organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­phenyl-4-(1H-pyrrolo[1,2-f][1,10]phenanthro­lin-2-yl)­aniline ethanol monosolvate

aDeparment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230601, People's Republic of China
*Correspondence e-mail: yptian@ahu.edu.cn

(Received 12 March 2013; accepted 27 March 2013; online 10 April 2013)

The title compound, C32H21N4·C2H5OH, crystallized as an ethanol monosolvate. In the mol­ecule of this phenanthroline derivative, the pyridine rings are almost coplanar, making a dihedral angle of 1.54 (13)°. The tri­phenyl­amine group, introduced as an electron donor, shows a propeller-type structure, and the dihedral angles between the benzene rings are 68.71 11), 63.92 (16) and 70.81 (15)°. In the crystal, the phenanthroline mol­ecules are linked via the solvent mol­ecule by N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, leading to the formation of zigzag chains propagating along [010]. These chains are linked via C—H⋯N hydrogen bonds, forming undulating two-dimensional networks extending in the a- and b-axis directions.

Related literature

For background to imidazo[4,5-f]-1,10-phenanthroline compounds, see: Li et al. (2012[Li, S. S., Zhang, C., Huang, S. Y., Hu, F., Yin, J. & Liu, S. H. (2012). RSC Advances, 2, 4215-4219.]). For metal complexes and binding studies, see: Ma et al. (2009[Ma, Y.-Z., Yin, H.-J. & Wang, K.-Z. (2009). J. Phys. Chem. B, 113, 11039-11047.]); Xu et al. (2012[Xu, F., Peng, Y.-X., Hu, B., Tao, T. & Huang, W. (2012). CrystEngComm, 14, 8023-8032.]); Zheng et al. (2013[Zheng, Z., Zhang, Q., Yu, Z. P., Yang, M. D., Zhou, H. P., Wu, J. Y. & Tian, Y. P. (2013). J. Mater. Chem. C, 1, 822-830.]). For the crystal structures of related compounds, see: Sun et al. (2009[Sun, B., Guan, J.-X., Xu, L., Yu, B.-L. & Jiang, L. (2009). Inorg. Chem. 48, 4637-4639.]); Eseola et al. (2012[Eseola, A. O., Adepitan, O., Görls, H. & Plass, W. (2012). New J. Chem. 36, 891-902.]); Bhat et al. (2011[Bhat, S. S., Kumbhar, A. A., Heptullah, H. & Khan, A. A. (2011). Inorg. Chem. 50, 545-558.]).

[Scheme 1]

Experimental

Crystal data
  • C32H21N4·C2H6O

  • Mr = 507.60

  • Monoclinic, P 21 /c

  • a = 9.716 (4) Å

  • b = 10.690 (4) Å

  • c = 27.017 (10) Å

  • β = 92.317 (4)°

  • V = 2803.8 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.993

  • 20210 measured reflections

  • 5216 independent reflections

  • 3870 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.210

  • S = 1.02

  • 5216 reflections

  • 340 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1 0.94 (3) 1.84 (3) 2.777 (3) 175 (2)
O1—H1O1⋯N1i 0.82 2.15 2.819 (3) 139
O1—H1O1⋯N2i 0.82 2.38 3.087 (3) 145
C16—H16⋯O1 0.93 2.54 3.419 (4) 157
C3—H3⋯N2i 0.93 2.59 3.310 (4) 135
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1H-imidazo [4.5 - f] [1,10] phenanthroline derivatives have good biocompatibility and coordination ability (Li et al., 2012). Such compounds are often used to coordinate with various metal ions, and their binding with DNA to achieve anti-cancer anti-tumor activity has been studied (Ma et al., 2009; Xu et al., 2012 ; Zheng et al., 2013). The crystal structures of similar compounds have been reported (Sun et al., 2009; Eseola et al., 2012; Bhat et al., 2011). As a part of ongoing study of this type compound, here we report on the crystal structure of the title compound.

The molecular structure of the title compound is illustrated in Fig. 1. It is comprised of a phenanthroline derivative and an ethanol solvent molecule (Fig. 1 and Table 1). The triphenylamine group, introduced as an electron donor, shows the propeller structure, with the dihedral angles between the benzene rings, (C15-C20), (C21-C26) and (C27-C32), being 68.71 (11), 63.92 (16) and 70.81 (15) °, respectively.

The two pyridine rings of the phenanthroline group are almost coplanar, with a dihedral angle of 1.54 (13)°. The mean plane of imidazo-phenanthroline group (N1-N3/C1-C14; r.m.s. 0.002) is inclined to the benzene ring to which it is attached by 7.63 (9)°.

In the crystal, the phenanthroline molecules are linked via the solvent molecule by N-H···O, O-H···N and C-H···O hydrogen bonds leading to the formation of zigzag chains propagating along [010]. These chains are linked via C-H···N hydrogen bonds forming undulating two-dimensional networks extending in the a and b directions (Fig. 2 and Table 1).

Related literature top

For background to imidazo[4,5-f]-1,10-phenanthroline compounds, see: Li et al. (2012). For metal complexes and binding studies, see: Ma et al. (2009); Xu et al. (2012); Zheng et al. (2013). For the crystal structures of related compounds, see: Sun et al. (2009); Eseola et al. (2012); Bhat et al. (2011).

Experimental top

A mixture of 4-formyl triphenylamine (0.19 g, 0.7 mmol), 1,10-phenanthroline-5,6-dione (0.15 g, 0.7 mmol), ammonium acetate (1.15 g, 15 mmol) and 15 mL acetic acid were heated and refluxed for 4 h, then cooled to room temperature. 30 mL water was added and a saturated K2CO3 solution was added slowly to adjust the pH to 7–8. A yellow precipitate was generated gradually, suction filtered and washed with water three times, and recrystallized from ethanol to give a pale-yellow bock-like crystals (0.28 g; Yield 85%) Spectroscopic details for the title compound are available in the archived CIF.

Refinement top

The amine H atoms were located in a difference Fourier map and freely refined. The OH and C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: O—H = 0.82 Å, C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(atoms C33 and O1), and = 1.2Ueq(C) for other H atoms.

Structure description top

1H-imidazo [4.5 - f] [1,10] phenanthroline derivatives have good biocompatibility and coordination ability (Li et al., 2012). Such compounds are often used to coordinate with various metal ions, and their binding with DNA to achieve anti-cancer anti-tumor activity has been studied (Ma et al., 2009; Xu et al., 2012 ; Zheng et al., 2013). The crystal structures of similar compounds have been reported (Sun et al., 2009; Eseola et al., 2012; Bhat et al., 2011). As a part of ongoing study of this type compound, here we report on the crystal structure of the title compound.

The molecular structure of the title compound is illustrated in Fig. 1. It is comprised of a phenanthroline derivative and an ethanol solvent molecule (Fig. 1 and Table 1). The triphenylamine group, introduced as an electron donor, shows the propeller structure, with the dihedral angles between the benzene rings, (C15-C20), (C21-C26) and (C27-C32), being 68.71 (11), 63.92 (16) and 70.81 (15) °, respectively.

The two pyridine rings of the phenanthroline group are almost coplanar, with a dihedral angle of 1.54 (13)°. The mean plane of imidazo-phenanthroline group (N1-N3/C1-C14; r.m.s. 0.002) is inclined to the benzene ring to which it is attached by 7.63 (9)°.

In the crystal, the phenanthroline molecules are linked via the solvent molecule by N-H···O, O-H···N and C-H···O hydrogen bonds leading to the formation of zigzag chains propagating along [010]. These chains are linked via C-H···N hydrogen bonds forming undulating two-dimensional networks extending in the a and b directions (Fig. 2 and Table 1).

For background to imidazo[4,5-f]-1,10-phenanthroline compounds, see: Li et al. (2012). For metal complexes and binding studies, see: Ma et al. (2009); Xu et al. (2012); Zheng et al. (2013). For the crystal structures of related compounds, see: Sun et al. (2009); Eseola et al. (2012); Bhat et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atoms labelling. The displacement ellipsoids are drawn at the 30% probability level. The N-H···O hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the various hydrogen bonds as dashed lines [see Table 1 for details; H-atoms not involved in these interactions have been omitted for clarity].
N,N-Diphenyl-4-(1H-pyrrolo[1,2-f][1,10]phenanthrolin-2-yl)aniline ethanol monosolvate top
Crystal data top
C32H21N4·C2H6OF(000) = 1068
Mr = 507.60Dx = 1.202 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6506 reflections
a = 9.716 (4) Åθ = 2.4–25.0°
b = 10.690 (4) ŵ = 0.07 mm1
c = 27.017 (10) ÅT = 296 K
β = 92.317 (4)°Block, yellow
V = 2803.8 (18) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5216 independent reflections
Radiation source: fine-focus sealed tube3870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.985, Tmax = 0.993k = 1212
20210 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1148P)2 + 1.3126P]
where P = (Fo2 + 2Fc2)/3
5216 reflections(Δ/σ)max = 0.020
340 parametersΔρmax = 0.51 e Å3
6 restraintsΔρmin = 0.50 e Å3
Crystal data top
C32H21N4·C2H6OV = 2803.8 (18) Å3
Mr = 507.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.716 (4) ŵ = 0.07 mm1
b = 10.690 (4) ÅT = 296 K
c = 27.017 (10) Å0.20 × 0.20 × 0.10 mm
β = 92.317 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
5216 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3870 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.993Rint = 0.024
20210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0656 restraints
wR(F2) = 0.210H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.51 e Å3
5216 reflectionsΔρmin = 0.50 e Å3
340 parameters
Special details top

Experimental. Spectroscopic details for the title compound: 1H NMR (400 MHz, DMSO-d6) δ (p.p.m.): 7.12–7.15 (m, 8H), 7.38 (t, J=8.0 Hz, 4H), 7.82 (q, J=4.2 Hz, 2H), 8.17 (d, J=4.0 Hz, 2H), 8.89–8.92 (m, 2H), 9.01–9.02 (m, 2H). 13C NMR (150 MHz, DMSO-d6) δ (p.p.m.) 151.0, 148.2, 147.4, 146.7, 143.4, 129.7, 129.5, 127.5, 124.6, 123.9, 123.7, 123.1, 122.05. IR (KBr, cm-1): 3422(m), 3030(s), 1607(versus), 1485(versus), 1331(s), 1286(s), 1137(w), 739(s), 700(s). MS: m/z (%)= 464.12(M+, 100%).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4844 (2)0.1863 (2)0.29749 (8)0.0636 (8)
N20.2262 (2)0.28229 (19)0.29875 (7)0.0536 (7)
N30.3274 (2)0.04565 (18)0.14710 (7)0.0474 (6)
N40.0133 (2)0.3171 (2)0.04486 (8)0.0693 (8)
C10.6091 (3)0.1386 (3)0.29806 (11)0.0795 (11)
C20.6544 (3)0.0539 (3)0.26334 (12)0.0786 (11)
C30.5652 (3)0.0170 (3)0.22597 (9)0.0607 (8)
C40.4309 (2)0.0651 (2)0.22369 (8)0.0473 (7)
C50.3260 (2)0.0335 (2)0.18724 (8)0.0442 (7)
C60.1942 (2)0.0808 (2)0.18772 (8)0.0447 (7)
C70.1549 (2)0.1673 (2)0.22489 (8)0.0454 (7)
C80.2546 (2)0.2019 (2)0.26137 (8)0.0450 (7)
C90.3942 (2)0.1511 (2)0.26082 (8)0.0471 (7)
C100.0223 (3)0.2189 (3)0.22706 (10)0.0622 (9)
C110.0038 (3)0.3001 (3)0.26445 (11)0.0718 (10)
C120.1002 (3)0.3279 (3)0.29922 (10)0.0629 (9)
C130.11393 (19)0.03287 (18)0.14906 (7)0.0347 (6)
C140.1974 (2)0.0425 (2)0.12546 (8)0.0469 (7)
C150.1551 (2)0.1150 (2)0.08140 (8)0.0466 (7)
C160.2373 (3)0.2055 (3)0.06061 (10)0.0627 (9)
C170.1902 (3)0.2714 (3)0.01937 (10)0.0687 (10)
C180.0619 (3)0.2493 (2)0.00245 (9)0.0568 (8)
C190.0198 (3)0.1581 (2)0.01814 (9)0.0568 (8)
C200.0266 (2)0.0926 (2)0.05941 (9)0.0554 (8)
C210.10408 (15)0.33915 (15)0.08378 (4)0.0739 (11)
C220.19694 (16)0.24825 (19)0.09791 (7)0.0840 (13)
C230.28428 (16)0.2720 (3)0.13631 (8)0.1121 (16)
C240.2788 (2)0.3867 (3)0.16057 (7)0.1252 (12)
C250.1859 (2)0.4776 (2)0.14644 (8)0.152 (3)
C260.0986 (2)0.45382 (15)0.10804 (7)0.1127 (18)
C270.12987 (17)0.34159 (19)0.05179 (6)0.0672 (10)
C280.19577 (14)0.3242 (2)0.09755 (8)0.0911 (14)
C290.3348 (5)0.3488 (5)0.10367 (17)0.1232 (19)
C300.4097 (5)0.3866 (5)0.0651 (2)0.132 (2)
C310.3455 (4)0.4019 (4)0.01915 (16)0.1133 (17)
C320.2059 (4)0.3818 (3)0.01277 (12)0.0864 (12)
O10.55771 (19)0.1730 (2)0.11618 (7)0.0698 (7)
C330.6124 (4)0.0588 (5)0.04600 (15)0.1228 (19)
C340.6648 (4)0.1264 (5)0.08975 (13)0.1040 (16)
H10.671100.163100.323400.0950*
H20.743900.023000.265500.0940*
H30.593100.039600.202200.0730*
H3N0.404 (3)0.087 (3)0.1347 (10)0.069 (8)*
H100.046300.198100.203500.0750*
H110.090400.336300.266600.0860*
H120.079800.382600.324700.0760*
H160.324600.221800.074500.0750*
H170.246400.332100.006000.0820*
H190.106600.141100.004000.0680*
H200.029800.032000.072800.0660*
H220.200600.171500.081700.1010*
H230.346400.211200.145800.1340*
H240.337200.402600.186300.1500*
H250.182200.554300.162700.1830*
H260.036400.514600.098600.1350*
H280.146500.296100.124200.1090*
H290.378000.339200.134800.1480*
H300.503500.402100.069600.1580*
H310.396500.425800.007700.1360*
H320.162500.395500.018100.1040*
H1O10.588800.210100.140800.1050*
H33A0.546600.002600.055600.1850*
H33B0.687400.018000.030500.1850*
H33C0.568900.116600.023100.1850*
H34A0.720200.070500.110700.1250*
H34B0.723000.194700.079700.1250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0568 (13)0.0751 (15)0.0579 (12)0.0092 (11)0.0105 (10)0.0180 (11)
N20.0557 (12)0.0555 (12)0.0498 (11)0.0006 (9)0.0064 (9)0.0116 (9)
N30.0465 (11)0.0519 (11)0.0440 (10)0.0024 (9)0.0030 (8)0.0078 (8)
N40.0756 (16)0.0745 (15)0.0568 (13)0.0038 (12)0.0105 (11)0.0201 (11)
C10.0643 (18)0.100 (2)0.0722 (18)0.0165 (16)0.0235 (14)0.0295 (17)
C20.0559 (16)0.097 (2)0.0814 (19)0.0211 (15)0.0158 (14)0.0271 (17)
C30.0530 (14)0.0703 (16)0.0584 (14)0.0112 (12)0.0029 (11)0.0142 (12)
C40.0472 (12)0.0501 (13)0.0446 (11)0.0007 (10)0.0030 (9)0.0015 (10)
C50.0472 (12)0.0455 (12)0.0402 (11)0.0017 (9)0.0044 (9)0.0018 (9)
C60.0459 (12)0.0442 (12)0.0443 (11)0.0012 (9)0.0043 (9)0.0014 (9)
C70.0453 (12)0.0473 (12)0.0437 (11)0.0015 (9)0.0038 (9)0.0019 (9)
C80.0486 (12)0.0433 (12)0.0433 (11)0.0016 (9)0.0057 (9)0.0017 (9)
C90.0497 (13)0.0487 (13)0.0426 (11)0.0006 (10)0.0006 (9)0.0038 (9)
C100.0509 (14)0.0713 (17)0.0640 (15)0.0073 (12)0.0020 (11)0.0173 (13)
C110.0546 (15)0.083 (2)0.0779 (19)0.0134 (14)0.0052 (13)0.0241 (15)
C120.0572 (15)0.0674 (17)0.0646 (15)0.0058 (12)0.0074 (12)0.0211 (13)
C130.0322 (10)0.0375 (10)0.0342 (9)0.0020 (8)0.0003 (7)0.0060 (8)
C140.0487 (13)0.0488 (13)0.0432 (11)0.0054 (10)0.0011 (9)0.0005 (9)
C150.0484 (12)0.0484 (13)0.0430 (11)0.0036 (10)0.0007 (9)0.0029 (9)
C160.0581 (15)0.0708 (17)0.0584 (15)0.0095 (13)0.0087 (12)0.0167 (12)
C170.0700 (17)0.0709 (18)0.0641 (16)0.0164 (14)0.0090 (13)0.0245 (14)
C180.0645 (15)0.0572 (14)0.0482 (12)0.0040 (12)0.0043 (11)0.0084 (11)
C190.0510 (14)0.0660 (16)0.0529 (13)0.0001 (12)0.0055 (11)0.0073 (12)
C200.0530 (14)0.0604 (15)0.0527 (13)0.0027 (11)0.0019 (11)0.0089 (11)
C210.090 (2)0.081 (2)0.0492 (14)0.0295 (17)0.0172 (14)0.0199 (14)
C220.076 (2)0.107 (3)0.0690 (18)0.0173 (19)0.0048 (15)0.0109 (18)
C230.089 (2)0.168 (4)0.079 (2)0.035 (3)0.0010 (19)0.008 (2)
C240.127 (2)0.136 (2)0.113 (2)0.0215 (18)0.0084 (17)0.0141 (18)
C250.199 (5)0.160 (5)0.096 (3)0.080 (4)0.023 (3)0.079 (3)
C260.165 (4)0.094 (3)0.077 (2)0.031 (3)0.020 (2)0.036 (2)
C270.0789 (19)0.0555 (15)0.0655 (16)0.0121 (13)0.0188 (14)0.0001 (13)
C280.095 (2)0.101 (3)0.075 (2)0.013 (2)0.0249 (18)0.0162 (18)
C290.105 (3)0.154 (4)0.106 (3)0.024 (3)0.051 (3)0.034 (3)
C300.098 (3)0.148 (4)0.145 (4)0.048 (3)0.041 (3)0.044 (3)
C310.104 (3)0.119 (3)0.115 (3)0.054 (3)0.019 (2)0.031 (3)
C320.101 (2)0.078 (2)0.078 (2)0.0311 (19)0.0226 (18)0.0157 (16)
O10.0663 (12)0.0912 (14)0.0521 (10)0.0245 (10)0.0053 (8)0.0148 (9)
C330.098 (3)0.174 (4)0.097 (3)0.016 (3)0.011 (2)0.060 (3)
C340.074 (2)0.162 (4)0.077 (2)0.028 (2)0.0170 (17)0.036 (2)
Geometric parameters (Å, º) top
O1—C341.379 (4)C23—C241.390 (4)
O1—H1O10.8200C24—C251.390 (3)
N1—C91.349 (3)C25—C261.390 (3)
N1—C11.314 (4)C27—C321.380 (4)
N2—C81.363 (3)C27—C281.382 (3)
N2—C121.318 (4)C28—C291.380 (5)
N3—C141.371 (3)C29—C301.357 (7)
N3—C51.376 (3)C30—C311.376 (7)
N4—C271.420 (3)C31—C321.377 (6)
N4—C181.420 (3)C1—H10.9300
N4—C211.419 (2)C2—H20.9300
N3—H3N0.94 (3)C3—H30.9300
C1—C21.388 (4)C10—H100.9300
C2—C31.362 (4)C11—H110.9300
C3—C41.402 (4)C12—H120.9300
C4—C91.417 (3)C16—H160.9300
C4—C51.429 (3)C17—H170.9300
C5—C61.377 (3)C19—H190.9300
C6—C71.428 (3)C20—H200.9300
C6—C131.377 (3)C22—H220.9300
C7—C101.405 (4)C23—H230.9300
C7—C81.403 (3)C24—H240.9300
C8—C91.462 (3)C25—H250.9300
C10—C111.363 (4)C26—H260.9300
C11—C121.384 (4)C28—H280.9300
C13—C141.325 (3)C29—H290.9300
C14—C151.465 (3)C30—H300.9300
C15—C201.382 (3)C31—H310.9300
C15—C161.388 (4)C32—H320.9300
C16—C171.381 (4)C33—C341.459 (6)
C17—C181.378 (4)C33—H33A0.9600
C18—C191.388 (4)C33—H33B0.9600
C19—C201.377 (3)C33—H33C0.9600
C21—C221.390 (2)C34—H34A0.9700
C21—C261.390 (2)C34—H34B0.9700
C22—C231.390 (3)
C34—O1—H1O1109.00C27—C28—C29119.9 (2)
C1—N1—C9118.1 (2)C28—C29—C30121.2 (4)
C8—N2—C12117.2 (2)C29—C30—C31119.4 (4)
C5—N3—C14106.43 (18)C30—C31—C32120.2 (4)
C18—N4—C27119.5 (2)C27—C32—C31120.5 (3)
C21—N4—C27120.42 (17)C2—C1—H1118.00
C18—N4—C21119.09 (19)N1—C1—H1118.00
C5—N3—H3N127.2 (17)C1—C2—H2121.00
C14—N3—H3N126.1 (17)C3—C2—H2121.00
N1—C1—C2124.2 (3)C4—C3—H3120.00
C1—C2—C3118.7 (3)C2—C3—H3120.00
C2—C3—C4119.3 (3)C7—C10—H10121.00
C3—C4—C9117.9 (2)C11—C10—H10121.00
C5—C4—C9116.64 (18)C10—C11—H11120.00
C3—C4—C5125.5 (2)C12—C11—H11120.00
N3—C5—C6105.78 (18)C11—C12—H12118.00
C4—C5—C6123.0 (2)N2—C12—H12118.00
N3—C5—C4131.23 (19)C17—C16—H16120.00
C7—C6—C13127.94 (18)C15—C16—H16120.00
C5—C6—C13110.77 (19)C16—C17—H17119.00
C5—C6—C7121.29 (19)C18—C17—H17119.00
C6—C7—C10123.7 (2)C20—C19—H19120.00
C8—C7—C10118.4 (2)C18—C19—H19120.00
C6—C7—C8117.89 (18)C15—C20—H20119.00
N2—C8—C7122.14 (18)C19—C20—H20119.00
C7—C8—C9120.63 (19)C23—C22—H22120.00
N2—C8—C9117.23 (18)C21—C22—H22120.00
N1—C9—C4121.75 (19)C22—C23—H23120.00
C4—C9—C8120.56 (18)C24—C23—H23120.00
N1—C9—C8117.67 (19)C23—C24—H24120.00
C7—C10—C11118.6 (3)C25—C24—H24120.00
C10—C11—C12119.2 (3)C26—C25—H25120.00
N2—C12—C11124.5 (3)C24—C25—H25120.00
C6—C13—C14104.62 (17)C25—C26—H26120.00
C13—C14—C15123.75 (18)C21—C26—H26120.00
N3—C14—C15123.84 (18)C27—C28—H28120.00
N3—C14—C13112.40 (19)C29—C28—H28120.00
C14—C15—C16123.4 (2)C28—C29—H29119.00
C14—C15—C20118.46 (19)C30—C29—H29119.00
C16—C15—C20118.1 (2)C31—C30—H30120.00
C15—C16—C17120.3 (3)C29—C30—H30120.00
C16—C17—C18121.5 (3)C30—C31—H31120.00
C17—C18—C19118.1 (2)C32—C31—H31120.00
N4—C18—C17121.6 (2)C31—C32—H32120.00
N4—C18—C19120.3 (2)C27—C32—H32120.00
C18—C19—C20120.5 (2)O1—C34—C33110.6 (3)
C15—C20—C19121.4 (2)C34—C33—H33A110.00
N4—C21—C22121.14 (16)C34—C33—H33B109.00
C22—C21—C26120.00 (14)C34—C33—H33C109.00
N4—C21—C26118.86 (16)H33A—C33—H33B109.00
C21—C22—C23120.0 (2)H33A—C33—H33C109.00
C22—C23—C24120.0 (2)H33B—C33—H33C109.00
C23—C24—C25119.99 (18)O1—C34—H34A109.00
C24—C25—C26120.0 (2)O1—C34—H34B110.00
C21—C26—C25120.03 (16)C33—C34—H34A110.00
N4—C27—C28120.60 (16)C33—C34—H34B110.00
C28—C27—C32118.8 (2)H34A—C34—H34B108.00
N4—C27—C32120.6 (2)
C9—N1—C1—C20.1 (4)C6—C7—C8—N2179.0 (2)
C1—N1—C9—C8178.3 (2)C10—C7—C8—N20.7 (3)
C1—N1—C9—C40.1 (3)C6—C7—C8—C90.4 (3)
C12—N2—C8—C70.6 (3)C6—C7—C10—C11179.6 (2)
C12—N2—C8—C9179.9 (2)C8—C7—C10—C110.1 (4)
C8—N2—C12—C110.3 (4)C10—C7—C8—C9179.9 (2)
C5—N3—C14—C15179.6 (2)N2—C8—C9—C4178.8 (2)
C14—N3—C5—C4178.7 (2)C7—C8—C9—N1178.8 (2)
C14—N3—C5—C60.1 (2)N2—C8—C9—N10.6 (3)
C5—N3—C14—C130.0 (2)C7—C8—C9—C40.6 (3)
C27—N4—C21—C2649.8 (3)C7—C10—C11—C120.7 (4)
C27—N4—C18—C17148.4 (2)C10—C11—C12—N20.9 (5)
C27—N4—C21—C22129.95 (19)C6—C13—C14—C15179.7 (2)
C18—N4—C21—C26141.73 (19)C6—C13—C14—N30.1 (2)
C21—N4—C18—C1743.0 (3)N3—C14—C15—C168.0 (4)
C18—N4—C27—C28135.0 (2)N3—C14—C15—C20172.2 (2)
C18—N4—C27—C3244.3 (3)C13—C14—C15—C208.3 (3)
C18—N4—C21—C2238.6 (3)C13—C14—C15—C16171.5 (2)
C21—N4—C27—C2833.5 (3)C16—C15—C20—C190.3 (3)
C27—N4—C18—C1931.7 (3)C20—C15—C16—C170.6 (4)
C21—N4—C18—C19136.9 (2)C14—C15—C20—C19179.5 (2)
C21—N4—C27—C32147.3 (2)C14—C15—C16—C17179.2 (2)
N1—C1—C2—C30.1 (5)C15—C16—C17—C180.4 (4)
C1—C2—C3—C40.1 (4)C16—C17—C18—N4180.0 (3)
C2—C3—C4—C5179.0 (3)C16—C17—C18—C190.1 (4)
C2—C3—C4—C90.1 (4)C17—C18—C19—C200.4 (4)
C9—C4—C5—C61.2 (3)N4—C18—C19—C20179.7 (2)
C5—C4—C9—C81.0 (3)C18—C19—C20—C150.2 (4)
C3—C4—C5—N30.7 (4)N4—C21—C22—C23179.69 (17)
C3—C4—C5—C6177.9 (2)C26—C21—C22—C230.0 (3)
C3—C4—C9—N10.1 (3)N4—C21—C26—C25179.69 (18)
C3—C4—C9—C8178.2 (2)C22—C21—C26—C250.0 (3)
C5—C4—C9—N1179.1 (2)C21—C22—C23—C240.0 (3)
C9—C4—C5—N3179.8 (2)C22—C23—C24—C250.0 (3)
C4—C5—C6—C71.1 (3)C23—C24—C25—C260.1 (3)
N3—C5—C6—C130.2 (2)C24—C25—C26—C210.0 (3)
C4—C5—C6—C13178.7 (2)N4—C27—C28—C29179.8 (3)
N3—C5—C6—C7179.94 (19)C32—C27—C28—C290.9 (4)
C13—C6—C7—C8179.1 (2)N4—C27—C32—C31178.0 (3)
C5—C6—C7—C80.6 (3)C28—C27—C32—C311.2 (4)
C7—C6—C13—C14179.9 (2)C27—C28—C29—C301.9 (6)
C5—C6—C7—C10179.7 (2)C28—C29—C30—C310.7 (8)
C5—C6—C13—C140.2 (2)C29—C30—C31—C321.5 (7)
C13—C6—C7—C100.5 (4)C30—C31—C32—C272.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.94 (3)1.84 (3)2.777 (3)175 (2)
O1—H1O1···N1i0.822.152.819 (3)139
O1—H1O1···N2i0.822.383.087 (3)145
C16—H16···O10.932.543.419 (4)157
C3—H3···N2i0.932.593.310 (4)135
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H21N4·C2H6O
Mr507.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.716 (4), 10.690 (4), 27.017 (10)
β (°) 92.317 (4)
V3)2803.8 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.985, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
20210, 5216, 3870
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.210, 1.02
No. of reflections5216
No. of parameters340
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.94 (3)1.84 (3)2.777 (3)175 (2)
O1—H1O1···N1i0.822.152.819 (3)139
O1—H1O1···N2i0.822.383.087 (3)145
C16—H16···O10.932.543.419 (4)157
C3—H3···N2i0.932.593.310 (4)135
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (21071001, 21271004, 21201005, 21101069, 51142011), the Natural Science Foundation of Anhui Province (1208085MB22) and the Ministry of Education of China Funded Projects Focused on Returned Overseas Scholars.

References

First citationBhat, S. S., Kumbhar, A. A., Heptullah, H. & Khan, A. A. (2011). Inorg. Chem. 50, 545–558.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEseola, A. O., Adepitan, O., Görls, H. & Plass, W. (2012). New J. Chem. 36, 891–902.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, S. S., Zhang, C., Huang, S. Y., Hu, F., Yin, J. & Liu, S. H. (2012). RSC Advances, 2, 4215–4219.  Web of Science CrossRef CAS Google Scholar
First citationMa, Y.-Z., Yin, H.-J. & Wang, K.-Z. (2009). J. Phys. Chem. B, 113, 11039–11047.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, B., Guan, J.-X., Xu, L., Yu, B.-L. & Jiang, L. (2009). Inorg. Chem. 48, 4637–4639.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, F., Peng, Y.-X., Hu, B., Tao, T. & Huang, W. (2012). CrystEngComm, 14, 8023–8032.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Z., Zhang, Q., Yu, Z. P., Yang, M. D., Zhou, H. P., Wu, J. Y. & Tian, Y. P. (2013). J. Mater. Chem. C, 1, 822–830.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds