organic compounds
N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide
aDepartment of Physics, Government Science College, Hassan 573 201, Karnataka, India, bDepartment of Studies in Chemistry, Karnataka University, Dharwad 580 003, Karnataka , India, and cDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com, kamchem9@gmail.com
The title molecule, C12H12FN3O2S, shows a short intramolecular S⋯O contact of 2.682 (18) Å. The dihedral angle between the thiadiazole ring and the benzene ring is 86.82 (11)°. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds generate an R21(6) graph-set motif between adjacent molecules. Pairs of futher C—H⋯O hydrogen bonds form inversion dimers with R22(8) ring motifs. These combine to generate a three-dimensional network and stack the molecules along the b axis.
Related literature
For biological applications of 1,3,4-thiadiazole derivatives, see: Matysiak & Opolski (2006); Kumar et al. (2012); Oruç et al. (2004); Kadi et al. (2007); Noolvi et al. (2011); Matysiak et al. (2006); Marganakop et al. (2012). For a related structure, see: Zhang (2009). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536813009367/sj5314sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813009367/sj5314Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813009367/sj5314Isup3.cml
A mixture of p-fluorobenzaldehyde (0.005 mole), and thiosemicarbazide (0.005 mole) was refluxed in ethanol (10 ml) and acetic acid (2 drops), after completion of the reaction the resulting pale yellow powder was filtered, dried and crystallized in ethanol to obtain (E)-1-(4-fluoro benzylidene)thiosemicarbazide, which was further heated at 80–90°C for about 4 hrs and the reaction mixture was cooled to room temperature and poured into ice cold water. The precipitate obtained was filtered off, washed with water, dried and purified by crystallization in aqueous alcohol (80%, v/v) to yield pale yellow crystals of N– [4-acetyl-5-(4-fluorophenyl)-4,5-dihydro-[1,3,4]thiadiazol-2-yl]- acetamide. Yield: (70%), m. p: 490 K.
All H atoms were positioned at calculated positions, N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, C—H = 0.98 Å for methine H and C—H = 0.96 Å for methyl H and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C, N) for aromatic, methine and amide H.
1,3,4-Thiadiazole derivatives are of great importance to chemists as well as biologists as they are found in a large variety of naturally occurring compounds and also pharmacologically potent molecules. These derivatives are known to exhibit a broad spectrum of activities including antiproliferative, antituberculosis, anti-inflammatory, anticancer and antimicrobial activities (Matysiak et al., 2006; Kumar et al., 2012; Oruç et al., 2004; Kadi et al., 2007; Noolvi et al., 2011; Matysiak & Opolski, 2006; Marganakop et al., 2012).
The
of the structure of N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl] -acetamide is shown in Fig. 1 and exhibits a short intramolecular S2···O3 contact of 2.682 (18) Å. The dihedral angle between the thiadiazole ring (S2/N6/N7/C14/C15) and the benzene ring (C8–C13) is 86.82 (11)°. In the structure, all bond lengths and angles are within normal ranges (Zhang, 2009).In the crystal, the N5—H5···O4 and C17—H17A···O4 hydrogen bonds (Table 1) link adjacent molecules forming rings with an R12(6) graph-set motif (Bernstein et al., 1995). The
is further stabilized by other intermolecular C—H···O hydrogen bonds, (Table 1), that generate inversion dimers with R22(8) ring motifs. The overall crystal packing components generate a three-dimensional network, stacking molecules along the b axis, (Fig. 2).For biological applications of 1,3,4-thiadiazole derivatives, see: Matysiak & Opolski (2006); Kumar et al. (2012); Oruç et al. (2004); Kadi et al. (2007); Noolvi et al. (2011); Matysiak et al. (2006); Marganakop et al. (2012). For a related structure, see: Zhang (2009). For graph-set notation, see: Bernstein et al. (1995).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. | |
Fig. 2. Packing of the molecule in the unit cell. |
C12H12FN3O2S | F(000) = 584 |
Mr = 281.31 | Dx = 1.402 Mg m−3 |
Monoclinic, P21/c | Melting point: 490 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 9.5061 (6) Å | Cell parameters from 2352 reflections |
b = 11.2152 (7) Å | θ = 2.2–25.0° |
c = 12.7752 (7) Å | µ = 0.26 mm−1 |
β = 101.823 (4)° | T = 296 K |
V = 1333.11 (14) Å3 | Plate, colourless |
Z = 4 | 0.24 × 0.20 × 0.12 mm |
Bruker SMART CCD area-detector diffractometer | 2352 independent reflections |
Radiation source: fine-focus sealed tube | 2035 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω and φ scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | h = −11→11 |
Tmin = 0.770, Tmax = 1.000 | k = −13→12 |
11372 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0619P)2 + 0.7142P] where P = (Fo2 + 2Fc2)/3 |
2352 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C12H12FN3O2S | V = 1333.11 (14) Å3 |
Mr = 281.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.5061 (6) Å | µ = 0.26 mm−1 |
b = 11.2152 (7) Å | T = 296 K |
c = 12.7752 (7) Å | 0.24 × 0.20 × 0.12 mm |
β = 101.823 (4)° |
Bruker SMART CCD area-detector diffractometer | 2352 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 2035 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 1.000 | Rint = 0.024 |
11372 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.42 e Å−3 |
2352 reflections | Δρmin = −0.34 e Å−3 |
172 parameters |
Experimental. Spectroscopic data IR (KBr); 3233, 2799, 1646, 1626, 1H NMR (300 MHz, CDCl3, δ p.p.m.): 2.11 (s, 3H, CH3 of NHCOCH3), 2.24 (s, 3H, CH3 of –NCOCH3), 4.70 (s, 1H, C—H of C5—H), 6.85–7.10 (m, 4H, Ar—H), 11.77 (s, 1H, NHCO), MS (m/z, 70 eV); 282 (M+1, 20), 239 (26), 204 (100). |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | −0.11204 (19) | 0.1673 (2) | 0.41894 (18) | 0.1026 (7) | |
S2 | 0.32591 (7) | 0.09255 (5) | 0.09191 (4) | 0.0449 (2) | |
O3 | 0.2686 (2) | −0.01822 (15) | −0.09810 (14) | 0.0665 (5) | |
O4 | 0.56411 (17) | 0.11842 (14) | 0.42490 (13) | 0.0472 (4) | |
N5 | 0.3591 (2) | −0.14036 (15) | 0.03899 (13) | 0.0407 (4) | |
H5 | 0.3826 | −0.2127 | 0.0571 | 0.049* | |
N6 | 0.45429 (18) | −0.08120 (15) | 0.21164 (13) | 0.0367 (4) | |
N7 | 0.46451 (18) | 0.01994 (15) | 0.27693 (14) | 0.0374 (4) | |
C8 | 0.0057 (3) | 0.1564 (3) | 0.3747 (2) | 0.0626 (7) | |
C9 | 0.0942 (3) | 0.2522 (2) | 0.3768 (2) | 0.0558 (6) | |
H9 | 0.0750 | 0.3239 | 0.4076 | 0.067* | |
C10 | 0.2141 (2) | 0.2394 (2) | 0.33124 (17) | 0.0441 (5) | |
H10 | 0.2768 | 0.3032 | 0.3321 | 0.053* | |
C11 | 0.2413 (2) | 0.13353 (19) | 0.28503 (16) | 0.0372 (5) | |
C12 | 0.1473 (3) | 0.0389 (2) | 0.2839 (2) | 0.0551 (6) | |
H12 | 0.1645 | −0.0327 | 0.2520 | 0.066* | |
C13 | 0.0287 (3) | 0.0497 (3) | 0.3296 (3) | 0.0677 (8) | |
H13 | −0.0340 | −0.0140 | 0.3297 | 0.081* | |
C14 | 0.3719 (2) | 0.12171 (18) | 0.23621 (16) | 0.0375 (5) | |
H14 | 0.4283 | 0.1953 | 0.2490 | 0.045* | |
C15 | 0.3864 (2) | −0.05435 (18) | 0.11717 (16) | 0.0358 (5) | |
C16 | 0.2973 (3) | −0.1186 (2) | −0.06565 (17) | 0.0453 (5) | |
C17 | 0.2681 (3) | −0.2264 (2) | −0.1344 (2) | 0.0604 (7) | |
H17A | 0.2994 | −0.2961 | −0.0925 | 0.091* | |
H17B | 0.3192 | −0.2206 | −0.1917 | 0.091* | |
H17C | 0.1669 | −0.2321 | −0.1635 | 0.091* | |
C18 | 0.5596 (2) | 0.02706 (18) | 0.37069 (16) | 0.0363 (5) | |
C19 | 0.6546 (3) | −0.0775 (2) | 0.40480 (18) | 0.0478 (6) | |
H19A | 0.6340 | −0.1389 | 0.3515 | 0.072* | |
H19B | 0.6377 | −0.1074 | 0.4716 | 0.072* | |
H19C | 0.7533 | −0.0536 | 0.4134 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0620 (10) | 0.1312 (19) | 0.1269 (17) | 0.0023 (11) | 0.0478 (11) | −0.0189 (15) |
S2 | 0.0679 (4) | 0.0285 (3) | 0.0365 (3) | 0.0074 (2) | 0.0066 (3) | 0.0035 (2) |
O3 | 0.1095 (15) | 0.0395 (10) | 0.0444 (9) | 0.0104 (10) | 0.0014 (9) | 0.0058 (8) |
O4 | 0.0573 (9) | 0.0333 (8) | 0.0485 (9) | −0.0053 (7) | 0.0049 (7) | −0.0088 (7) |
N5 | 0.0608 (11) | 0.0261 (9) | 0.0339 (9) | 0.0035 (8) | 0.0064 (8) | 0.0009 (7) |
N6 | 0.0464 (10) | 0.0272 (9) | 0.0352 (9) | 0.0023 (7) | 0.0055 (7) | −0.0024 (7) |
N7 | 0.0465 (10) | 0.0263 (9) | 0.0373 (9) | 0.0032 (7) | 0.0038 (7) | −0.0032 (7) |
C8 | 0.0439 (13) | 0.082 (2) | 0.0635 (16) | 0.0081 (13) | 0.0142 (12) | −0.0031 (15) |
C9 | 0.0545 (14) | 0.0586 (16) | 0.0519 (14) | 0.0122 (12) | 0.0057 (11) | −0.0124 (12) |
C10 | 0.0479 (12) | 0.0374 (12) | 0.0440 (12) | 0.0021 (9) | 0.0022 (9) | −0.0049 (10) |
C11 | 0.0425 (11) | 0.0306 (11) | 0.0355 (10) | 0.0022 (9) | 0.0007 (8) | 0.0009 (8) |
C12 | 0.0569 (14) | 0.0389 (13) | 0.0706 (17) | −0.0043 (11) | 0.0157 (12) | −0.0055 (12) |
C13 | 0.0537 (15) | 0.0634 (18) | 0.089 (2) | −0.0146 (13) | 0.0225 (14) | −0.0058 (16) |
C14 | 0.0481 (11) | 0.0247 (10) | 0.0381 (11) | 0.0007 (9) | 0.0051 (9) | 0.0005 (8) |
C15 | 0.0451 (11) | 0.0272 (10) | 0.0352 (11) | 0.0004 (9) | 0.0083 (9) | 0.0008 (8) |
C16 | 0.0603 (14) | 0.0361 (12) | 0.0377 (11) | 0.0047 (10) | 0.0060 (10) | 0.0030 (10) |
C17 | 0.0867 (18) | 0.0469 (15) | 0.0405 (13) | 0.0070 (13) | −0.0036 (12) | −0.0061 (11) |
C18 | 0.0389 (10) | 0.0315 (11) | 0.0387 (11) | −0.0051 (8) | 0.0082 (8) | −0.0007 (9) |
C19 | 0.0494 (13) | 0.0440 (14) | 0.0452 (13) | 0.0053 (10) | −0.0014 (10) | −0.0028 (10) |
F1—C8 | 1.359 (3) | C10—C11 | 1.374 (3) |
S2—C15 | 1.753 (2) | C10—H10 | 0.9300 |
S2—C14 | 1.835 (2) | C11—C12 | 1.386 (3) |
O3—C16 | 1.211 (3) | C11—C14 | 1.505 (3) |
O4—C18 | 1.233 (3) | C12—C13 | 1.376 (4) |
N5—C16 | 1.368 (3) | C12—H12 | 0.9300 |
N5—C15 | 1.374 (3) | C13—H13 | 0.9300 |
N5—H5 | 0.8600 | C14—H14 | 0.9800 |
N6—C15 | 1.283 (3) | C16—C17 | 1.487 (3) |
N6—N7 | 1.399 (2) | C17—H17A | 0.9600 |
N7—C18 | 1.347 (3) | C17—H17B | 0.9600 |
N7—C14 | 1.470 (3) | C17—H17C | 0.9600 |
C8—C9 | 1.361 (4) | C18—C19 | 1.490 (3) |
C8—C13 | 1.365 (4) | C19—H19A | 0.9600 |
C9—C10 | 1.389 (3) | C19—H19B | 0.9600 |
C9—H9 | 0.9300 | C19—H19C | 0.9600 |
C15—S2—C14 | 88.91 (9) | N7—C14—S2 | 102.66 (13) |
C16—N5—C15 | 124.35 (18) | C11—C14—S2 | 112.67 (14) |
C16—N5—H5 | 117.8 | N7—C14—H14 | 109.1 |
C15—N5—H5 | 117.8 | C11—C14—H14 | 109.1 |
C15—N6—N7 | 109.31 (17) | S2—C14—H14 | 109.1 |
C18—N7—N6 | 122.01 (17) | N6—C15—N5 | 120.17 (19) |
C18—N7—C14 | 120.85 (17) | N6—C15—S2 | 118.48 (16) |
N6—N7—C14 | 117.06 (16) | N5—C15—S2 | 121.34 (15) |
F1—C8—C9 | 118.6 (3) | O3—C16—N5 | 121.5 (2) |
F1—C8—C13 | 118.1 (3) | O3—C16—C17 | 123.5 (2) |
C9—C8—C13 | 123.3 (2) | N5—C16—C17 | 115.0 (2) |
C8—C9—C10 | 117.8 (2) | C16—C17—H17A | 109.5 |
C8—C9—H9 | 121.1 | C16—C17—H17B | 109.5 |
C10—C9—H9 | 121.1 | H17A—C17—H17B | 109.5 |
C11—C10—C9 | 120.8 (2) | C16—C17—H17C | 109.5 |
C11—C10—H10 | 119.6 | H17A—C17—H17C | 109.5 |
C9—C10—H10 | 119.6 | H17B—C17—H17C | 109.5 |
C10—C11—C12 | 119.2 (2) | O4—C18—N7 | 119.26 (19) |
C10—C11—C14 | 119.87 (19) | O4—C18—C19 | 122.74 (19) |
C12—C11—C14 | 120.9 (2) | N7—C18—C19 | 118.00 (18) |
C13—C12—C11 | 120.7 (2) | C18—C19—H19A | 109.5 |
C13—C12—H12 | 119.6 | C18—C19—H19B | 109.5 |
C11—C12—H12 | 119.6 | H19A—C19—H19B | 109.5 |
C8—C13—C12 | 118.1 (3) | C18—C19—H19C | 109.5 |
C8—C13—H13 | 120.9 | H19A—C19—H19C | 109.5 |
C12—C13—H13 | 120.9 | H19B—C19—H19C | 109.5 |
N7—C14—C11 | 114.02 (17) | ||
C15—N6—N7—C18 | −162.76 (18) | C12—C11—C14—N7 | −53.9 (3) |
C15—N6—N7—C14 | 14.0 (2) | C10—C11—C14—S2 | −117.30 (19) |
F1—C8—C9—C10 | 179.9 (2) | C12—C11—C14—S2 | 62.6 (2) |
C13—C8—C9—C10 | −0.5 (4) | C15—S2—C14—N7 | 15.35 (14) |
C8—C9—C10—C11 | 0.5 (4) | C15—S2—C14—C11 | −107.73 (16) |
C9—C10—C11—C12 | 0.1 (3) | N7—N6—C15—N5 | −178.19 (17) |
C9—C10—C11—C14 | 180.0 (2) | N7—N6—C15—S2 | 0.2 (2) |
C10—C11—C12—C13 | −0.8 (4) | C16—N5—C15—N6 | −174.9 (2) |
C14—C11—C12—C13 | 179.4 (2) | C16—N5—C15—S2 | 6.8 (3) |
F1—C8—C13—C12 | 179.5 (3) | C14—S2—C15—N6 | −10.22 (18) |
C9—C8—C13—C12 | −0.1 (5) | C14—S2—C15—N5 | 168.13 (18) |
C11—C12—C13—C8 | 0.7 (4) | C15—N5—C16—O3 | 4.0 (4) |
C18—N7—C14—C11 | −81.0 (2) | C15—N5—C16—C17 | −175.6 (2) |
N6—N7—C14—C11 | 102.1 (2) | N6—N7—C18—O4 | 179.87 (18) |
C18—N7—C14—S2 | 156.79 (16) | C14—N7—C18—O4 | 3.2 (3) |
N6—N7—C14—S2 | −20.1 (2) | N6—N7—C18—C19 | −0.6 (3) |
C10—C11—C14—N7 | 126.2 (2) | C14—N7—C18—C19 | −177.34 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5···O4i | 0.86 | 1.96 | 2.815 (2) | 171 |
C10—H10···O3ii | 0.93 | 2.58 | 3.267 (3) | 131 |
C17—H17A···O4i | 0.96 | 2.46 | 3.316 (3) | 148 |
C19—H19B···O4iii | 0.96 | 2.55 | 3.335 (3) | 139 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C12H12FN3O2S |
Mr | 281.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 9.5061 (6), 11.2152 (7), 12.7752 (7) |
β (°) | 101.823 (4) |
V (Å3) | 1333.11 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.24 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.770, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11372, 2352, 2035 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.121, 1.07 |
No. of reflections | 2352 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.34 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5···O4i | 0.86 | 1.96 | 2.815 (2) | 171.00 |
C10—H10···O3ii | 0.93 | 2.58 | 3.267 (3) | 131.00 |
C17—H17A···O4i | 0.96 | 2.46 | 3.316 (3) | 148.00 |
C19—H19B···O4iii | 0.96 | 2.55 | 3.335 (3) | 139.00 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y, −z+1. |
Acknowledgements
The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the X-ray data collection.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Kumar, D. N., Kumar, M., Noel, B. & Shah, K. (2012). Eur. J. Med. Chem. 55, 432–438. Web of Science CrossRef CAS PubMed Google Scholar
Marganakop, S. B., Kamble, R. R., Taj, T. & Kariduraganvar, M. Y. (2012). Med. Chem. Res. 21, 185–191. Web of Science CrossRef CAS Google Scholar
Matysiak, J., Nasulewicz, A., Peiczyńska, M., Świtalska, M., Jarozewicz, I. & Opolski, A. (2006). Eur. J. Med. Chem. 41, 475–482. Web of Science CrossRef PubMed CAS Google Scholar
Matysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483–4489. Web of Science CrossRef PubMed CAS Google Scholar
Noolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). Eur. J. Med. Chem. 46, 4411–4418. Web of Science CrossRef CAS PubMed Google Scholar
Oruç, E. E., Rollas, S., Kkandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, G.-Y. (2009). Acta Cryst. E65, o2138. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3,4-Thiadiazole derivatives are of great importance to chemists as well as biologists as they are found in a large variety of naturally occurring compounds and also pharmacologically potent molecules. These derivatives are known to exhibit a broad spectrum of activities including antiproliferative, antituberculosis, anti-inflammatory, anticancer and antimicrobial activities (Matysiak et al., 2006; Kumar et al., 2012; Oruç et al., 2004; Kadi et al., 2007; Noolvi et al., 2011; Matysiak & Opolski, 2006; Marganakop et al., 2012).
The asymmetric unit of the structure of N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl] -acetamide is shown in Fig. 1 and exhibits a short intramolecular S2···O3 contact of 2.682 (18) Å. The dihedral angle between the thiadiazole ring (S2/N6/N7/C14/C15) and the benzene ring (C8–C13) is 86.82 (11)°. In the structure, all bond lengths and angles are within normal ranges (Zhang, 2009).
In the crystal, the N5—H5···O4 and C17—H17A···O4 hydrogen bonds (Table 1) link adjacent molecules forming rings with an R12(6) graph-set motif (Bernstein et al., 1995). The crystal structure is further stabilized by other intermolecular C—H···O hydrogen bonds, (Table 1), that generate inversion dimers with R22(8) ring motifs. The overall crystal packing components generate a three-dimensional network, stacking molecules along the b axis, (Fig. 2).