454 (7)°

  • β = 83.424 (8)°

  • γ = 89.376 (7)°

  • V = 922.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.41 × 0.32 × 0.21 mm

Data collection
  • Bruker X8 APEXII area-detector diffractometer

  • 19211 measured reflections

  • 3384 independent reflections

  • 2405 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.145

  • S = 1.04

  • 3384 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O2i 0.97 2.72 3.523 (3) 141
C13—H13⋯O2i 0.93 2.67 3.375 (3) 133
C21—H21B⋯O3ii 0.96 2.67 3.261 (4) 121
C11—H11A⋯O1iii 0.97 2.68 3.201 (3) 114
C5—H5⋯Cg1iv 0.93 2.91 3.750 (3) 151
Symmetry codes: (i) x+1, y, z; (ii) -x-1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The benzimidazole nucleus is of significant importance in medicinal chemistry. Several publications report benzimidazole-containing compounds showing biological activities (Zarrinmayeh et al., 1998). Substituted benzimidazole derivatives have found commercial applications in veterinary medicine as anthelmintic agents (Spasov et al., 1999). Functionalized benzimidazoles represent an important class of N-containing heterocyclic compounds and have received considerable attention in recent times because of their applications as antiulcer, antihypertensive, antiviral, antifungal, anticancer and antihistamine agents, among others (Gravatt et al., 1994; Horton et al., 2003; Kim et al., 1996; Roth et al., 1997). They are important intermediates in many organic reactions (Bai et al., 2001; Hasegawa et al., 1999) and act as ligands to transition metals for modelling biological systems (Bouwman et al., 1990). Owing to the potential biological and other technical interest of the benzimidazole family of compounds, a number of synthetic strategies have been developed for the preparation of substituted benzimidazoles.

As a continuation of our research into the development of substituted benzimidazol-2-one derivatives (Belaziz et al., 2013) we report here the synthesis of a new benzimidazol-2-one derivative by the reaction of N-(3-bromopropyl)phthalimide with 1-ethoxycarbonyl-benzo[d]imidazol-2(3H)-one using the same conditions to produce the title compound (Scheme 1).

The crystal structure of the title compound is built up from two fused five and six-membered rings (N1C1 to C8) and (N2N3C12 to C18) linked to a (C9 to C11) chain and one of them is linked to an ethoxycarbonyl group (Fig.1). The fused-ring systems are essentially planar, with the maximum deviation of 0.008 (2) Å for C2 atom and 0.020 (2) Å for C14. The dihedral angle between the phthalimido and the benzo[d]imidazol cycles is 82.37 (8)°.

In the crystal structure C21–H21B···O3 and C11–H11···O3 hydrogen bonds form inversion dimers while O2 acts as a bifurcated acceptor forming C9–H9A···O2 and C13–H13···O2 hydrogen bonds, Table 1. These combine with C5–H5···Cg1 contacts to stack molecules along the b axis, Fig. 2.

Related literature top

For the pharmacological and biochemical properties of benzamidazoles, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997); Zarrinmayeh et al. (1998); Spasov et al. (1999). For their use as intermediates in many organic reactions, see: Bai et al. (2001); Hasegawa et al. (1999). For their use as ligands to transition metals, see: Bouwman et al. (1990). For a related structure, see: Belaziz et al. (2013).

Experimental top

To 1-ethoxycarbonyl-benzo[d]imidazol-2(3H)-one (0.2 g, 0.97 mmol), potassium carbonate (0.28 g, 1.94 mmol) and tetra-n-butylammonium bromide (0.03 g, 0.1 mmol) in DMF (20 ml) was added N-(3-bromopropyl)phthalimide (0.28 g, 1.07 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Crystals were isolated when the solvent was allowed to evaporate.

Refinement top

All H atoms could be located in a difference Fourier map and were treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å methyl. Uiso(H) = 1.2 Ueq(aromatic, methylene) and Uiso(H) = 1.5 Ueq (methyl).

Structure description top

The benzimidazole nucleus is of significant importance in medicinal chemistry. Several publications report benzimidazole-containing compounds showing biological activities (Zarrinmayeh et al., 1998). Substituted benzimidazole derivatives have found commercial applications in veterinary medicine as anthelmintic agents (Spasov et al., 1999). Functionalized benzimidazoles represent an important class of N-containing heterocyclic compounds and have received considerable attention in recent times because of their applications as antiulcer, antihypertensive, antiviral, antifungal, anticancer and antihistamine agents, among others (Gravatt et al., 1994; Horton et al., 2003; Kim et al., 1996; Roth et al., 1997). They are important intermediates in many organic reactions (Bai et al., 2001; Hasegawa et al., 1999) and act as ligands to transition metals for modelling biological systems (Bouwman et al., 1990). Owing to the potential biological and other technical interest of the benzimidazole family of compounds, a number of synthetic strategies have been developed for the preparation of substituted benzimidazoles.

As a continuation of our research into the development of substituted benzimidazol-2-one derivatives (Belaziz et al., 2013) we report here the synthesis of a new benzimidazol-2-one derivative by the reaction of N-(3-bromopropyl)phthalimide with 1-ethoxycarbonyl-benzo[d]imidazol-2(3H)-one using the same conditions to produce the title compound (Scheme 1).

The crystal structure of the title compound is built up from two fused five and six-membered rings (N1C1 to C8) and (N2N3C12 to C18) linked to a (C9 to C11) chain and one of them is linked to an ethoxycarbonyl group (Fig.1). The fused-ring systems are essentially planar, with the maximum deviation of 0.008 (2) Å for C2 atom and 0.020 (2) Å for C14. The dihedral angle between the phthalimido and the benzo[d]imidazol cycles is 82.37 (8)°.

In the crystal structure C21–H21B···O3 and C11–H11···O3 hydrogen bonds form inversion dimers while O2 acts as a bifurcated acceptor forming C9–H9A···O2 and C13–H13···O2 hydrogen bonds, Table 1. These combine with C5–H5···Cg1 contacts to stack molecules along the b axis, Fig. 2.

For the pharmacological and biochemical properties of benzamidazoles, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997); Zarrinmayeh et al. (1998); Spasov et al. (1999). For their use as intermediates in many organic reactions, see: Bai et al. (2001); Hasegawa et al. (1999). For their use as ligands to transition metals, see: Bouwman et al. (1990). For a related structure, see: Belaziz et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Crystal packing for the title compound viewed along the a axis. C–H,,,O hydrogen bonds are shown as blue dashed lines with the C–H···π contacts shown as dashed red lines, The red spheres represent the centroids of the C12···C17 rings.
Ethyl 2-oxo-3-(3-phthalimidopropyl)-2,3-dihydro-1H-1,3-benzimidazole-1-carboxylate top
Crystal data top
C21H19N3O5Z = 2
Mr = 393.39F(000) = 412
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2850 (7) ÅCell parameters from 3384 reflections
b = 10.6663 (12) Åθ = 1.2–25.4°
c = 16.505 (2) ŵ = 0.10 mm1
α = 86.454 (7)°T = 296 K
β = 83.424 (8)°Block, colourless
γ = 89.376 (7)°0.41 × 0.32 × 0.21 mm
V = 922.5 (2) Å3
Data collection top
Bruker X8 APEXII area-detector
diffractometer
2405 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.4°, θmin = 1.2°
φ and ω scansh = 66
19211 measured reflectionsk = 1212
3384 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.3912P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3384 reflectionsΔρmax = 0.61 e Å3
263 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Crystal data top
C21H19N3O5γ = 89.376 (7)°
Mr = 393.39V = 922.5 (2) Å3
Triclinic, P1Z = 2
a = 5.2850 (7) ÅMo Kα radiation
b = 10.6663 (12) ŵ = 0.10 mm1
c = 16.505 (2) ÅT = 296 K
α = 86.454 (7)°0.41 × 0.32 × 0.21 mm
β = 83.424 (8)°
Data collection top
Bruker X8 APEXII area-detector
diffractometer
2405 reflections with I > 2σ(I)
19211 measured reflectionsRint = 0.037
3384 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.04Δρmax = 0.61 e Å3
3384 reflectionsΔρmin = 0.38 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.2365 (7)0.1185 (3)0.2119 (2)0.0843 (10)
H50.34370.07580.24150.101*
C210.3239 (7)0.4211 (3)0.6009 (2)0.0908 (10)
H21B0.41520.42410.65450.136*
H21A0.32390.50300.57340.136*
H21C0.15160.39460.60550.136*
N20.2008 (4)0.34071 (17)0.26388 (11)0.0470 (5)
N30.0386 (4)0.26952 (18)0.38811 (11)0.0523 (5)
N10.1200 (4)0.24930 (18)0.00965 (11)0.0510 (5)
C120.3548 (4)0.2414 (2)0.28783 (13)0.0443 (5)
C20.0804 (5)0.2455 (2)0.12718 (14)0.0500 (6)
O30.1555 (4)0.44303 (17)0.32188 (11)0.0689 (5)
C170.2542 (4)0.1945 (2)0.36512 (13)0.0469 (6)
C100.1307 (5)0.3982 (2)0.11910 (14)0.0507 (6)
H10A0.05240.39590.13370.061*
H10B0.16740.46440.07650.061*
C70.1005 (4)0.1658 (2)0.08645 (15)0.0506 (6)
O50.2966 (4)0.3344 (2)0.47224 (11)0.0810 (6)
O40.0387 (4)0.1848 (2)0.51828 (11)0.0833 (6)
C80.0771 (5)0.1668 (2)0.00225 (15)0.0522 (6)
O20.1989 (4)0.10977 (18)0.05886 (12)0.0750 (6)
C180.0058 (5)0.3619 (2)0.32393 (14)0.0520 (6)
C10.2254 (5)0.3000 (2)0.06647 (15)0.0526 (6)
C110.2575 (5)0.4292 (2)0.19332 (13)0.0504 (6)
H11A0.44040.43130.17850.060*
H11B0.20360.51250.20880.060*
C160.3660 (5)0.0934 (2)0.40379 (15)0.0582 (7)
H160.29680.06010.45480.070*
O10.4014 (4)0.37287 (19)0.07584 (12)0.0772 (6)
C190.0985 (6)0.2572 (3)0.46572 (16)0.0624 (7)
C90.2183 (5)0.2738 (2)0.08601 (15)0.0572 (6)
H9A0.40300.27270.07740.069*
H9B0.16450.20680.12650.069*
C140.6862 (5)0.0914 (2)0.28759 (17)0.0619 (7)
H140.83500.05650.26260.074*
C130.5705 (5)0.1904 (2)0.24783 (15)0.0534 (6)
H130.63620.22150.19590.064*
C30.1069 (6)0.2628 (3)0.21100 (16)0.0692 (8)
H30.22950.31660.23860.083*
C150.5848 (5)0.0436 (2)0.36365 (17)0.0646 (7)
H150.66530.02380.38860.078*
C60.2639 (5)0.1006 (3)0.1276 (2)0.0709 (8)
H60.38710.04710.10000.085*
C40.0562 (7)0.1970 (3)0.25264 (19)0.0814 (10)
H40.04260.20640.30940.098*
C200.4465 (6)0.3326 (4)0.55469 (18)0.0879 (10)
H20A0.62160.35760.55000.105*
H20B0.44580.24900.58140.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.092 (2)0.084 (2)0.088 (2)0.0255 (19)0.044 (2)0.0318 (19)
C210.089 (2)0.099 (2)0.083 (2)0.0039 (19)0.0046 (18)0.0065 (19)
N20.0562 (11)0.0444 (10)0.0386 (10)0.0012 (9)0.0001 (9)0.0030 (8)
N30.0660 (13)0.0537 (12)0.0354 (10)0.0038 (10)0.0003 (9)0.0002 (9)
N10.0568 (12)0.0541 (11)0.0418 (11)0.0000 (9)0.0056 (9)0.0010 (9)
C120.0512 (13)0.0402 (12)0.0427 (12)0.0087 (10)0.0106 (10)0.0005 (9)
C20.0597 (15)0.0449 (12)0.0456 (13)0.0100 (11)0.0090 (11)0.0001 (10)
O30.0777 (13)0.0662 (12)0.0581 (11)0.0161 (10)0.0075 (9)0.0029 (9)
C170.0591 (14)0.0431 (12)0.0399 (12)0.0089 (11)0.0103 (10)0.0029 (10)
C100.0571 (14)0.0498 (13)0.0427 (13)0.0048 (11)0.0006 (11)0.0054 (10)
C70.0503 (13)0.0463 (13)0.0561 (14)0.0097 (11)0.0084 (11)0.0066 (11)
O50.0870 (15)0.1053 (16)0.0465 (11)0.0083 (13)0.0089 (10)0.0017 (10)
O40.1133 (17)0.0836 (14)0.0472 (11)0.0033 (12)0.0056 (11)0.0141 (10)
C80.0491 (14)0.0495 (13)0.0551 (15)0.0054 (11)0.0044 (11)0.0007 (11)
O20.0758 (13)0.0763 (13)0.0664 (12)0.0086 (10)0.0165 (10)0.0047 (10)
C180.0630 (15)0.0501 (13)0.0418 (13)0.0022 (12)0.0014 (11)0.0025 (10)
C10.0587 (15)0.0473 (13)0.0498 (14)0.0003 (12)0.0006 (11)0.0021 (11)
C110.0627 (15)0.0427 (12)0.0434 (13)0.0030 (11)0.0013 (11)0.0038 (10)
C160.0827 (19)0.0492 (14)0.0447 (13)0.0104 (13)0.0186 (13)0.0035 (11)
O10.0802 (13)0.0746 (13)0.0742 (13)0.0261 (11)0.0018 (10)0.0006 (10)
C190.0784 (19)0.0636 (16)0.0436 (14)0.0090 (14)0.0001 (13)0.0002 (13)
C90.0647 (16)0.0600 (15)0.0483 (14)0.0081 (12)0.0134 (12)0.0038 (11)
C140.0581 (16)0.0607 (16)0.0689 (18)0.0043 (12)0.0151 (13)0.0067 (13)
C130.0532 (14)0.0545 (14)0.0521 (14)0.0036 (11)0.0048 (11)0.0010 (11)
C30.090 (2)0.0646 (17)0.0515 (16)0.0143 (15)0.0071 (15)0.0041 (13)
C150.0774 (19)0.0518 (15)0.0684 (18)0.0036 (13)0.0271 (15)0.0007 (13)
C60.0623 (17)0.0625 (17)0.091 (2)0.0050 (13)0.0164 (15)0.0170 (15)
C40.114 (3)0.079 (2)0.0558 (17)0.031 (2)0.0304 (18)0.0124 (16)
C200.087 (2)0.113 (3)0.0630 (19)0.005 (2)0.0007 (17)0.0131 (18)
Geometric parameters (Å, º) top
C5—C41.365 (5)C10—H10B0.9700
C5—C61.383 (4)C7—C61.377 (4)
C5—H50.9300C7—C81.484 (3)
C21—C201.452 (4)O5—C191.324 (3)
C21—H21B0.9600O5—C201.493 (3)
C21—H21A0.9600O4—C191.193 (3)
C21—H21C0.9600C8—O21.208 (3)
N2—C181.373 (3)C1—O11.209 (3)
N2—C121.394 (3)C11—H11A0.9700
N2—C111.458 (3)C11—H11B0.9700
N3—C191.397 (3)C16—C151.383 (4)
N3—C171.415 (3)C16—H160.9300
N3—C181.426 (3)C9—H9A0.9700
N1—C81.391 (3)C9—H9B0.9700
N1—C11.394 (3)C14—C151.377 (4)
N1—C91.456 (3)C14—C131.383 (3)
C12—C131.374 (3)C14—H140.9300
C12—C171.390 (3)C13—H130.9300
C2—C71.374 (3)C3—C41.384 (4)
C2—C31.376 (3)C3—H30.9300
C2—C11.478 (3)C15—H150.9300
O3—C181.209 (3)C6—H60.9300
C17—C161.381 (3)C4—H40.9300
C10—C91.514 (3)C20—H20A0.9700
C10—C111.517 (3)C20—H20B0.9700
C10—H10A0.9700
C4—C5—C6121.8 (3)O1—C1—C2130.4 (2)
C4—C5—H5119.1N1—C1—C2106.0 (2)
C6—C5—H5119.1N2—C11—C10114.17 (19)
C20—C21—H21B109.5N2—C11—H11A108.7
C20—C21—H21A109.5C10—C11—H11A108.7
H21B—C21—H21A109.5N2—C11—H11B108.7
C20—C21—H21C109.5C10—C11—H11B108.7
H21B—C21—H21C109.5H11A—C11—H11B107.6
H21A—C21—H21C109.5C17—C16—C15117.4 (2)
C18—N2—C12111.02 (18)C17—C16—H16121.3
C18—N2—C11121.51 (19)C15—C16—H16121.3
C12—N2—C11126.41 (19)O4—C19—O5125.7 (3)
C19—N3—C17122.5 (2)O4—C19—N3122.5 (3)
C19—N3—C18127.8 (2)O5—C19—N3111.7 (2)
C17—N3—C18109.47 (18)N1—C9—C10113.48 (19)
C8—N1—C1111.4 (2)N1—C9—H9A108.9
C8—N1—C9125.0 (2)C10—C9—H9A108.9
C1—N1—C9123.5 (2)N1—C9—H9B108.9
C13—C12—C17121.4 (2)C10—C9—H9B108.9
C13—C12—N2130.5 (2)H9A—C9—H9B107.7
C17—C12—N2108.1 (2)C15—C14—C13121.0 (3)
C7—C2—C3121.3 (3)C15—C14—H14119.5
C7—C2—C1108.5 (2)C13—C14—H14119.5
C3—C2—C1130.2 (3)C12—C13—C14117.6 (2)
C16—C17—C12120.9 (2)C12—C13—H13121.2
C16—C17—N3132.8 (2)C14—C13—H13121.2
C12—C17—N3106.32 (19)C2—C3—C4117.4 (3)
C9—C10—C11112.89 (19)C2—C3—H3121.3
C9—C10—H10A109.0C4—C3—H3121.3
C11—C10—H10A109.0C14—C15—C16121.6 (2)
C9—C10—H10B109.0C14—C15—H15119.2
C11—C10—H10B109.0C16—C15—H15119.2
H10A—C10—H10B107.8C7—C6—C5116.9 (3)
C2—C7—C6121.6 (3)C7—C6—H6121.5
C2—C7—C8107.9 (2)C5—C6—H6121.5
C6—C7—C8130.5 (3)C5—C4—C3121.1 (3)
C19—O5—C20115.4 (2)C5—C4—H4119.4
O2—C8—N1124.7 (2)C3—C4—H4119.4
O2—C8—C7129.2 (2)C21—C20—O5106.3 (3)
N1—C8—C7106.2 (2)C21—C20—H20A110.5
O3—C18—N2126.6 (2)O5—C20—H20A110.5
O3—C18—N3128.4 (2)C21—C20—H20B110.5
N2—C18—N3105.1 (2)O5—C20—H20B110.5
O1—C1—N1123.6 (2)H20A—C20—H20B108.7
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.972.723.523 (3)141
C13—H13···O2i0.932.673.375 (3)133
C21—H21B···O3ii0.962.673.261 (4)121
C11—H11A···O1iii0.972.683.201 (3)114
C5—H5···Cg1iv0.932.913.750 (3)151
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formulaC21H19N3O5
Mr393.39
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.2850 (7), 10.6663 (12), 16.505 (2)
α, β, γ (°)86.454 (7), 83.424 (8), 89.376 (7)
V3)922.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.41 × 0.32 × 0.21
Data collection
DiffractometerBruker X8 APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19211, 3384, 2405
Rint0.037
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.145, 1.04
No. of reflections3384
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.972.723.523 (3)141
C13—H13···O2i0.932.673.375 (3)133
C21—H21B···O3ii0.962.673.261 (4)121
C11—H11A···O1iii0.972.683.201 (3)114
C5—H5···Cg1iv0.932.913.750 (3)151
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS and CNRST) for the X-ray measurements.

References

First citationBai, Y., Lu, J., Shi, Z. & Yang, B. (2001). Synlett, 12, 544–546.  Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122.  CSD CrossRef IUCr Journals Google Scholar
First citationBouwman, E., Driessen, W. L. & Reedjik, J. (1990). Coord. Chem. Rev. 104, 143–172.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHasegawa, E., Yoneoka, A., Suzuki, K., Kato, T., Kitazume, T. & Yangi, K. (1999). Tetrahedron, 55, 12957–12968.  Web of Science CrossRef CAS Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992–998.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRoth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232–243.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds