organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-({1-[2-(Methyl­sulfan­yl)phen­yl]-1H-tetra­zol-5-yl}sulfan­yl)acetic acid

aInstituto de Física de São Carlos, Av. do Trab. Sãocarlense, 400, São Carlos, SP, Brazil
*Correspondence e-mail: mafud@usp.br

(Received 7 March 2013; accepted 9 April 2013; online 20 April 2013)

In the title compound, C10H10N4O2S2, the tetra­zole and benzene rings are almost normal to one another, with a dihedral angle between their planes of 84.33 (9)°. In the crystal, mol­ecules are linked via pairs of bifurcated O—H⋯(N,N) hydrogen bonds, forming inversion dimers with graph-set motif R44(12). The dimers are linked by significant ππ inter­actions involving inversion-related tetra­zole rings and inversion-related benzene rings, with centroid–centroid distances of 3.7376 (14) and 3.8444 (15) Å, respectively.

Related literature

For details of the ZINC database, see: Irwin et al. (2012[Irwin, J. J., Sterling, T., Mnosinger, M. M., Bolstad, E. S. & Coleman, R. G. (2012). J. Chem. Inf. Model. 52, 1757-1768.]). For information on the biological properties of tetra­zoles, see: Kees et al. (1989[Kees, K. L., Cheeseman, R. S., Prozialeck, D. H. & Steiner, K. E. (1989). J. Med. Chem. 32, 11-13.]); Nolte et al. (1998[Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeldk, M. G., Willson, T. M., Glass, C. K. & Milburn, M. V. (1998). Nature, 395, 137-143.]); Mafud & Nascimento (2013[Mafud, A. C. & Nascimento, A. S. (2013). In preparation.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4O2S2

  • Mr = 282.34

  • Triclinic, [P \overline 1]

  • a = 7.1500 (3) Å

  • b = 8.3770 (3) Å

  • c = 11.0890 (5) Å

  • α = 74.7480 (14)°

  • β = 79.3090 (14)°

  • γ = 86.286 (3)°

  • V = 629.58 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 290 K

  • 0.1 × 0.05 × 0.05 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: for a cylinder mounted on the φ axis (Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) Tmin = 0.861, Tmax = 0.862

  • 15888 measured reflections

  • 2335 independent reflections

  • 1879 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.15

  • S = 1.04

  • 2335 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.81 (4) 2.15 (4) 2.952 (4) 176 (4)
O1—H1⋯N2i 0.81 (4) 2.51 (4) 3.232 (4) 149 (4)
Symmetry code: (i) -x+1, -y, -z.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title acid is a screening molecule available in the ZINC database (Irwin et al., 2012) among the 'drugs-now' subset. This molecule has been identified as a PPAR gamma ligand candidate in a virtual screening study. The peroxisome proliferator-activated receptors, isoform gamma, are a transcription factors whom regulating the genes expression (Nolte et al., 1998). The binding was further confirmed in experimental binding assays (Mafud et al., 2013). Since tetrazoles are already known to have glucose lowering effects in vivo (Kees et al., 1989), in this virtual screening we chose some different representative molecules to evaluate the affinities and the extent of receptor activation. We report herein on the crystal structure of the title compound.

The molecular structure of the title molecule is illustrated in Fig. 1. The tetrazole and phenyl rings are almost normal to one another with a dihedral angle of 84.33 (9)°.

In the crystal, molecules are linked via O—H···N hydrogen bonds forming inversion dimers with graph-set motif R44(12); see Fig. 2 and Table 1. The dimers is linked by significant ππ interactions involving inversion related tetrazole rings (Cg1 centroid of ring N1—N4/C3) and inversion related phenyl rings (Cg2 centroid of ring C4—C9): Cg1···Cg1i = 3.7376 (14) Å; Cg2···Cg2ii = 3.8444 (15) Å; symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1.

Related literature top

For details of the ZINC database, see: Irwin et al. (2012). For information on the biological properties of tetrazoles, see: Kees et al. (1989); Nolte et al. (1998); Mafud & Nascimento (2013).

Experimental top

A yellow prism-like crystal of the title compound was selected from the sample as supplied (ChemBridge Corporation) without recrystallization.

Refinement top

The hydroxyl H atom was located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å, for CH, CH3 and CH2 H atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Structure description top

The title acid is a screening molecule available in the ZINC database (Irwin et al., 2012) among the 'drugs-now' subset. This molecule has been identified as a PPAR gamma ligand candidate in a virtual screening study. The peroxisome proliferator-activated receptors, isoform gamma, are a transcription factors whom regulating the genes expression (Nolte et al., 1998). The binding was further confirmed in experimental binding assays (Mafud et al., 2013). Since tetrazoles are already known to have glucose lowering effects in vivo (Kees et al., 1989), in this virtual screening we chose some different representative molecules to evaluate the affinities and the extent of receptor activation. We report herein on the crystal structure of the title compound.

The molecular structure of the title molecule is illustrated in Fig. 1. The tetrazole and phenyl rings are almost normal to one another with a dihedral angle of 84.33 (9)°.

In the crystal, molecules are linked via O—H···N hydrogen bonds forming inversion dimers with graph-set motif R44(12); see Fig. 2 and Table 1. The dimers is linked by significant ππ interactions involving inversion related tetrazole rings (Cg1 centroid of ring N1—N4/C3) and inversion related phenyl rings (Cg2 centroid of ring C4—C9): Cg1···Cg1i = 3.7376 (14) Å; Cg2···Cg2ii = 3.8444 (15) Å; symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1.

For details of the ZINC database, see: Irwin et al. (2012). For information on the biological properties of tetrazoles, see: Kees et al. (1989); Nolte et al. (1998); Mafud & Nascimento (2013).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, illustrating the O—H···N hydrogen bonds (dashed lines; see Table 1 for details) and the π-π interactions (red ball = ring centroid).
2-({1-[2-(Methylsulfanyl)phenyl]-1H-tetrazol-5-yl}sulfanyl)acetic acid top
Crystal data top
C10H10N4O2S2Z = 2
Mr = 282.34F(000) = 292
Triclinic, P1none
Hall symbol: -P 1Dx = 1.489 Mg m3
a = 7.1500 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3770 (3) ÅCell parameters from 2086 reflections
c = 11.0890 (5) Åθ = 10.4–19.8°
α = 74.7480 (14)°µ = 0.42 mm1
β = 79.3090 (14)°T = 290 K
γ = 86.286 (3)°Prism, yellow
V = 629.58 (4) Å30.1 × 0.05 × 0.05 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2335 independent reflections
Radiation source: Fine-focus1879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
CCD scansθmax = 25.7°, θmin = 3.8°
Absorption correction: for a cylinder mounted on the φ axis
(Dwiggins, 1975)
h = 88
Tmin = 0.861, Tmax = 0.862k = 1010
15888 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0968P)2 + 0.1021P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.15(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.50 e Å3
2335 reflectionsΔρmin = 0.30 e Å3
167 parameters
Crystal data top
C10H10N4O2S2γ = 86.286 (3)°
Mr = 282.34V = 629.58 (4) Å3
Triclinic, P1Z = 2
a = 7.1500 (3) ÅMo Kα radiation
b = 8.3770 (3) ŵ = 0.42 mm1
c = 11.0890 (5) ÅT = 290 K
α = 74.7480 (14)°0.1 × 0.05 × 0.05 mm
β = 79.3090 (14)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2335 independent reflections
Absorption correction: for a cylinder mounted on the φ axis
(Dwiggins, 1975)
1879 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.862Rint = 0.079
15888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.15H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.50 e Å3
2335 reflectionsΔρmin = 0.30 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individuallno in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are onlno used when theno are defined bno crnostal snommetrno. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12427 (8)0.32835 (9)0.14822 (6)0.0644 (3)
S20.31586 (12)0.16473 (8)0.46904 (6)0.0744 (3)
O10.3263 (3)0.0525 (3)0.07328 (19)0.0753 (6)
H10.367 (6)0.039 (5)0.072 (4)0.113*
O20.1581 (4)0.0338 (3)0.1185 (2)0.0973 (8)
N10.5089 (3)0.2791 (3)0.0763 (2)0.0593 (5)
N20.6701 (3)0.3173 (3)0.1112 (2)0.0621 (5)
N30.6313 (3)0.3917 (3)0.2004 (2)0.0593 (5)
N40.4384 (2)0.4047 (2)0.22640 (17)0.0490 (4)
C10.2079 (3)0.0747 (3)0.0282 (2)0.0576 (6)
C20.1398 (3)0.2518 (3)0.0096 (2)0.0546 (5)
H2A0.01530.26150.01480.066*
H2B0.22610.32070.05970.066*
C30.3657 (3)0.3352 (3)0.1496 (2)0.0507 (5)
C40.3483 (3)0.4803 (3)0.3259 (2)0.0497 (5)
C50.3341 (4)0.6503 (3)0.2979 (2)0.0597 (6)
H50.37230.71380.21530.072*
C60.2621 (4)0.7248 (4)0.3944 (3)0.0721 (7)
H60.24890.83940.37740.087*
C70.2099 (4)0.6277 (4)0.5165 (3)0.0736 (8)
H70.16450.67820.58170.088*
C80.2235 (4)0.4586 (4)0.5438 (2)0.0637 (6)
H80.18660.3960.62670.076*
C90.2925 (3)0.3800 (3)0.4476 (2)0.0539 (5)
C100.2427 (5)0.0824 (4)0.6350 (3)0.0923 (10)
H10A0.32740.11850.680.138*
H10B0.24560.03630.65440.138*
H10C0.11560.12040.66040.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0435 (4)0.0871 (5)0.0716 (5)0.0001 (3)0.0027 (3)0.0413 (4)
S20.0991 (6)0.0597 (4)0.0580 (4)0.0016 (3)0.0056 (3)0.0094 (3)
O10.0897 (14)0.0694 (12)0.0682 (12)0.0092 (10)0.0035 (10)0.0296 (10)
O20.1136 (18)0.0716 (13)0.0805 (14)0.0116 (12)0.0131 (12)0.0020 (11)
N10.0483 (10)0.0683 (12)0.0648 (12)0.0004 (9)0.0007 (8)0.0307 (10)
N20.0473 (10)0.0726 (13)0.0670 (13)0.0032 (9)0.0015 (9)0.0260 (11)
