organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-Acetyl-5-(4-fluoro­phen­yl)-4,5-di­hydro-1,3,4-thia­diazol-2-yl]acetamide

aDepartment of Physics, Government Science College, Hassan 573 201, Karnataka, India, bDepartment of Studies in Chemistry, Karnataka University, Dharwad 580 003, Karnataka , India, and cDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com, kamchem9@gmail.com

(Received 31 March 2013; accepted 7 April 2013; online 13 April 2013)

The title mol­ecule, C12H12FN3O2S, shows a short intra­molecular S⋯O contact of 2.682 (18) Å. The dihedral angle between the thia­diazole ring and the benzene ring is 86.82 (11)°. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds generate an R21(6) graph-set motif between adjacent mol­ecules. Pairs of futher C—H⋯O hydrogen bonds form inversion dimers with R22(8) ring motifs. These combine to generate a three-dimensional network and stack the mol­ecules along the b axis.

Related literature

For biological applications of 1,3,4-thia­diazole derivatives, see: Matysiak & Opolski (2006[Matysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483-4489.]); Kumar et al. (2012[Kumar, D. N., Kumar, M., Noel, B. & Shah, K. (2012). Eur. J. Med. Chem. 55, 432-438.]); Oruç et al. (2004[Oruç, E. E., Rollas, S., Kkandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760-6767.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.]); Noolvi et al. (2011[Noolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). Eur. J. Med. Chem. 46, 4411-4418.]); Matysiak et al. (2006[Matysiak, J., Nasulewicz, A., Peiczyńska, M., Świtalska, M., Jarozewicz, I. & Opolski, A. (2006). Eur. J. Med. Chem. 41, 475-482.]); Marganakop et al. (2012[Marganakop, S. B., Kamble, R. R., Taj, T. & Kariduraganvar, M. Y. (2012). Med. Chem. Res. 21, 185-191.]). For a related structure, see: Zhang (2009[Zhang, G.-Y. (2009). Acta Cryst. E65, o2138.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12FN3O2S

  • Mr = 281.31

  • Monoclinic, P 21 /c

  • a = 9.5061 (6) Å

  • b = 11.2152 (7) Å

  • c = 12.7752 (7) Å

  • β = 101.823 (4)°

  • V = 1333.11 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 11372 measured reflections

  • 2352 independent reflections

  • 2035 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.07

  • 2352 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O4i 0.86 1.96 2.815 (2) 171
C10—H10⋯O3ii 0.93 2.58 3.267 (3) 131
C17—H17A⋯O4i 0.96 2.46 3.316 (3) 148
C19—H19B⋯O4iii 0.96 2.55 3.335 (3) 139
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives are of great importance to chemists as well as biologists as they are found in a large variety of naturally occurring compounds and also pharmacologically potent molecules. These derivatives are known to exhibit a broad spectrum of activities including antiproliferative, antituberculosis, anti-inflammatory, anticancer and antimicrobial activities (Matysiak et al., 2006; Kumar et al., 2012; Oruç et al., 2004; Kadi et al., 2007; Noolvi et al., 2011; Matysiak & Opolski, 2006; Marganakop et al., 2012).

The asymmetric unit of the structure of N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl] -acetamide is shown in Fig. 1 and exhibits a short intramolecular S2···O3 contact of 2.682 (18) Å. The dihedral angle between the thiadiazole ring (S2/N6/N7/C14/C15) and the benzene ring (C8–C13) is 86.82 (11)°. In the structure, all bond lengths and angles are within normal ranges (Zhang, 2009).

In the crystal, the N5—H5···O4 and C17—H17A···O4 hydrogen bonds (Table 1) link adjacent molecules forming rings with an R12(6) graph-set motif (Bernstein et al., 1995). The crystal structure is further stabilized by other intermolecular C—H···O hydrogen bonds, (Table 1), that generate inversion dimers with R22(8) ring motifs. The overall crystal packing components generate a three-dimensional network, stacking molecules along the b axis, (Fig. 2).

Related literature top

For biological applications of 1,3,4-thiadiazole derivatives, see: Matysiak & Opolski (2006); Kumar et al. (2012); Oruç et al. (2004); Kadi et al. (2007); Noolvi et al. (2011); Matysiak et al. (2006); Marganakop et al. (2012). For a related structure, see: Zhang (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of p-fluorobenzaldehyde (0.005 mole), and thiosemicarbazide (0.005 mole) was refluxed in ethanol (10 ml) and acetic acid (2 drops), after completion of the reaction the resulting pale yellow powder was filtered, dried and crystallized in ethanol to obtain (E)-1-(4-fluoro benzylidene)thiosemicarbazide, which was further heated at 80–90°C for about 4 hrs and the reaction mixture was cooled to room temperature and poured into ice cold water. The precipitate obtained was filtered off, washed with water, dried and purified by crystallization in aqueous alcohol (80%, v/v) to yield pale yellow crystals of N– [4-acetyl-5-(4-fluorophenyl)-4,5-dihydro-[1,3,4]thiadiazol-2-yl]- acetamide. Yield: (70%), m. p: 490 K.

Refinement top

All H atoms were positioned at calculated positions, N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, C—H = 0.98 Å for methine H and C—H = 0.96 Å for methyl H and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C, N) for aromatic, methine and amide H.

Structure description top

1,3,4-Thiadiazole derivatives are of great importance to chemists as well as biologists as they are found in a large variety of naturally occurring compounds and also pharmacologically potent molecules. These derivatives are known to exhibit a broad spectrum of activities including antiproliferative, antituberculosis, anti-inflammatory, anticancer and antimicrobial activities (Matysiak et al., 2006; Kumar et al., 2012; Oruç et al., 2004; Kadi et al., 2007; Noolvi et al., 2011; Matysiak & Opolski, 2006; Marganakop et al., 2012).

The asymmetric unit of the structure of N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl] -acetamide is shown in Fig. 1 and exhibits a short intramolecular S2···O3 contact of 2.682 (18) Å. The dihedral angle between the thiadiazole ring (S2/N6/N7/C14/C15) and the benzene ring (C8–C13) is 86.82 (11)°. In the structure, all bond lengths and angles are within normal ranges (Zhang, 2009).

In the crystal, the N5—H5···O4 and C17—H17A···O4 hydrogen bonds (Table 1) link adjacent molecules forming rings with an R12(6) graph-set motif (Bernstein et al., 1995). The crystal structure is further stabilized by other intermolecular C—H···O hydrogen bonds, (Table 1), that generate inversion dimers with R22(8) ring motifs. The overall crystal packing components generate a three-dimensional network, stacking molecules along the b axis, (Fig. 2).

For biological applications of 1,3,4-thiadiazole derivatives, see: Matysiak & Opolski (2006); Kumar et al. (2012); Oruç et al. (2004); Kadi et al. (2007); Noolvi et al. (2011); Matysiak et al. (2006); Marganakop et al. (2012). For a related structure, see: Zhang (2009). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing of the molecule in the unit cell.
N-[4-Acetyl-5-(4-fluorophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide top
Crystal data top
C12H12FN3O2SF(000) = 584
Mr = 281.31Dx = 1.402 Mg m3
Monoclinic, P21/cMelting point: 490 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.5061 (6) ÅCell parameters from 2352 reflections
b = 11.2152 (7) Åθ = 2.2–25.0°
c = 12.7752 (7) ŵ = 0.26 mm1
β = 101.823 (4)°T = 296 K
V = 1333.11 (14) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2352 independent reflections
Radiation source: fine-focus sealed tube2035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1111
Tmin = 0.770, Tmax = 1.000k = 1312
11372 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.7142P]
where P = (Fo2 + 2Fc2)/3
2352 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C12H12FN3O2SV = 1333.11 (14) Å3
Mr = 281.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5061 (6) ŵ = 0.26 mm1
b = 11.2152 (7) ÅT = 296 K
c = 12.7752 (7) Å0.24 × 0.20 × 0.12 mm
β = 101.823 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2352 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2035 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.024
11372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
2352 reflectionsΔρmin = 0.34 e Å3
172 parameters
Special details top

Experimental. Spectroscopic data IR (KBr); 3233, 2799, 1646, 1626, 1H NMR (300 MHz, CDCl3, δ p.p.m.): 2.11 (s, 3H, CH3 of NHCOCH3), 2.24 (s, 3H, CH3 of –NCOCH3), 4.70 (s, 1H, C—H of C5—H), 6.85–7.10 (m, 4H, Ar—H), 11.77 (s, 1H, NHCO), MS (m/z, 70 eV); 282 (M+1, 20), 239 (26), 204 (100).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.11204 (19)0.1673 (2)0.41894 (18)0.1026 (7)
S20.32591 (7)0.09255 (5)0.09191 (4)0.0449 (2)
O30.2686 (2)0.01822 (15)0.09810 (14)0.0665 (5)
O40.56411 (17)0.11842 (14)0.42490 (13)0.0472 (4)
N50.3591 (2)0.14036 (15)0.03899 (13)0.0407 (4)
H50.38260.21270.05710.049*
N60.45429 (18)0.08120 (15)0.21164 (13)0.0367 (4)
N70.46451 (18)0.01994 (15)0.27693 (14)0.0374 (4)
C80.0057 (3)0.1564 (3)0.3747 (2)0.0626 (7)
C90.0942 (3)0.2522 (2)0.3768 (2)0.0558 (6)
H90.07500.32390.40760.067*
C100.2141 (2)0.2394 (2)0.33124 (17)0.0441 (5)
H100.27680.30320.33210.053*
C110.2413 (2)0.13353 (19)0.28503 (16)0.0372 (5)
C120.1473 (3)0.0389 (2)0.2839 (2)0.0551 (6)
H120.16450.03270.25200.066*
C130.0287 (3)0.0497 (3)0.3296 (3)0.0677 (8)
H130.03400.01400.32970.081*
C140.3719 (2)0.12171 (18)0.23621 (16)0.0375 (5)
H140.42830.19530.24900.045*
C150.3864 (2)0.05435 (18)0.11717 (16)0.0358 (5)
C160.2973 (3)0.1186 (2)0.06565 (17)0.0453 (5)
C170.2681 (3)0.2264 (2)0.1344 (2)0.0604 (7)
H17A0.29940.29610.09250.091*
H17B0.31920.22060.19170.091*
H17C0.16690.23210.16350.091*
C180.5596 (2)0.02706 (18)0.37069 (16)0.0363 (5)
C190.6546 (3)0.0775 (2)0.40480 (18)0.0478 (6)
H19A0.63400.13890.35150.072*
H19B0.63770.10740.47160.072*
H19C0.75330.05360.41340.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0620 (10)0.1312 (19)0.1269 (17)0.0023 (11)0.0478 (11)0.0189 (15)
S20.0679 (4)0.0285 (3)0.0365 (3)0.0074 (2)0.0066 (3)0.0035 (2)
O30.1095 (15)0.0395 (10)0.0444 (9)0.0104 (10)0.0014 (9)0.0058 (8)
O40.0573 (9)0.0333 (8)0.0485 (9)0.0053 (7)0.0049 (7)0.0088 (7)
N50.0608 (11)0.0261 (9)0.0339 (9)0.0035 (8)0.0064 (8)0.0009 (7)
N60.0464 (10)0.0272 (9)0.0352 (9)0.0023 (7)0.0055 (7)0.0024 (7)
N70.0465 (10)0.0263 (9)0.0373 (9)0.0032 (7)0.0038 (7)0.0032 (7)
C80.0439 (13)0.082 (2)0.0635 (16)0.0081 (13)0.0142 (12)0.0031 (15)
C90.0545 (14)0.0586 (16)0.0519 (14)0.0122 (12)0.0057 (11)0.0124 (12)
C100.0479 (12)0.0374 (12)0.0440 (12)0.0021 (9)0.0022 (9)0.0049 (10)
C110.0425 (11)0.0306 (11)0.0355 (10)0.0022 (9)0.0007 (8)0.0009 (8)
C120.0569 (14)0.0389 (13)0.0706 (17)0.0043 (11)0.0157 (12)0.0055 (12)
C130.0537 (15)0.0634 (18)0.089 (2)0.0146 (13)0.0225 (14)0.0058 (16)
C140.0481 (11)0.0247 (10)0.0381 (11)0.0007 (9)0.0051 (9)0.0005 (8)
C150.0451 (11)0.0272 (10)0.0352 (11)0.0004 (9)0.0083 (9)0.0008 (8)
C160.0603 (14)0.0361 (12)0.0377 (11)0.0047 (10)0.0060 (10)0.0030 (10)
C170.0867 (18)0.0469 (15)0.0405 (13)0.0070 (13)0.0036 (12)0.0061 (11)
C180.0389 (10)0.0315 (11)0.0387 (11)0.0051 (8)0.0082 (8)0.0007 (9)
C190.0494 (13)0.0440 (14)0.0452 (13)0.0053 (10)0.0014 (10)0.0028 (10)
Geometric parameters (Å, º) top
F1—C81.359 (3)C10—C111.374 (3)
S2—C151.753 (2)C10—H100.9300
S2—C141.835 (2)C11—C121.386 (3)
O3—C161.211 (3)C11—C141.505 (3)
O4—C181.233 (3)C12—C131.376 (4)
N5—C161.368 (3)C12—H120.9300
N5—C151.374 (3)C13—H130.9300
N5—H50.8600C14—H140.9800
N6—C151.283 (3)C16—C171.487 (3)
N6—N71.399 (2)C17—H17A0.9600
N7—C181.347 (3)C17—H17B0.9600
N7—C141.470 (3)C17—H17C0.9600
C8—C91.361 (4)C18—C191.490 (3)
C8—C131.365 (4)C19—H19A0.9600
C9—C101.389 (3)C19—H19B0.9600
C9—H90.9300C19—H19C0.9600
C15—S2—C1488.91 (9)N7—C14—S2102.66 (13)
C16—N5—C15124.35 (18)C11—C14—S2112.67 (14)
C16—N5—H5117.8N7—C14—H14109.1
C15—N5—H5117.8C11—C14—H14109.1
C15—N6—N7109.31 (17)S2—C14—H14109.1
C18—N7—N6122.01 (17)N6—C15—N5120.17 (19)
C18—N7—C14120.85 (17)N6—C15—S2118.48 (16)
N6—N7—C14117.06 (16)N5—C15—S2121.34 (15)
F1—C8—C9118.6 (3)O3—C16—N5121.5 (2)
F1—C8—C13118.1 (3)O3—C16—C17123.5 (2)
C9—C8—C13123.3 (2)N5—C16—C17115.0 (2)
C8—C9—C10117.8 (2)C16—C17—H17A109.5
C8—C9—H9121.1C16—C17—H17B109.5
C10—C9—H9121.1H17A—C17—H17B109.5
C11—C10—C9120.8 (2)C16—C17—H17C109.5
C11—C10—H10119.6H17A—C17—H17C109.5
C9—C10—H10119.6H17B—C17—H17C109.5
C10—C11—C12119.2 (2)O4—C18—N7119.26 (19)
C10—C11—C14119.87 (19)O4—C18—C19122.74 (19)
C12—C11—C14120.9 (2)N7—C18—C19118.00 (18)
C13—C12—C11120.7 (2)C18—C19—H19A109.5
C13—C12—H12119.6C18—C19—H19B109.5
C11—C12—H12119.6H19A—C19—H19B109.5
C8—C13—C12118.1 (3)C18—C19—H19C109.5
C8—C13—H13120.9H19A—C19—H19C109.5
C12—C13—H13120.9H19B—C19—H19C109.5
N7—C14—C11114.02 (17)
C15—N6—N7—C18162.76 (18)C12—C11—C14—N753.9 (3)
C15—N6—N7—C1414.0 (2)C10—C11—C14—S2117.30 (19)
F1—C8—C9—C10179.9 (2)C12—C11—C14—S262.6 (2)
C13—C8—C9—C100.5 (4)C15—S2—C14—N715.35 (14)
C8—C9—C10—C110.5 (4)C15—S2—C14—C11107.73 (16)
C9—C10—C11—C120.1 (3)N7—N6—C15—N5178.19 (17)
C9—C10—C11—C14180.0 (2)N7—N6—C15—S20.2 (2)
C10—C11—C12—C130.8 (4)C16—N5—C15—N6174.9 (2)
C14—C11—C12—C13179.4 (2)C16—N5—C15—S26.8 (3)
F1—C8—C13—C12179.5 (3)C14—S2—C15—N610.22 (18)
C9—C8—C13—C120.1 (5)C14—S2—C15—N5168.13 (18)
C11—C12—C13—C80.7 (4)C15—N5—C16—O34.0 (4)
C18—N7—C14—C1181.0 (2)C15—N5—C16—C17175.6 (2)
N6—N7—C14—C11102.1 (2)N6—N7—C18—O4179.87 (18)
C18—N7—C14—S2156.79 (16)C14—N7—C18—O43.2 (3)
N6—N7—C14—S220.1 (2)N6—N7—C18—C190.6 (3)
C10—C11—C14—N7126.2 (2)C14—N7—C18—C19177.34 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O4i0.861.962.815 (2)171
C10—H10···O3ii0.932.583.267 (3)131
C17—H17A···O4i0.962.463.316 (3)148
C19—H19B···O4iii0.962.553.335 (3)139
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H12FN3O2S
Mr281.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.5061 (6), 11.2152 (7), 12.7752 (7)
β (°) 101.823 (4)
V3)1333.11 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11372, 2352, 2035
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.07
No. of reflections2352
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O4i0.861.962.815 (2)171.00
C10—H10···O3ii0.932.583.267 (3)131.00
C17—H17A···O4i0.962.463.316 (3)148.00
C19—H19B···O4iii0.962.553.335 (3)139.00
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the X-ray data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, D. N., Kumar, M., Noel, B. & Shah, K. (2012). Eur. J. Med. Chem. 55, 432–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMarganakop, S. B., Kamble, R. R., Taj, T. & Kariduraganvar, M. Y. (2012). Med. Chem. Res. 21, 185–191.  Web of Science CrossRef CAS Google Scholar
First citationMatysiak, J., Nasulewicz, A., Peiczyńska, M., Świtalska, M., Jarozewicz, I. & Opolski, A. (2006). Eur. J. Med. Chem. 41, 475–482.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483–4489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNoolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). Eur. J. Med. Chem. 46, 4411–4418.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOruç, E. E., Rollas, S., Kkandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, G.-Y. (2009). Acta Cryst. E65, o2138.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds