metal-organic compounds
trans-Dichloridotetrakis[(dimethylphosphoryl)methanaminium-κO]cobalt(II) tetrachloridocobaltate(II)
aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de
The 2(C3H11NOP)4][CoCl4]2, consists of one half of the trans-dichloridotetrakis[(dimethylphosphoryl)methanaminium]cobalt(II) tetracation lying on an inversion center and one tetrachloridocobaltate(II) dianion on a general position. Four O-coordinated cationic (dimethylphosphoryl)methanaminium (dpmaH+) ligands occupy the equatorial coordination sites, whereas the chloride ligands occupy axial positions of the roughly octahedral of the cobalt metal center. Intramolecular hydrogen bonds between the aminium groups and the O atom of the phosphoryl groups and additional hydrogen bonds between the aminium groups and the chloride ligands are present. Furthermore, four of the six H atoms not involved in intramolecular bonding of each cobalt(II) tetracation form weak hydrogen bonds to four adjacent tetrachloridocobaltate(II) counter-anions. By these intermolecular hydrogen bonds, one-dimensional polymeric strands are formed along the b-axis direction. The hydrogen bonding is analyzed using the graph-set method and the structural similarity with dpmaHCl is discussed.
of the title structure, [CoClRelated literature
For related dpma compounds, see: Dodoff et al. (1990); Borisov et al. (1994); Trendafilova et al. (1997); Kochel (2009); Reiss & Jörgens (2012); van Megen et al. (2013). For a definition of the term tecton, see: Brunet et al. (1997). For related methylphosphinic acids and their derivatives, see: Reiss & Engel (2008); Meyer et al. (2010). For graph-set theory and its applications, see: Etter et al. (1990); Bernstein et al. (1995); Grell et al. (2002). For related cobalt complexes, see: Kubíčk et al. (2003); Girma et al. (2005); Guzei et al. (2010).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536813008945/sj5313sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813008945/sj5313Isup2.hkl
For the synthesis of the title compound, equimolar amounts of dpma and cobalt(II)chloride tetrahydrate were dissolved in concentrated hydrochloric acid. Slow evaporation of this solution at room temperature yielded crystals suitable for a crystallographic structure determination.
H atoms at the methyl groups were identified in difference syntheses, idealized and refined using rigid groups allowed to rotate about the P—C bond (AFIX 137 option of the SHELXL program; Uiso(H) = 1.5Ueq(C)) H-Atom at the methylene group using a riding model (AFIX 23 option of the SHELXL program; Uiso(H) = 1.2Ueq(C)). The coordinates of hydrogen atoms at the aminium groups were refined unrestrictedly with individual Uisovalues.
It is well known that the dpma ligand (dpma = (dimethylphosphoryl)methanamine) is able to coordinate a variety of transition metals (Kochel, 2009; Trendafilova et al., 1997; Borisov et al., 1994; Dodoff et al., 1990.). Recently, it has been shown that the mono-protonated dpmaH+ cation is a potent tecton (for the term tecton, see Brunet et al., 1997) to construct hydrogen bonded polymeric structures (Reiss & Jörgens, 2012; van Megen et al., 2013). This study is part of our continuing interest in the construction of hydrogen bonded architectures using tectons based on phosphinic acid derivatives (Reiss & Engel, 2008; Meyer et al., 2010).
The
of the title structure consists of one half of a fourfold charged trans-dichloridotetrakis((dimethylphosphoryl)methanaminium)cobalt(II) complex located on a center of inversion and a tetrachloridocobaltate(II) dianion at a general position. In the complex cation the four O-coordinated dpmaH+ ligands occupy the equatorial coordination sites, whereas the chlorido ligands occupy axial positions in this roughly octahedral complex cation. The Co—O and Co—Cl distances are in the expected ranges (Girma et al., 2005, Guzei et al., 2010). The same applies to the geometrical parameters of the two crystallographically independent dpmaH ligands which are very similar and are in accord with the dpmaH+ cation in dpmaHCl (Reiss & Jörgens, 2012). Each chlorido ligand of the cationic complex accepts two intramolecular hydrogen bonds of two neighbouring aminium groups (N1 and N2). There is at least one more example of the occurrence of such an intramolecular hydrogen bond between a chlorido ligand and the aminium group of a coordinated ligand at the same metal center (Kubíčk et al., 2003). Furthermore, intramolecular hydrogen bonding occurs between two crystallographically dependent aminium groups (N1, N1') each donating a hydrogen bond to the O-atoms (O2 and O2') of the two other dpmaH+ ligands (Table 1, Fig. 1). Significantly different Co–O bond lengths (Co–O1 = 2.0738 (9) Å and Co–O2 = 2.1673 (9) Å) may be caused by this hydrogen bonding situation. Four of the six hydrogen atoms of aminium groups of each cationic complex, which are not involved in intramolecular hydrogen bonds, form hydrogen bonds to four adjacent tetrachloridocobaltate(II) dianions (Fig. 1). The tetrachloridocobaltate(II) dianion shows a seriously distorted tetrahedral geometry with Co–Cl distances from 2.2487 (4) Å to 2.3024 (4) Å and angles between 104.23 (1)° to 119.35 (1)°. Also for this ion the longest Co–Cl distances are associated with the chlorido ligands involved in hydrogen bonds. Cationic and anionic tectons construct a one-dimensional, hydrogen-bonded polymer along the b direction. The hydrogen bonding motifs can be classified using graph-set descriptors (Etter et al., 1990, Bernstein et al., 1995) as S22(6) and S11(7) for the intramolecular rings and as C34(10) for the backbone connection along the strands (Fig. 2). A third level graph-set is found (R66(22)) for the rings formed within the strands (Fig. 2). As these graph-sets seem to be unique to this class of compounds they alone are of limited value for a comparison with related structures. A better method to work out the key features of a structure is the use of the so-called constructor-graph representation (Grell et al., 2002). In this case, the complex cation can be reduced to a tecton that is able to donate at least four hydrogen bonds and the tetrachloridocobalte to a tecton that accepts at least two hydrogen bonds. Thus, the close relation of the title structure with the structure of dpmaHCl is inevitably clear (Fig. 3).For related dpma compounds, see: Dodoff et al. (1990); Borisov et al. (1994); Trendafilova et al. (1997); Kochel (2009); Reiss & Jörgens (2012); van Megen et al. (2013). For a definition of the term tecton, see: Brunet et al. (1997). For related methylphosphinic acids and their derivatives, see: Reiss & Engel (2008); Meyer et al. (2010). For graph-set theory and its applications, see: Etter et al. (1990); Bernstein et al. (1995); Grell et al. (2002). For related cobalt complexes, see: Kubíčk et al. (2003); Girma et al. (2005); Guzei et al. (2010).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The title structure consisting of [CoCl2(dpmaH)4] cations which form hydrogen bonds to neighbouring [CoCl4]- anions is shown (ellipsoids are drawn at the 50% probability level, the asymmetric unit is labeled). | |
Fig. 2. Wireframe sketch of the title structure showing the basic graph-sets (blue numbers: S22(6), red numbers: S11(7), green numbers: C34(10), black numbers: R66(22)). | |
Fig. 3. Constructor-graphs of the title structure and of dpmaHCl are shown in the context of their real structures to illustrate the structural similarity. |
[CoCl2(C3H11NOP)4][CoCl4]2 | Z = 1 |
Mr = 963.68 | F(000) = 487 |
Triclinic, P1 | Dx = 1.732 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7748 (3) Å | Cell parameters from 13303 reflections |
b = 11.1557 (5) Å | θ = 2.9–32.6° |
c = 12.1205 (5) Å | µ = 2.25 mm−1 |
α = 110.738 (4)° | T = 173 K |
β = 97.688 (4)° | Block, blue |
γ = 104.331 (5)° | 0.76 × 0.33 × 0.08 mm |
V = 923.66 (8) Å3 |
Oxford Xcalibur diffractometer | 4920 independent reflections |
Graphite monochromator | 4552 reflections with I > 2σ(I) |
Detector resolution: 16.2711 pixels mm-1 | Rint = 0.020 |
ω scans | θmax = 29.0°, θmin = 2.9° |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] | h = −10→10 |
Tmin = 0.402, Tmax = 0.838 | k = −15→15 |
15687 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.012P)2 + 0.5P], where P = (Fo2 + 2Fc2)/3 |
4920 reflections | (Δ/σ)max = 0.001 |
197 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[CoCl2(C3H11NOP)4][CoCl4]2 | γ = 104.331 (5)° |
Mr = 963.68 | V = 923.66 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.7748 (3) Å | Mo Kα radiation |
b = 11.1557 (5) Å | µ = 2.25 mm−1 |
c = 12.1205 (5) Å | T = 173 K |
α = 110.738 (4)° | 0.76 × 0.33 × 0.08 mm |
β = 97.688 (4)° |
Oxford Xcalibur diffractometer | 4920 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] | 4552 reflections with I > 2σ(I) |
Tmin = 0.402, Tmax = 0.838 | Rint = 0.020 |
15687 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 0 restraints |
wR(F2) = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.49 e Å−3 |
4920 reflections | Δρmin = −0.38 e Å−3 |
197 parameters |
Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44 Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.0000 | 0.0000 | 0.5000 | 0.00707 (5) | |
Cl1 | −0.22848 (4) | 0.05961 (3) | 0.61151 (3) | 0.01037 (6) | |
P1 | 0.27356 (4) | −0.01270 (3) | 0.73117 (3) | 0.00824 (6) | |
C11 | 0.48106 (18) | 0.09673 (14) | 0.84045 (13) | 0.0149 (3) | |
H11A | 0.5714 | 0.1238 | 0.7997 | 0.022* | |
H11B | 0.5241 | 0.0503 | 0.8858 | 0.022* | |
H11C | 0.4599 | 0.1753 | 0.8949 | 0.022* | |
C12 | 0.31916 (19) | −0.15805 (14) | 0.63526 (13) | 0.0149 (3) | |
H12A | 0.2069 | −0.2229 | 0.5800 | 0.022* | |
H12B | 0.3725 | −0.1973 | 0.6841 | 0.022* | |
H12C | 0.4027 | −0.1323 | 0.5899 | 0.022* | |
C13 | 0.11865 (17) | −0.06627 (14) | 0.81714 (12) | 0.0117 (2) | |
H13A | 0.1385 | −0.1437 | 0.8293 | 0.014* | |
H13B | 0.1417 | 0.0064 | 0.8963 | 0.014* | |
N1 | −0.07340 (15) | −0.10285 (12) | 0.74832 (11) | 0.0112 (2) | |
H11 | −0.093 (2) | −0.0313 (19) | 0.7437 (17) | 0.022 (5)* | |
H12 | −0.094 (3) | −0.162 (2) | 0.6731 (19) | 0.026 (5)* | |
H13 | −0.149 (3) | −0.1352 (19) | 0.7854 (18) | 0.024 (5)* | |
O1 | 0.18513 (12) | 0.05528 (9) | 0.66322 (8) | 0.00960 (17) | |
P2 | 0.25797 (4) | 0.32277 (3) | 0.61086 (3) | 0.00895 (6) | |
C21 | 0.2810 (2) | 0.47433 (13) | 0.58704 (13) | 0.0158 (3) | |
H21A | 0.3016 | 0.4603 | 0.5077 | 0.024* | |
H21B | 0.3827 | 0.5461 | 0.6477 | 0.024* | |
H21C | 0.1710 | 0.4981 | 0.5929 | 0.024* | |
C22 | 0.47331 (18) | 0.29394 (14) | 0.61459 (13) | 0.0152 (3) | |
H22A | 0.4593 | 0.2039 | 0.6092 | 0.023* | |
H22B | 0.5591 | 0.3581 | 0.6894 | 0.023* | |
H22C | 0.5177 | 0.3043 | 0.5472 | 0.023* | |
C23 | 0.22948 (18) | 0.36089 (13) | 0.76527 (12) | 0.0119 (2) | |
H23A | 0.2637 | 0.2967 | 0.7933 | 0.014* | |
H23B | 0.3122 | 0.4504 | 0.8183 | 0.014* | |
N2 | 0.03979 (16) | 0.35581 (12) | 0.77545 (11) | 0.0122 (2) | |
H21 | 0.003 (2) | 0.4202 (18) | 0.7562 (17) | 0.019 (4)* | |
H22 | −0.041 (2) | 0.2708 (19) | 0.7275 (17) | 0.018 (4)* | |
H23 | 0.035 (3) | 0.3711 (19) | 0.8492 (19) | 0.026 (5)* | |
O2 | 0.10036 (12) | 0.20618 (9) | 0.51575 (8) | 0.00961 (17) | |
Co2 | 0.17901 (2) | 0.34799 (2) | 0.10713 (2) | 0.01000 (4) | |
Cl21 | 0.08194 (5) | 0.41433 (3) | 0.28405 (3) | 0.01496 (7) | |
Cl22 | 0.27225 (5) | 0.53299 (3) | 0.06796 (3) | 0.01464 (7) | |
Cl23 | 0.38534 (4) | 0.24331 (3) | 0.14315 (3) | 0.01438 (7) | |
Cl24 | −0.04975 (4) | 0.19017 (3) | −0.05026 (3) | 0.01361 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.00685 (11) | 0.00721 (11) | 0.00612 (11) | 0.00138 (8) | 0.00071 (9) | 0.00240 (9) |
Cl1 | 0.00962 (13) | 0.01193 (13) | 0.00975 (14) | 0.00396 (11) | 0.00322 (11) | 0.00394 (11) |
P1 | 0.00786 (14) | 0.00935 (14) | 0.00738 (15) | 0.00274 (11) | 0.00126 (11) | 0.00342 (12) |
C11 | 0.0116 (6) | 0.0186 (7) | 0.0110 (6) | 0.0019 (5) | −0.0005 (5) | 0.0053 (5) |
C12 | 0.0174 (7) | 0.0158 (6) | 0.0134 (7) | 0.0098 (5) | 0.0037 (5) | 0.0050 (5) |
C13 | 0.0104 (6) | 0.0144 (6) | 0.0115 (6) | 0.0030 (5) | 0.0023 (5) | 0.0073 (5) |
N1 | 0.0106 (5) | 0.0111 (5) | 0.0128 (6) | 0.0026 (4) | 0.0036 (4) | 0.0060 (5) |
O1 | 0.0100 (4) | 0.0099 (4) | 0.0087 (4) | 0.0029 (3) | 0.0014 (3) | 0.0040 (3) |
P2 | 0.00928 (15) | 0.00761 (14) | 0.00711 (15) | 0.00123 (11) | 0.00126 (12) | 0.00099 (12) |
C21 | 0.0194 (7) | 0.0099 (6) | 0.0156 (7) | 0.0016 (5) | 0.0030 (5) | 0.0048 (5) |
C22 | 0.0098 (6) | 0.0157 (6) | 0.0147 (7) | 0.0026 (5) | 0.0017 (5) | 0.0015 (5) |
C23 | 0.0132 (6) | 0.0131 (6) | 0.0086 (6) | 0.0059 (5) | 0.0020 (5) | 0.0027 (5) |
N2 | 0.0149 (6) | 0.0124 (5) | 0.0101 (6) | 0.0047 (4) | 0.0046 (5) | 0.0045 (5) |
O2 | 0.0094 (4) | 0.0082 (4) | 0.0087 (4) | 0.0008 (3) | 0.0005 (3) | 0.0024 (3) |
Co2 | 0.01132 (8) | 0.00894 (8) | 0.00817 (8) | 0.00225 (6) | 0.00091 (7) | 0.00285 (7) |
Cl21 | 0.02275 (16) | 0.01359 (14) | 0.01120 (15) | 0.00812 (12) | 0.00686 (12) | 0.00548 (12) |
Cl22 | 0.01898 (16) | 0.01075 (14) | 0.01158 (15) | 0.00080 (12) | 0.00219 (12) | 0.00476 (12) |
Cl23 | 0.01173 (14) | 0.01845 (15) | 0.01554 (16) | 0.00614 (12) | 0.00327 (12) | 0.00890 (13) |
Cl24 | 0.01358 (14) | 0.01152 (14) | 0.01105 (15) | 0.00125 (11) | −0.00131 (11) | 0.00264 (12) |
Co1—O1i | 2.0737 (9) | N1—H13 | 0.87 (2) |
Co1—O1 | 2.0737 (9) | P2—O2 | 1.5144 (9) |
Co1—O2i | 2.1671 (9) | P2—C22 | 1.7791 (14) |
Co1—O2 | 2.1671 (9) | P2—C21 | 1.7843 (14) |
Co1—Cl1i | 2.4525 (3) | P2—C23 | 1.8238 (14) |
Co1—Cl1 | 2.4526 (3) | C21—H21A | 0.9600 |
P1—O1 | 1.5083 (9) | C21—H21B | 0.9600 |
P1—C11 | 1.7763 (14) | C21—H21C | 0.9600 |
P1—C12 | 1.7794 (14) | C22—H22A | 0.9600 |
P1—C13 | 1.8204 (13) | C22—H22B | 0.9600 |
C11—H11A | 0.9600 | C22—H22C | 0.9600 |
C11—H11B | 0.9600 | C23—N2 | 1.4852 (17) |
C11—H11C | 0.9600 | C23—H23A | 0.9700 |
C12—H12A | 0.9600 | C23—H23B | 0.9700 |
C12—H12B | 0.9600 | N2—H21 | 0.924 (19) |
C12—H12C | 0.9600 | N2—H22 | 0.920 (19) |
C13—N1 | 1.4886 (17) | N2—H23 | 0.86 (2) |
C13—H13A | 0.9700 | Co2—Cl22 | 2.2485 (4) |
C13—H13B | 0.9700 | Co2—Cl24 | 2.2507 (4) |
N1—H11 | 0.867 (19) | Co2—Cl23 | 2.2866 (4) |
N1—H12 | 0.88 (2) | Co2—Cl21 | 2.3024 (4) |
O1i—Co1—O1 | 180.00 (4) | C13—N1—H13 | 109.9 (13) |
O1i—Co1—O2i | 88.92 (3) | H11—N1—H13 | 109.5 (17) |
O1—Co1—O2i | 91.08 (3) | H12—N1—H13 | 109.9 (17) |
O1i—Co1—O2 | 91.08 (3) | P1—O1—Co1 | 138.08 (6) |
O1—Co1—O2 | 88.92 (3) | O2—P2—C22 | 113.83 (6) |
O2i—Co1—O2 | 180.0 | O2—P2—C21 | 111.21 (6) |
O1i—Co1—Cl1i | 89.89 (3) | C22—P2—C21 | 107.23 (7) |
O1—Co1—Cl1i | 90.11 (3) | O2—P2—C23 | 112.87 (6) |
O2i—Co1—Cl1i | 89.54 (3) | C22—P2—C23 | 104.79 (6) |
O2—Co1—Cl1i | 90.46 (3) | C21—P2—C23 | 106.37 (6) |
O1i—Co1—Cl1 | 90.11 (3) | P2—C21—H21A | 109.5 |
O1—Co1—Cl1 | 89.88 (3) | P2—C21—H21B | 109.5 |
O2i—Co1—Cl1 | 90.46 (3) | H21A—C21—H21B | 109.5 |
O2—Co1—Cl1 | 89.54 (3) | P2—C21—H21C | 109.5 |
Cl1i—Co1—Cl1 | 180.0 | H21A—C21—H21C | 109.5 |
O1—P1—C11 | 113.52 (6) | H21B—C21—H21C | 109.5 |
O1—P1—C12 | 113.89 (6) | P2—C22—H22A | 109.5 |
C11—P1—C12 | 107.60 (7) | P2—C22—H22B | 109.5 |
O1—P1—C13 | 108.03 (6) | H22A—C22—H22B | 109.5 |
C11—P1—C13 | 105.63 (6) | P2—C22—H22C | 109.5 |
C12—P1—C13 | 107.70 (7) | H22A—C22—H22C | 109.5 |
P1—C11—H11A | 109.5 | H22B—C22—H22C | 109.5 |
P1—C11—H11B | 109.5 | N2—C23—P2 | 113.44 (9) |
H11A—C11—H11B | 109.5 | N2—C23—H23A | 108.9 |
P1—C11—H11C | 109.5 | P2—C23—H23A | 108.9 |
H11A—C11—H11C | 109.5 | N2—C23—H23B | 108.9 |
H11B—C11—H11C | 109.5 | P2—C23—H23B | 108.9 |
P1—C12—H12A | 109.5 | H23A—C23—H23B | 107.7 |
P1—C12—H12B | 109.5 | C23—N2—H21 | 112.8 (11) |
H12A—C12—H12B | 109.5 | C23—N2—H22 | 110.3 (11) |
P1—C12—H12C | 109.5 | H21—N2—H22 | 110.3 (16) |
H12A—C12—H12C | 109.5 | C23—N2—H23 | 108.5 (13) |
H12B—C12—H12C | 109.5 | H21—N2—H23 | 107.4 (17) |
N1—C13—P1 | 108.91 (9) | H22—N2—H23 | 107.3 (17) |
N1—C13—H13A | 109.9 | P2—O2—Co1 | 128.45 (5) |
P1—C13—H13A | 109.9 | Cl22—Co2—Cl24 | 108.699 (15) |
N1—C13—H13B | 109.9 | Cl22—Co2—Cl23 | 119.352 (15) |
P1—C13—H13B | 109.9 | Cl24—Co2—Cl23 | 106.345 (14) |
H13A—C13—H13B | 108.3 | Cl22—Co2—Cl21 | 106.654 (14) |
C13—N1—H11 | 109.2 (12) | Cl24—Co2—Cl21 | 111.513 (15) |
C13—N1—H12 | 111.8 (12) | Cl23—Co2—Cl21 | 104.233 (14) |
H11—N1—H12 | 106.4 (17) | ||
O1—P1—C13—N1 | 32.47 (10) | O2—P2—C23—N2 | −41.65 (11) |
C11—P1—C13—N1 | 154.27 (9) | C22—P2—C23—N2 | −166.05 (9) |
C12—P1—C13—N1 | −90.96 (10) | C21—P2—C23—N2 | 80.57 (10) |
C11—P1—O1—Co1 | 158.09 (8) | C22—P2—O2—Co1 | 60.81 (9) |
C12—P1—O1—Co1 | 34.48 (10) | C21—P2—O2—Co1 | −177.94 (7) |
C13—P1—O1—Co1 | −85.12 (9) | C23—P2—O2—Co1 | −58.48 (8) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···Cl1 | 0.867 (19) | 2.437 (19) | 3.1879 (12) | 145.3 (16) |
N1—H11···Cl24ii | 0.867 (19) | 2.730 (19) | 3.2573 (13) | 120.5 (15) |
N1—H12···O2i | 0.88 (2) | 2.16 (2) | 2.9504 (16) | 150.3 (17) |
N1—H13···Cl23i | 0.87 (2) | 2.38 (2) | 3.2403 (12) | 171.3 (17) |
N2—H22···Cl1 | 0.920 (19) | 2.250 (19) | 3.1697 (13) | 177.8 (15) |
N2—H21···Cl21iii | 0.924 (19) | 2.288 (19) | 3.2124 (12) | 177.8 (16) |
N2—H23···Cl22ii | 0.86 (2) | 2.71 (2) | 3.3612 (13) | 134.0 (16) |
N2—H23···Cl24ii | 0.86 (2) | 2.70 (2) | 3.2989 (12) | 128.1 (16) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, y, z+1; (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CoCl2(C3H11NOP)4][CoCl4]2 |
Mr | 963.68 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 7.7748 (3), 11.1557 (5), 12.1205 (5) |
α, β, γ (°) | 110.738 (4), 97.688 (4), 104.331 (5) |
V (Å3) | 923.66 (8) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.25 |
Crystal size (mm) | 0.76 × 0.33 × 0.08 |
Data collection | |
Diffractometer | Oxford Xcalibur |
Absorption correction | Analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.402, 0.838 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15687, 4920, 4552 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.042, 1.09 |
No. of reflections | 4920 |
No. of parameters | 197 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.49, −0.38 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···Cl1 | 0.867 (19) | 2.437 (19) | 3.1879 (12) | 145.3 (16) |
N1—H11···Cl24i | 0.867 (19) | 2.730 (19) | 3.2573 (13) | 120.5 (15) |
N1—H12···O2ii | 0.88 (2) | 2.16 (2) | 2.9504 (16) | 150.3 (17) |
N1—H13···Cl23ii | 0.87 (2) | 2.38 (2) | 3.2403 (12) | 171.3 (17) |
N2—H22···Cl1 | 0.920 (19) | 2.250 (19) | 3.1697 (13) | 177.8 (15) |
N2—H21···Cl21iii | 0.924 (19) | 2.288 (19) | 3.2124 (12) | 177.8 (16) |
N2—H23···Cl22i | 0.86 (2) | 2.71 (2) | 3.3612 (13) | 134.0 (16) |
N2—H23···Cl24i | 0.86 (2) | 2.70 (2) | 3.2989 (12) | 128.1 (16) |
Symmetry codes: (i) x, y, z+1; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1. |
Acknowledgements
Technical support by E. Hammes is gratefully acknowledged. Furthermore, I acknowledge support for the publication fee by the Deutsche Forschungsgemeinschaft (DFG) and the open access publication fund of the Heinrich-Heine-Universität Düsseldorf.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Borisov, G., Varbanov, S. G., Venanzi, L. M., Albinati, A. & Demartin, F. (1994). Inorg. Chem. 33, 5430–5437. CSD CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brunet, P., Simard, M. & Wuest, J. D. (1997). J. Am. Chem. Soc. 119, 2737–2738. CSD CrossRef CAS Web of Science Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dodoff, N., Macicek, J., Angelova, O., Varbanov, S. G. & Spassovska, N. (1990). J. Coord. Chem. 22, 219–228. CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005). Z. Anorg. Allg. Chem. 631, 1419–1422. Web of Science CSD CrossRef CAS Google Scholar
Grell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1–56. CrossRef CAS Google Scholar
Guzei, I. A., Spencer, L. C., Ainooson, M. K. & Darkwa, J. (2010). Acta Cryst. C66, m89–m96. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kochel, A. (2009). Inorg. Chim. Acta, 362, 1379–1382. Web of Science CSD CrossRef CAS Google Scholar
Kubíčk, V., Vojtíšk, P., Rudovský, J., Hermann, P. & Lukeš, I. (2003). Dalton Trans. pp. 3927–3938. Google Scholar
Meyer, M. K., Graf, J. & Reiss, G. J. (2010). Z. Naturforsch. Teil B, 65, 1462–1466. CAS Google Scholar
Megen, M. van, Prömper, S. & Reiss, G. J. (2013). Acta Cryst. E69, m217. CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Reiss, G. J. & Engel, J. S. (2008). Acta Cryst. E64, o400. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reiss, G. J. & Jörgens, S. (2012). Acta Cryst. E68, o2899–o2900. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trendafilova, N., Georgieva, I., Bauer, G., Varbanov, S. G. & Dodoff, N. (1997). Spectrochim. Acta, A53, 819–828. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is well known that the dpma ligand (dpma = (dimethylphosphoryl)methanamine) is able to coordinate a variety of transition metals (Kochel, 2009; Trendafilova et al., 1997; Borisov et al., 1994; Dodoff et al., 1990.). Recently, it has been shown that the mono-protonated dpmaH+ cation is a potent tecton (for the term tecton, see Brunet et al., 1997) to construct hydrogen bonded polymeric structures (Reiss & Jörgens, 2012; van Megen et al., 2013). This study is part of our continuing interest in the construction of hydrogen bonded architectures using tectons based on phosphinic acid derivatives (Reiss & Engel, 2008; Meyer et al., 2010).
The asymmetric unit of the title structure consists of one half of a fourfold charged trans-dichloridotetrakis((dimethylphosphoryl)methanaminium)cobalt(II) complex located on a center of inversion and a tetrachloridocobaltate(II) dianion at a general position. In the complex cation the four O-coordinated dpmaH+ ligands occupy the equatorial coordination sites, whereas the chlorido ligands occupy axial positions in this roughly octahedral complex cation. The Co—O and Co—Cl distances are in the expected ranges (Girma et al., 2005, Guzei et al., 2010). The same applies to the geometrical parameters of the two crystallographically independent dpmaH ligands which are very similar and are in accord with the dpmaH+ cation in dpmaHCl (Reiss & Jörgens, 2012). Each chlorido ligand of the cationic complex accepts two intramolecular hydrogen bonds of two neighbouring aminium groups (N1 and N2). There is at least one more example of the occurrence of such an intramolecular hydrogen bond between a chlorido ligand and the aminium group of a coordinated ligand at the same metal center (Kubíčk et al., 2003). Furthermore, intramolecular hydrogen bonding occurs between two crystallographically dependent aminium groups (N1, N1') each donating a hydrogen bond to the O-atoms (O2 and O2') of the two other dpmaH+ ligands (Table 1, Fig. 1). Significantly different Co–O bond lengths (Co–O1 = 2.0738 (9) Å and Co–O2 = 2.1673 (9) Å) may be caused by this hydrogen bonding situation. Four of the six hydrogen atoms of aminium groups of each cationic complex, which are not involved in intramolecular hydrogen bonds, form hydrogen bonds to four adjacent tetrachloridocobaltate(II) dianions (Fig. 1). The tetrachloridocobaltate(II) dianion shows a seriously distorted tetrahedral geometry with Co–Cl distances from 2.2487 (4) Å to 2.3024 (4) Å and angles between 104.23 (1)° to 119.35 (1)°. Also for this ion the longest Co–Cl distances are associated with the chlorido ligands involved in hydrogen bonds. Cationic and anionic tectons construct a one-dimensional, hydrogen-bonded polymer along the b direction. The hydrogen bonding motifs can be classified using graph-set descriptors (Etter et al., 1990, Bernstein et al., 1995) as S22(6) and S11(7) for the intramolecular rings and as C34(10) for the backbone connection along the strands (Fig. 2). A third level graph-set is found (R66(22)) for the rings formed within the strands (Fig. 2). As these graph-sets seem to be unique to this class of compounds they alone are of limited value for a comparison with related structures. A better method to work out the key features of a structure is the use of the so-called constructor-graph representation (Grell et al., 2002). In this case, the complex cation can be reduced to a tecton that is able to donate at least four hydrogen bonds and the tetrachloridocobalte to a tecton that accepts at least two hydrogen bonds. Thus, the close relation of the title structure with the structure of dpmaHCl is inevitably clear (Fig. 3).