N30.0434 (10)0.0711 (13)0.0628 (12)0.0002 (8)0.0052 (8)0.0192 (10)
N40.0425 (9)0.0543 (10)0.0501 (10)0.0014 (7)0.0045 (7)0.0163 (8)
C10.0544 (12)0.0648 (14)0.0558 (14)0.0015 (10)0.0109 (10)0.0186 (11)
C20.0496 (12)0.0600 (13)0.0571 (13)0.0012 (10)0.0111 (10)0.0188 (11)
C30.0475 (11)0.0545 (12)0.0522 (12)0.0008 (9)0.0048 (9)0.0205 (10)
C40.0460 (11)0.0569 (12)0.0506 (12)0.0024 (9)0.0103 (9)0.0206 (10)
C50.0611 (14)0.0563 (14)0.0640 (14)0.0032 (10)0.0140 (11)0.0184 (11)
C60.0711 (16)0.0646 (16)0.094 (2)0.0088 (12)0.0231 (14)0.0392 (15)
C70.0624 (15)0.095 (2)0.0812 (19)0.0070 (14)0.0154 (13)0.0530 (17)
C80.0594 (14)0.0837 (18)0.0538 (13)0.0016 (12)0.0090 (10)0.0289 (12)
C90.0481 (11)0.0649 (14)0.0514 (12)0.0001 (10)0.0096 (9)0.0193 (10)
C100.096 (2)0.093 (2)0.0671 (18)0.0006 (17)0.0007 (15)0.0068 (16)
Geometric parameters (Å, º) top
S1—C31.734 (2)C2—H2B0.97
S1—C21.798 (2)C4—C51.376 (3)
S2—C91.757 (3)C4—C91.391 (3)
S2—C101.778 (3)C5—C61.381 (4)
O1—C11.324 (3)C5—H50.93
O1—H10.80 (4)C6—C71.380 (4)
O2—C11.177 (3)C6—H60.93
N1—C31.327 (3)C7—C81.369 (4)
N1—N21.364 (3)C7—H70.93
N2—N31.282 (3)C8—C91.395 (3)
N3—N41.359 (3)C8—H80.93
N4—C31.341 (3)C10—H10A0.96
N4—C41.444 (3)C10—H10B0.96
C1—C21.504 (3)C10—H10C0.96
C2—H2A0.97
C3—S1—C298.45 (10)C9—C4—N4118.91 (19)
C9—S2—C10104.17 (14)C4—C5—C6118.8 (2)
C1—O1—H1118 (3)C4—C5—H5120.6
C3—N1—N2105.52 (19)C6—C5—H5120.6
N3—N2—N1111.51 (18)C7—C6—C5119.3 (3)
N2—N3—N4106.22 (18)C7—C6—H6120.3
C3—N4—N3108.48 (17)C5—C6—H6120.3
C3—N4—C4131.62 (18)C8—C7—C6121.6 (2)
N3—N4—C4119.88 (18)C8—C7—H7119.2
O2—C1—O1123.2 (2)C6—C7—H7119.2
O2—C1—C2125.3 (2)C7—C8—C9120.2 (2)
O1—C1—C2111.4 (2)C7—C8—H8119.9
C1—C2—S1113.73 (17)C9—C8—H8119.9
C1—C2—H2A108.8C4—C9—C8117.2 (2)
S1—C2—H2A108.8C4—C9—S2117.76 (17)
C1—C2—H2B108.8C8—C9—S2125.01 (19)
S1—C2—H2B108.8S2—C10—H10A109.5
H2A—C2—H2B107.7S2—C10—H10B109.5
N1—C3—N4108.27 (19)H10A—C10—H10B109.5
N1—C3—S1127.70 (17)S2—C10—H10C109.5
N4—C3—S1124.01 (16)H10A—C10—H10C109.5
C5—C4—C9122.8 (2)H10B—C10—H10C109.5
C5—C4—N4118.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.81 (4)2.15 (4)2.952 (4)176 (4)
O1—H1···N2i0.81 (4)2.51 (4)3.232 (4)149 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H10N4O2S2
Mr282.34
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)7.1500 (3), 8.3770 (3), 11.0890 (5)
α, β, γ (°)74.7480 (14), 79.3090 (14), 86.286 (3)
V3)629.58 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.1 × 0.05 × 0.05
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionFor a cylinder mounted on the φ axis
(Dwiggins, 1975)
Tmin, Tmax0.861, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
15888, 2335, 1879
Rint0.079
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.15, 1.04
No. of reflections2335
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.30

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.81 (4)2.15 (4)2.952 (4)176 (4)
O1—H1···N2i0.81 (4)2.51 (4)3.232 (4)149 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We are grateful to the CAPES National Council for the Improvement of Higher Education and FAPESP São Paulo Research Foundation for supporting this study.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIrwin, J. J., Sterling, T., Mnosinger, M. M., Bolstad, E. S. & Coleman, R. G. (2012). J. Chem. Inf. Model. 52, 1757–1768.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKees, K. L., Cheeseman, R. S., Prozialeck, D. H. & Steiner, K. E. (1989). J. Med. Chem. 32, 11–13.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMafud, A. C. & Nascimento, A. S. (2013). In preparation.  Google Scholar
First citationNolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeldk, M. G., Willson, T. M., Glass, C. K. & Milburn, M. V. (1998). Nature, 395, 137–143.  Web of Science CAS PubMed Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds