organic compounds
2-({1-[2-(Methylsulfanyl)phenyl]-1H-tetrazol-5-yl}sulfanyl)acetic acid
aInstituto de Física de São Carlos, Av. do Trab. Sãocarlense, 400, São Carlos, SP, Brazil
*Correspondence e-mail: mafud@usp.br
In the title compound, C10H10N4O2S2, the tetrazole and benzene rings are almost normal to one another, with a dihedral angle between their planes of 84.33 (9)°. In the crystal, molecules are linked via pairs of bifurcated O—H⋯(N,N) hydrogen bonds, forming inversion dimers with graph-set motif R44(12). The dimers are linked by significant π–π interactions involving inversion-related tetrazole rings and inversion-related benzene rings, with centroid–centroid distances of 3.7376 (14) and 3.8444 (15) Å, respectively.
Related literature
For details of the ZINC database, see: Irwin et al. (2012). For information on the biological properties of tetrazoles, see: Kees et al. (1989); Nolte et al. (1998); Mafud & Nascimento (2013).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 1999); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S160053681300980X/su2571sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681300980X/su2571Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S160053681300980X/su2571Isup3.cml
A yellow prism-like crystal of the title compound was selected from the sample as supplied (ChemBridge Corporation) without recrystallization.
The hydroxyl H atom was located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å, for CH, CH3 and CH2 H atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.
The title acid is a screening molecule available in the ZINC database (Irwin et al., 2012) among the 'drugs-now' subset. This molecule has been identified as a PPAR gamma ligand candidate in a virtual screening study. The
proliferator-activated receptors, isoform gamma, are a transcription factors whom regulating the genes expression (Nolte et al., 1998). The binding was further confirmed in experimental binding assays (Mafud et al., 2013). Since tetrazoles are already known to have glucose lowering effects in vivo (Kees et al., 1989), in this virtual screening we chose some different representative molecules to evaluate the affinities and the extent of receptor activation. We report herein on the of the title compound.The molecular structure of the title molecule is illustrated in Fig. 1. The tetrazole and phenyl rings are almost normal to one another with a dihedral angle of 84.33 (9)°.
In the crystal, molecules are linked via O—H···N hydrogen bonds forming inversion dimers with graph-set motif R44(12); see Fig. 2 and Table 1. The dimers is linked by significant π–π interactions involving inversion related tetrazole rings (Cg1 centroid of ring N1—N4/C3) and inversion related phenyl rings (Cg2 centroid of ring C4—C9): Cg1···Cg1i = 3.7376 (14) Å; Cg2···Cg2ii = 3.8444 (15) Å; symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1.
For details of the ZINC database, see: Irwin et al. (2012). For information on the biological properties of tetrazoles, see: Kees et al. (1989); Nolte et al. (1998); Mafud & Nascimento (2013).
Data collection: COLLECT (Nonius, 1999); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).C10H10N4O2S2 | Z = 2 |
Mr = 282.34 | F(000) = 292 |
Triclinic, P1 | none |
Hall symbol: -P 1 | Dx = 1.489 Mg m−3 |
a = 7.1500 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.3770 (3) Å | Cell parameters from 2086 reflections |
c = 11.0890 (5) Å | θ = 10.4–19.8° |
α = 74.7480 (14)° | µ = 0.42 mm−1 |
β = 79.3090 (14)° | T = 290 K |
γ = 86.286 (3)° | Prism, yellow |
V = 629.58 (4) Å3 | 0.1 × 0.05 × 0.05 mm |
Bruker–Nonius KappaCCD diffractometer | 2335 independent reflections |
Radiation source: Fine-focus | 1879 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
CCD scans | θmax = 25.7°, θmin = 3.8° |
Absorption correction: for a cylinder mounted on the φ axis (Dwiggins, 1975) | h = −8→8 |
Tmin = 0.861, Tmax = 0.862 | k = −10→10 |
15888 measured reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.051 | w = 1/[σ2(Fo2) + (0.0968P)2 + 0.1021P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.15 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.50 e Å−3 |
2335 reflections | Δρmin = −0.30 e Å−3 |
167 parameters |
C10H10N4O2S2 | γ = 86.286 (3)° |
Mr = 282.34 | V = 629.58 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1500 (3) Å | Mo Kα radiation |
b = 8.3770 (3) Å | µ = 0.42 mm−1 |
c = 11.0890 (5) Å | T = 290 K |
α = 74.7480 (14)° | 0.1 × 0.05 × 0.05 mm |
β = 79.3090 (14)° |
Bruker–Nonius KappaCCD diffractometer | 2335 independent reflections |
Absorption correction: for a cylinder mounted on the φ axis (Dwiggins, 1975) | 1879 reflections with I > 2σ(I) |
Tmin = 0.861, Tmax = 0.862 | Rint = 0.079 |
15888 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.15 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.50 e Å−3 |
2335 reflections | Δρmin = −0.30 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individuallno in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are onlno used when theno are defined bno crnostal snommetrno. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.12427 (8) | 0.32835 (9) | 0.14822 (6) | 0.0644 (3) | |
S2 | 0.31586 (12) | 0.16473 (8) | 0.46904 (6) | 0.0744 (3) | |
O1 | 0.3263 (3) | 0.0525 (3) | −0.07328 (19) | 0.0753 (6) | |
H1 | 0.367 (6) | −0.039 (5) | −0.072 (4) | 0.113* | |
O2 | 0.1581 (4) | −0.0338 (3) | 0.1185 (2) | 0.0973 (8) | |
N1 | 0.5089 (3) | 0.2791 (3) | 0.0763 (2) | 0.0593 (5) | |
N2 | 0.6701 (3) | 0.3173 (3) | 0.1112 (2) | 0.0621 (5) | |
N3 | 0.6313 (3) | 0.3917 (3) | 0.2004 (2) | 0.0593 (5) | |
N4 | 0.4384 (2) | 0.4047 (2) | 0.22640 (17) | 0.0490 (4) | |
C1 | 0.2079 (3) | 0.0747 (3) | 0.0282 (2) | 0.0576 (6) | |
C2 | 0.1398 (3) | 0.2518 (3) | 0.0096 (2) | 0.0546 (5) | |
H2A | 0.0153 | 0.2615 | −0.0148 | 0.066* | |
H2B | 0.2261 | 0.3207 | −0.0597 | 0.066* | |
C3 | 0.3657 (3) | 0.3352 (3) | 0.1496 (2) | 0.0507 (5) | |
C4 | 0.3483 (3) | 0.4803 (3) | 0.3259 (2) | 0.0497 (5) | |
C5 | 0.3341 (4) | 0.6503 (3) | 0.2979 (2) | 0.0597 (6) | |
H5 | 0.3723 | 0.7138 | 0.2153 | 0.072* | |
C6 | 0.2621 (4) | 0.7248 (4) | 0.3944 (3) | 0.0721 (7) | |
H6 | 0.2489 | 0.8394 | 0.3774 | 0.087* | |
C7 | 0.2099 (4) | 0.6277 (4) | 0.5165 (3) | 0.0736 (8) | |
H7 | 0.1645 | 0.6782 | 0.5817 | 0.088* | |
C8 | 0.2235 (4) | 0.4586 (4) | 0.5438 (2) | 0.0637 (6) | |
H8 | 0.1866 | 0.396 | 0.6267 | 0.076* | |
C9 | 0.2925 (3) | 0.3800 (3) | 0.4476 (2) | 0.0539 (5) | |
C10 | 0.2427 (5) | 0.0824 (4) | 0.6350 (3) | 0.0923 (10) | |
H10A | 0.3274 | 0.1185 | 0.68 | 0.138* | |
H10B | 0.2456 | −0.0363 | 0.6544 | 0.138* | |
H10C | 0.1156 | 0.1204 | 0.6604 | 0.138* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0435 (4) | 0.0871 (5) | 0.0716 (5) | −0.0001 (3) | −0.0027 (3) | −0.0413 (4) |
S2 | 0.0991 (6) | 0.0597 (4) | 0.0580 (4) | −0.0016 (3) | −0.0056 (3) | −0.0094 (3) |
O1 | 0.0897 (14) | 0.0694 (12) | 0.0682 (12) | 0.0092 (10) | −0.0035 (10) | −0.0296 (10) |
O2 | 0.1136 (18) | 0.0716 (13) | 0.0805 (14) | 0.0116 (12) | 0.0131 (12) | 0.0020 (11) |
N1 | 0.0483 (10) | 0.0683 (12) | 0.0648 (12) | −0.0004 (9) | 0.0007 (8) | −0.0307 (10) |
N2 | 0.0473 (10) | 0.0726 (13) | 0.0670 (13) | 0.0032 (9) | −0.0015 (9) | −0.0260 (11) |
N3 | 0.0434 (10) | 0.0711 (13) | 0.0628 (12) | 0.0002 (8) | −0.0052 (8) | −0.0192 (10) |
N4 | 0.0425 (9) | 0.0543 (10) | 0.0501 (10) | 0.0014 (7) | −0.0045 (7) | −0.0163 (8) |
C1 | 0.0544 (12) | 0.0648 (14) | 0.0558 (14) | −0.0015 (10) | −0.0109 (10) | −0.0186 (11) |
C2 | 0.0496 (12) | 0.0600 (13) | 0.0571 (13) | −0.0012 (10) | −0.0111 (10) | −0.0188 (11) |
C3 | 0.0475 (11) | 0.0545 (12) | 0.0522 (12) | 0.0008 (9) | −0.0048 (9) | −0.0205 (10) |
C4 | 0.0460 (11) | 0.0569 (12) | 0.0506 (12) | 0.0024 (9) | −0.0103 (9) | −0.0206 (10) |
C5 | 0.0611 (14) | 0.0563 (14) | 0.0640 (14) | 0.0032 (10) | −0.0140 (11) | −0.0184 (11) |
C6 | 0.0711 (16) | 0.0646 (16) | 0.094 (2) | 0.0088 (12) | −0.0231 (14) | −0.0392 (15) |
C7 | 0.0624 (15) | 0.095 (2) | 0.0812 (19) | 0.0070 (14) | −0.0154 (13) | −0.0530 (17) |
C8 | 0.0594 (14) | 0.0837 (18) | 0.0538 (13) | 0.0016 (12) | −0.0090 (10) | −0.0289 (12) |
C9 | 0.0481 (11) | 0.0649 (14) | 0.0514 (12) | 0.0001 (10) | −0.0096 (9) | −0.0193 (10) |
C10 | 0.096 (2) | 0.093 (2) | 0.0671 (18) | 0.0006 (17) | −0.0007 (15) | 0.0068 (16) |
S1—C3 | 1.734 (2) | C2—H2B | 0.97 |
S1—C2 | 1.798 (2) | C4—C5 | 1.376 (3) |
S2—C9 | 1.757 (3) | C4—C9 | 1.391 (3) |
S2—C10 | 1.778 (3) | C5—C6 | 1.381 (4) |
O1—C1 | 1.324 (3) | C5—H5 | 0.93 |
O1—H1 | 0.80 (4) | C6—C7 | 1.380 (4) |
O2—C1 | 1.177 (3) | C6—H6 | 0.93 |
N1—C3 | 1.327 (3) | C7—C8 | 1.369 (4) |
N1—N2 | 1.364 (3) | C7—H7 | 0.93 |
N2—N3 | 1.282 (3) | C8—C9 | 1.395 (3) |
N3—N4 | 1.359 (3) | C8—H8 | 0.93 |
N4—C3 | 1.341 (3) | C10—H10A | 0.96 |
N4—C4 | 1.444 (3) | C10—H10B | 0.96 |
C1—C2 | 1.504 (3) | C10—H10C | 0.96 |
C2—H2A | 0.97 | ||
C3—S1—C2 | 98.45 (10) | C9—C4—N4 | 118.91 (19) |
C9—S2—C10 | 104.17 (14) | C4—C5—C6 | 118.8 (2) |
C1—O1—H1 | 118 (3) | C4—C5—H5 | 120.6 |
C3—N1—N2 | 105.52 (19) | C6—C5—H5 | 120.6 |
N3—N2—N1 | 111.51 (18) | C7—C6—C5 | 119.3 (3) |
N2—N3—N4 | 106.22 (18) | C7—C6—H6 | 120.3 |
C3—N4—N3 | 108.48 (17) | C5—C6—H6 | 120.3 |
C3—N4—C4 | 131.62 (18) | C8—C7—C6 | 121.6 (2) |
N3—N4—C4 | 119.88 (18) | C8—C7—H7 | 119.2 |
O2—C1—O1 | 123.2 (2) | C6—C7—H7 | 119.2 |
O2—C1—C2 | 125.3 (2) | C7—C8—C9 | 120.2 (2) |
O1—C1—C2 | 111.4 (2) | C7—C8—H8 | 119.9 |
C1—C2—S1 | 113.73 (17) | C9—C8—H8 | 119.9 |
C1—C2—H2A | 108.8 | C4—C9—C8 | 117.2 (2) |
S1—C2—H2A | 108.8 | C4—C9—S2 | 117.76 (17) |
C1—C2—H2B | 108.8 | C8—C9—S2 | 125.01 (19) |
S1—C2—H2B | 108.8 | S2—C10—H10A | 109.5 |
H2A—C2—H2B | 107.7 | S2—C10—H10B | 109.5 |
N1—C3—N4 | 108.27 (19) | H10A—C10—H10B | 109.5 |
N1—C3—S1 | 127.70 (17) | S2—C10—H10C | 109.5 |
N4—C3—S1 | 124.01 (16) | H10A—C10—H10C | 109.5 |
C5—C4—C9 | 122.8 (2) | H10B—C10—H10C | 109.5 |
C5—C4—N4 | 118.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.81 (4) | 2.15 (4) | 2.952 (4) | 176 (4) |
O1—H1···N2i | 0.81 (4) | 2.51 (4) | 3.232 (4) | 149 (4) |
Symmetry code: (i) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C10H10N4O2S2 |
Mr | 282.34 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 290 |
a, b, c (Å) | 7.1500 (3), 8.3770 (3), 11.0890 (5) |
α, β, γ (°) | 74.7480 (14), 79.3090 (14), 86.286 (3) |
V (Å3) | 629.58 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.42 |
Crystal size (mm) | 0.1 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD |
Absorption correction | For a cylinder mounted on the φ axis (Dwiggins, 1975) |
Tmin, Tmax | 0.861, 0.862 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15888, 2335, 1879 |
Rint | 0.079 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.15, 1.04 |
No. of reflections | 2335 |
No. of parameters | 167 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.30 |
Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.81 (4) | 2.15 (4) | 2.952 (4) | 176 (4) |
O1—H1···N2i | 0.81 (4) | 2.51 (4) | 3.232 (4) | 149 (4) |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
We are grateful to the CAPES National Council for the Improvement of Higher Education and FAPESP São Paulo Research Foundation for supporting this study.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Dwiggins, C. W. (1975). Acta Cryst. A31, 146–148. CrossRef IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Irwin, J. J., Sterling, T., Mnosinger, M. M., Bolstad, E. S. & Coleman, R. G. (2012). J. Chem. Inf. Model. 52, 1757–1768. Web of Science CrossRef CAS PubMed Google Scholar
Kees, K. L., Cheeseman, R. S., Prozialeck, D. H. & Steiner, K. E. (1989). J. Med. Chem. 32, 11–13. CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mafud, A. C. & Nascimento, A. S. (2013). In preparation. Google Scholar
Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeldk, M. G., Willson, T. M., Glass, C. K. & Milburn, M. V. (1998). Nature, 395, 137–143. Web of Science CAS PubMed Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title acid is a screening molecule available in the ZINC database (Irwin et al., 2012) among the 'drugs-now' subset. This molecule has been identified as a PPAR gamma ligand candidate in a virtual screening study. The peroxisome proliferator-activated receptors, isoform gamma, are a transcription factors whom regulating the genes expression (Nolte et al., 1998). The binding was further confirmed in experimental binding assays (Mafud et al., 2013). Since tetrazoles are already known to have glucose lowering effects in vivo (Kees et al., 1989), in this virtual screening we chose some different representative molecules to evaluate the affinities and the extent of receptor activation. We report herein on the crystal structure of the title compound.
The molecular structure of the title molecule is illustrated in Fig. 1. The tetrazole and phenyl rings are almost normal to one another with a dihedral angle of 84.33 (9)°.
In the crystal, molecules are linked via O—H···N hydrogen bonds forming inversion dimers with graph-set motif R44(12); see Fig. 2 and Table 1. The dimers is linked by significant π–π interactions involving inversion related tetrazole rings (Cg1 centroid of ring N1—N4/C3) and inversion related phenyl rings (Cg2 centroid of ring C4—C9): Cg1···Cg1i = 3.7376 (14) Å; Cg2···Cg2ii = 3.8444 (15) Å; symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1.