organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-4-Bromo­benzyl­­idene]-2,3-di­methyl­aniline

aCollege of Materials Science & Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: nanocrystal11@163.com

(Received 22 March 2013; accepted 24 March 2013; online 5 April 2013)

The title compound, C15H14BrN, has an E conformation about the C=N bond and the dihedral angle between the benzene rings is 50.7 (2)°. In the crystal, mol­ecules are linked via C—H⋯π inter­actions, forming columns propagating along [010].

Related literature

Schiff base derivativies have many pharmaceutical activities. For their anti­fungal effects, see: Aziz et al. (2010[Aziz, A. A. A., Salem, A. N. M., Sayed, M. A. & Aboaly, M. M. (2010). J. Mol. Struct. 1010, 130-138.]), for their radical scavenging activity, see: Lu et al. (2012[Lu, J., Li, C., Chai, Y.-F., Yang, D.-Y. & Sun, C.-R. (2012). Bioorg. Med. Chem. Lett. 22, 5744-5747.]), for their inhibition of enzyme activity, see: Schmidt et al. (2009[Schmidt, M. F., El-Dahshan, A., Keller, S. & Rademann, J. (2009). Angew. Chem. Int. Ed. 48, 6346-6349.]) and for their anti­bacterial activity, see: Shi et al. (2010[Shi, L., Fang, R.-Q., Zhu, Z.-W., Yang, Y., Cheng, K., Zhu, H.-L. & Zhong, W.-Q. (2010). Eur. J. Med. Chem. 45, 4358-4364.]). For related structures, see: Sun et al. (2011a[Sun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011a). Acta Cryst. E67, o1564.],b[Sun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011b). Acta Cryst. E67, o1578.]); Guo et al. (2011[Guo, Y., Pan, M.-X., Xiang, H., Liu, W.-H. & Song, Z.-C. (2011). Acta Cryst. E67, o1999.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14BrN

  • Mr = 288.18

  • Monoclinic, P 21 /n

  • a = 12.945 (9) Å

  • b = 7.857 (5) Å

  • c = 14.497 (10) Å

  • β = 113.384 (8)°

  • V = 1353.3 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.519, Tmax = 0.598

  • 5865 measured reflections

  • 2525 independent reflections

  • 1154 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 0.94

  • 2525 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C8–C13 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg2i 0.93 2.99 3.830 (6) 151
C15—H15BCg1ii 0.96 2.99 3.781 (6) 140
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base ligands have received much more attention during the past years. They have many pharmaceutical activities, such as antifungal effects (Aziz et al., 2010), radical scavenging activity (Lu et al., 2012), inhibition of enzyme activity (Schmidt et al., 2009), and antibacterial activities (Shi et al., 2010). We report herein on the crystal structure of a new Schiff base compound.

In the title molecule, Fig. 1, the bond lengths (Allen et al., 1987) and angles are normal and comparable to the values observed in similar compounds (Sun et al., 2011a,b; Guo et al., 2011). The molecule has an E conformation about the C7N1 bond and is twisted with the dihedral angle between the two aromatic rings being 50.7 (2) °.

In the crystal, molecules are linked via C-H···π interactions (Table 1).

Related literature top

Schiff base derivativies have many pharmaceutical activities. For their antifungal effects, see: Aziz et al. (2010), for their radical scavenging activity, see: Lu et al. (2012), for their inhibition of enzyme activity, see: Schmidt et al. (2009) and for their antibacterial activity, see: Shi et al. (2010). For related structures, see: Sun et al. (2011a,b); Guo et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 4-bromobenzaldehyde (5 mmol), 2,3-dimethylaniline (5 mmol) and methanol (50 ml) was refluxed for 6 h. The mixture was then allowed to cool and filtered. Recrystallization of the crude product from methanol yielded yellow block-like crystals.

Refinement top

H atoms were positioned geometrically and refined using the riding-model approximation: C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Structure description top

Schiff base ligands have received much more attention during the past years. They have many pharmaceutical activities, such as antifungal effects (Aziz et al., 2010), radical scavenging activity (Lu et al., 2012), inhibition of enzyme activity (Schmidt et al., 2009), and antibacterial activities (Shi et al., 2010). We report herein on the crystal structure of a new Schiff base compound.

In the title molecule, Fig. 1, the bond lengths (Allen et al., 1987) and angles are normal and comparable to the values observed in similar compounds (Sun et al., 2011a,b; Guo et al., 2011). The molecule has an E conformation about the C7N1 bond and is twisted with the dihedral angle between the two aromatic rings being 50.7 (2) °.

In the crystal, molecules are linked via C-H···π interactions (Table 1).

Schiff base derivativies have many pharmaceutical activities. For their antifungal effects, see: Aziz et al. (2010), for their radical scavenging activity, see: Lu et al. (2012), for their inhibition of enzyme activity, see: Schmidt et al. (2009) and for their antibacterial activity, see: Shi et al. (2010). For related structures, see: Sun et al. (2011a,b); Guo et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
N-[(E)-4-Bromobenzylidene]-2,3-dimethylaniline top
Crystal data top
C15H14BrNF(000) = 584
Mr = 288.18Dx = 1.414 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2505 reflections
a = 12.945 (9) Åθ = 2.7–25.5°
b = 7.857 (5) ŵ = 3.02 mm1
c = 14.497 (10) ÅT = 296 K
β = 113.384 (8)°Block, yellow
V = 1353.3 (16) Å30.25 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2525 independent reflections
Radiation source: fine-focus sealed tube1154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1510
Tmin = 0.519, Tmax = 0.598k = 97
5865 measured reflectionsl = 1517
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0477P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2525 reflectionsΔρmax = 0.35 e Å3
157 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0298 (19)
Crystal data top
C15H14BrNV = 1353.3 (16) Å3
Mr = 288.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.945 (9) ŵ = 3.02 mm1
b = 7.857 (5) ÅT = 296 K
c = 14.497 (10) Å0.25 × 0.20 × 0.19 mm
β = 113.384 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
2525 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1154 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.598Rint = 0.058
5865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.94Δρmax = 0.35 e Å3
2525 reflectionsΔρmin = 0.25 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.07853 (5)0.88838 (7)0.11686 (4)0.0919 (4)
C10.0611 (4)0.8732 (5)0.3942 (3)0.0581 (13)
H10.00910.90560.42050.070*
C20.0362 (4)0.8999 (5)0.2939 (3)0.0643 (13)
H20.03150.95040.25290.077*
C30.1122 (5)0.8513 (5)0.2554 (3)0.0547 (12)
C40.2111 (4)0.7767 (7)0.3137 (4)0.0736 (15)
H40.26160.74310.28600.088*
C50.2363 (4)0.7508 (6)0.4154 (3)0.0682 (15)
H50.30420.70020.45570.082*
C60.1617 (4)0.7992 (5)0.4572 (3)0.0477 (11)
C70.1882 (4)0.7675 (5)0.5637 (3)0.0513 (12)
H70.25920.72580.60360.062*
C80.1554 (4)0.7691 (5)0.7095 (3)0.0434 (11)
C90.2578 (4)0.8290 (6)0.7761 (3)0.0582 (13)
H90.30600.88420.75250.070*
C100.2887 (4)0.8071 (7)0.8781 (3)0.0713 (14)
H100.35860.84520.92310.086*
C110.2169 (4)0.7295 (6)0.9130 (3)0.0602 (13)
H110.23820.71630.98180.072*
C120.1130 (4)0.6702 (5)0.8474 (3)0.0500 (12)
C130.0802 (3)0.6918 (5)0.7437 (3)0.0449 (11)
C140.0371 (4)0.5812 (6)0.8890 (4)0.0776 (16)
H14A0.07500.57180.96070.116*
H14B0.01910.46950.86020.116*
H14C0.03090.64570.87260.116*
C150.0326 (4)0.6292 (6)0.6700 (3)0.0758 (15)
H15A0.08690.63840.69950.114*
H15B0.02620.51240.65350.114*
H15C0.05640.69700.61000.114*
N10.1199 (3)0.7938 (4)0.6039 (2)0.0501 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1350 (6)0.0914 (5)0.0529 (3)0.0264 (4)0.0410 (3)0.0038 (3)
C10.064 (3)0.061 (3)0.052 (3)0.015 (3)0.025 (3)0.005 (2)
C20.075 (4)0.054 (3)0.061 (3)0.021 (3)0.024 (3)0.008 (3)
C30.069 (3)0.050 (3)0.044 (2)0.006 (3)0.023 (3)0.005 (2)
C40.069 (4)0.104 (4)0.061 (3)0.012 (3)0.039 (3)0.015 (3)
C50.051 (3)0.095 (4)0.060 (3)0.013 (3)0.024 (3)0.000 (3)
C60.051 (3)0.047 (3)0.048 (3)0.001 (2)0.023 (2)0.001 (2)
C70.058 (3)0.047 (3)0.050 (3)0.002 (2)0.022 (3)0.000 (2)
C80.047 (3)0.034 (3)0.049 (3)0.004 (2)0.018 (2)0.001 (2)
C90.062 (3)0.055 (3)0.063 (3)0.015 (3)0.030 (3)0.005 (2)
C100.065 (3)0.089 (4)0.057 (3)0.024 (3)0.021 (3)0.020 (3)
C110.072 (4)0.066 (4)0.044 (3)0.004 (3)0.024 (3)0.002 (2)
C120.062 (3)0.043 (3)0.053 (3)0.002 (2)0.032 (3)0.003 (2)
C130.051 (3)0.037 (3)0.046 (2)0.002 (2)0.018 (2)0.005 (2)
C140.093 (4)0.080 (4)0.070 (3)0.008 (3)0.042 (3)0.009 (3)
C150.059 (3)0.100 (4)0.062 (3)0.015 (3)0.018 (3)0.005 (3)
N10.061 (2)0.048 (2)0.048 (2)0.004 (2)0.028 (2)0.0032 (17)
Geometric parameters (Å, º) top
Br1—C31.901 (4)C8—N11.426 (5)
C1—C21.375 (6)C9—C101.380 (6)
C1—C61.387 (5)C9—H90.9300
C1—H10.9300C10—C111.366 (6)
C2—C31.365 (6)C10—H100.9300
C2—H20.9300C11—C121.383 (6)
C3—C41.355 (6)C11—H110.9300
C4—C51.393 (6)C12—C131.401 (5)
C4—H40.9300C12—C141.513 (6)
C5—C61.382 (5)C13—C151.509 (6)
C5—H50.9300C14—H14A0.9600
C6—C71.464 (5)C14—H14B0.9600
C7—N11.253 (5)C14—H14C0.9600
C7—H70.9300C15—H15A0.9600
C8—C91.377 (5)C15—H15B0.9600
C8—C131.395 (5)C15—H15C0.9600
C2—C1—C6121.6 (4)C10—C9—H9120.1
C2—C1—H1119.2C11—C10—C9120.1 (4)
C6—C1—H1119.2C11—C10—H10120.0
C3—C2—C1119.1 (4)C9—C10—H10120.0
C3—C2—H2120.5C10—C11—C12121.0 (4)
C1—C2—H2120.5C10—C11—H11119.5
C4—C3—C2121.5 (4)C12—C11—H11119.5
C4—C3—Br1119.2 (4)C11—C12—C13119.6 (4)
C2—C3—Br1119.3 (4)C11—C12—C14119.3 (4)
C3—C4—C5119.3 (4)C13—C12—C14121.0 (4)
C3—C4—H4120.4C8—C13—C12118.5 (4)
C5—C4—H4120.4C8—C13—C15120.3 (4)
C6—C5—C4120.9 (4)C12—C13—C15121.1 (4)
C6—C5—H5119.6C12—C14—H14A109.5
C4—C5—H5119.6C12—C14—H14B109.5
C5—C6—C1117.7 (4)H14A—C14—H14B109.5
C5—C6—C7120.2 (4)C12—C14—H14C109.5
C1—C6—C7122.1 (4)H14A—C14—H14C109.5
N1—C7—C6123.3 (4)H14B—C14—H14C109.5
N1—C7—H7118.4C13—C15—H15A109.5
C6—C7—H7118.4C13—C15—H15B109.5
C9—C8—C13120.8 (4)H15A—C15—H15B109.5
C9—C8—N1121.1 (4)C13—C15—H15C109.5
C13—C8—N1117.9 (4)H15A—C15—H15C109.5
C8—C9—C10119.9 (4)H15B—C15—H15C109.5
C8—C9—H9120.1C7—N1—C8119.4 (4)
C6—C1—C2—C30.4 (7)C9—C10—C11—C120.6 (8)
C1—C2—C3—C40.4 (7)C10—C11—C12—C130.8 (7)
C1—C2—C3—Br1179.8 (3)C10—C11—C12—C14178.5 (4)
C2—C3—C4—C50.7 (7)C9—C8—C13—C122.6 (6)
Br1—C3—C4—C5179.5 (4)N1—C8—C13—C12178.6 (4)
C3—C4—C5—C60.3 (7)C9—C8—C13—C15179.0 (4)
C4—C5—C6—C10.4 (7)N1—C8—C13—C153.0 (6)
C4—C5—C6—C7178.6 (4)C11—C12—C13—C81.7 (6)
C2—C1—C6—C50.8 (7)C14—C12—C13—C8177.6 (4)
C2—C1—C6—C7178.9 (4)C11—C12—C13—C15179.9 (4)
C5—C6—C7—N1173.1 (4)C14—C12—C13—C150.9 (6)
C1—C6—C7—N14.9 (7)C6—C7—N1—C8176.2 (4)
C13—C8—C9—C102.5 (6)C9—C8—N1—C744.6 (6)
N1—C8—C9—C10178.4 (4)C13—C8—N1—C7139.3 (4)
C8—C9—C10—C111.5 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.932.993.830 (6)151
C15—H15B···Cg1ii0.962.993.781 (6)140
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H14BrN
Mr288.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.945 (9), 7.857 (5), 14.497 (10)
β (°) 113.384 (8)
V3)1353.3 (16)
Z4
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.25 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.519, 0.598
No. of measured, independent and
observed [I > 2σ(I)] reflections
5865, 2525, 1154
Rint0.058
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 0.94
No. of reflections2525
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.932.993.830 (6)151
C15—H15B···Cg1ii0.962.993.781 (6)140
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

This project was supported by the Natural Science Foundation of Zhejiang Province of China (grant No. LQ12E01007).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAziz, A. A. A., Salem, A. N. M., Sayed, M. A. & Aboaly, M. M. (2010). J. Mol. Struct. 1010, 130–138.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, Y., Pan, M.-X., Xiang, H., Liu, W.-H. & Song, Z.-C. (2011). Acta Cryst. E67, o1999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J., Li, C., Chai, Y.-F., Yang, D.-Y. & Sun, C.-R. (2012). Bioorg. Med. Chem. Lett. 22, 5744–5747.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmidt, M. F., El-Dahshan, A., Keller, S. & Rademann, J. (2009). Angew. Chem. Int. Ed. 48, 6346–6349.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Fang, R.-Q., Zhu, Z.-W., Yang, Y., Cheng, K., Zhu, H.-L. & Zhong, W.-Q. (2010). Eur. J. Med. Chem. 45, 4358–4364.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011a). Acta Cryst. E67, o1564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011b). Acta Cryst. E67, o1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds