organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2H-1,3-Benzodioxol-5-yl)-1-(4-methyl­phenyl)-1H-pyrazol-5-amine

aP.S. Science and H.D. Patel Arts College, S.V. Campus, Kadi, Gujarat 382 715, India, bDepartment of Physics, Bhavan's Sheth R.A. College of Science, Ahmedabad, Gujarat 380 001, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 April 2013; accepted 10 April 2013; online 17 April 2013)

In the title compound, C17H15N3O2, two independent mol­ecules (A and B) comprise the asymmetric unit. The major conformational difference arises in the relative orientation of the pyrazole ring amine and dioxole substituents which are anti in A and syn in B. The five-membered dioxole ring in each mol­ecule has an envelope conformation with the methyl­ene C atom as the flap. The mean plane through the benzodioxole and benzene groups make dihedral angles of 31.67 (8) and 68.22 (9)°, respectively, with the pyrazole ring in A; the equivalent values for B are 47.18 (7) and 49.08 (9)°. In the crystal, supra­molecular zigzag chains along the b-axis direction arise as a result of N—H⋯N hydrogen bonding. These are consolidated into supra­molecular double chains via C—H⋯O and C—H⋯π inter­actions.

Related literature

For background to the biological activity of amino substituted pyrazole derivatives, see: Tanitame et al. (2004[Tanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Iwai, N., Hiyama, Y., Suzuki, K., Ito, H., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). J. Med. Chem. 47, 3693-3696.]); Chimenti et al. (2006[Chimenti, F., Bolasco, A., Manna, F., Secci, D., Chimenti, P., Granese, A., Befani, O., Turini, P., Cirilli, R., La Torre, F., Alcaro, S., Ortuso, F. & Langer, T. (2006). Curr. Med. Chem. 13, 1411-1428.]); Ding et al. (2009[Ding, X.-L., Zhang, H.-Y., Qi, L., Zhao, B.-X., Lian, S., Lv, H.-S. & Miao, J.-Y. (2009). Bioorg. Med. Chem. Lett. 19, 5325-5328.]); Shen et al. (2011[Shen, D.-M., Brady, E. J., Candelore, M. R., Dallas-Yang, Q., Ding, V. D.-H., Feeney, W. P., Jiang, G., McCann, M. E., Mock, S., Qureshi, S. A., Saperstein, R., Shen, X., Tong, X., Tota, L. M., Wright, M. J., Yang, X., Zheng, S., Chapman, K. T., Zhang, B. B., Tata, J. R. & Parmee, E. R. (2011). Bioorg. Med. Chem. Lett. 21, 76-81.]); Deng et al. (2012[Deng, H., Yu, Z., Shi, G., Chen, M., Tao, K. & Hou, T. (2012). Chem. Biol. Drug Des. 79, 279-289.]). For a related structure, see: Muruganantham et al. (2007[Muruganantham, R., Mobin, S. M. & Namboothiri, I. N. N. (2007). Org. Lett. 9, 1125-1128.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3O2

  • Mr = 293.32

  • Triclinic, [P \overline 1]

  • a = 9.7690 (7) Å

  • b = 10.4250 (7) Å

  • c = 14.283 (1) Å

  • α = 96.626 (2)°

  • β = 91.903 (2)°

  • γ = 91.164 (2)°

  • V = 1443.67 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.982

  • 29089 measured reflections

  • 6620 independent reflections

  • 4674 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.136

  • S = 1.02

  • 6620 reflections

  • 412 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the centroids of the C28–C33, C19–C24 and C2–C7 rings, respectviely.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯N5i 0.89 (2) 2.20 (2) 3.059 (2) 161 (2)
N6—H3N⋯N2ii 0.89 (1) 2.11 (1) 2.9914 (19) 170 (2)
C1—H1C⋯O3ii 0.96 2.54 3.479 (2) 164
C3—H3⋯Cg1iii 0.93 2.83 3.5365 (19) 133
C10—H10⋯Cg2ii 0.93 2.88 3.6055 (17) 135
C27—H27⋯Cg3i 0.93 2.94 3.5903 (18) 128
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The amino substituted pyrazole unit is an important backbone in the area of synthetic as well as medicinal chemistry due to the broad range of biological activities of such compounds, such as anti-depressant, anti-anxiety, anti-fungal, anti-bacterial, anti-diabetic and anti-cancer (Tanitame et al., 2004; Chimenti et al., 2006; Ding et al.,2009; Shen et al., 2011; Deng et al., 2012). In this connection, the title compound, (I), was synthesized and its crystal structure is reported on herein.

Two independent molecules (A and B), comprise the asymmetric unit of (I), see Fig. 1. As seen from the overlay diagram, Fig. 2, different conformations are observed for both the benzodioxole and benzene substituents. The five-membered dioxole rings in each molecule has an envelope conformation with the methylene-C17 or C34 atoms being the flap atoms. The r.m.s. deviation of the five non-hydrogen atoms = 0.049 Å for the N1-containing molecule which is considerably less than 0.129 Å for the second independent molecule, where the C34 atom lies 0.115 (2) Å out of the mean plane. For the N1-containing molecule, with respect to the pyrazole ring (r.m.s. deviation = Å), the benzodioxole and benzene groups make dihedral angles of 31.67 (8) and 68.22 (9)°, respectively. The equivalent values for the N2-containing molecule are 47.18 (7)° and 49.08 (9)°, respectively. From a conformational point of view, the dioxole ring in the N1-containing molecule is anti to the amine substituent whereas it is syn for the second molecule. The observed conformations in (I) are similar to those in a closely related structure, i.e. diethyl 4-(benzo[d][1,3]dioxol-5-yl)-1H-pyrazol-3-yl-3-phosphonate (Muruganantham et al., 2007).

The presence of N—H···N hydrogen bonding leads to supramolecular zigzag chains along the b axis in the crystal structure of (I), see Fig. 3 and Table 1. These are consolidated into supramolecular double chains via C—H···O and C—H···π interactions (Table 1). These stack with no specific intermolecular interactions between them (Fig. 4).

Related literature top

For background to the biological activity of amino substituted pyrazole derivatives, see: Tanitame et al. (2004); Chimenti et al. (2006); Ding et al. (2009); Shen et al. (2011); Deng et al. (2012). For a related structure, see: Muruganantham et al. (2007).

Experimental top

A mixture of 3,4-methyleneoxyphenyl acetonitrile (2 g, 0.012 mol) and N,N-dimethylformamide dimethylacetal (4.89 ml, 0.037 mol) was stirred at 355 K; progress of the reaction was monitored by TLC. At the end of the reaction, the solvent was removed under vacuum. The residual crude mass was mixed with 4-methyl phenyl hydrazine hydrochloride (1.96 g, 0.012 mol) in methanol (20 ml) at room temperature. The mixture was refluxed and the reaction progress was monitored by TLC. At the end of the reaction, the solvent was removed under reduced pressure. The residue was dissolved in water and NaHCO3 solution was added until basic pH was obtained. The product was extracted in ethyl acetate (200 ml × 2), and this ethyl acetate layer passed through Na2SO4 and concentrated to dryness. The crude mass was purified by silica gel column chromatography, eluted with ethyl acetate:hexane (1:4) to produced 2.8 g of a yellow solid [Yield: 77%. M.pt: 422–423 K]. Single crystals suitable for X-ray measurements were obtained by repeated re-crystallization from ethyl acetate at room temperature.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atom was refined with the distance restraint N—H = 0.89 (1) Å, and with Uiso(H) = 1.2Ueq(N). Being affected by the beam-stop, the (0 0 1) reflection was removed from the final cycles of refinement.

Structure description top

The amino substituted pyrazole unit is an important backbone in the area of synthetic as well as medicinal chemistry due to the broad range of biological activities of such compounds, such as anti-depressant, anti-anxiety, anti-fungal, anti-bacterial, anti-diabetic and anti-cancer (Tanitame et al., 2004; Chimenti et al., 2006; Ding et al.,2009; Shen et al., 2011; Deng et al., 2012). In this connection, the title compound, (I), was synthesized and its crystal structure is reported on herein.

Two independent molecules (A and B), comprise the asymmetric unit of (I), see Fig. 1. As seen from the overlay diagram, Fig. 2, different conformations are observed for both the benzodioxole and benzene substituents. The five-membered dioxole rings in each molecule has an envelope conformation with the methylene-C17 or C34 atoms being the flap atoms. The r.m.s. deviation of the five non-hydrogen atoms = 0.049 Å for the N1-containing molecule which is considerably less than 0.129 Å for the second independent molecule, where the C34 atom lies 0.115 (2) Å out of the mean plane. For the N1-containing molecule, with respect to the pyrazole ring (r.m.s. deviation = Å), the benzodioxole and benzene groups make dihedral angles of 31.67 (8) and 68.22 (9)°, respectively. The equivalent values for the N2-containing molecule are 47.18 (7)° and 49.08 (9)°, respectively. From a conformational point of view, the dioxole ring in the N1-containing molecule is anti to the amine substituent whereas it is syn for the second molecule. The observed conformations in (I) are similar to those in a closely related structure, i.e. diethyl 4-(benzo[d][1,3]dioxol-5-yl)-1H-pyrazol-3-yl-3-phosphonate (Muruganantham et al., 2007).

The presence of N—H···N hydrogen bonding leads to supramolecular zigzag chains along the b axis in the crystal structure of (I), see Fig. 3 and Table 1. These are consolidated into supramolecular double chains via C—H···O and C—H···π interactions (Table 1). These stack with no specific intermolecular interactions between them (Fig. 4).

For background to the biological activity of amino substituted pyrazole derivatives, see: Tanitame et al. (2004); Chimenti et al. (2006); Ding et al. (2009); Shen et al. (2011); Deng et al. (2012). For a related structure, see: Muruganantham et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules comprising the asymmetric unit of the title compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 35% probability level.
[Figure 2] Fig. 2. Overlay diagram of the N1- and inverted N2-containing molecules (red and blue, respectively), where the pyrazole rings have been superimposed.
[Figure 3] Fig. 3. View of the supramolecular zigzag chain along the b axis in compound (I), mediated by N—H···N hydrogen bonds (dashed lines; see Table 1 for details).
[Figure 4] Fig. 4. A view in projection along the b axis of the crystal packing of compound (I). The N—H···N, C—H···O (obscured) and C—H···π interactions are shown as dashed lines (see Table 1 for details).
4-(2H-1,3-Benzodioxol-5-yl)-1-(4-methylphenyl)-1H-pyrazol-5-amine top
Crystal data top
C17H15N3O2Z = 4
Mr = 293.32F(000) = 616
Triclinic, P1Dx = 1.350 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.7690 (7) ÅCell parameters from 5105 reflections
b = 10.4250 (7) Åθ = 2.5–28.1°
c = 14.283 (1) ŵ = 0.09 mm1
α = 96.626 (2)°T = 293 K
β = 91.903 (2)°Block, light-brown
γ = 91.164 (2)°0.40 × 0.25 × 0.20 mm
V = 1443.67 (17) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6620 independent reflections
Radiation source: fine-focus sealed tube4674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω and φ scanh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1313
Tmin = 0.965, Tmax = 0.982l = 1718
29089 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.2775P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6620 reflectionsΔρmax = 0.19 e Å3
412 parametersΔρmin = 0.17 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0100 (15)
Crystal data top
C17H15N3O2γ = 91.164 (2)°
Mr = 293.32V = 1443.67 (17) Å3
Triclinic, P1Z = 4
a = 9.7690 (7) ÅMo Kα radiation
b = 10.4250 (7) ŵ = 0.09 mm1
c = 14.283 (1) ÅT = 293 K
α = 96.626 (2)°0.40 × 0.25 × 0.20 mm
β = 91.903 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6620 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4674 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.982Rint = 0.031
29089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
6620 reflectionsΔρmin = 0.17 e Å3
412 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05184 (17)0.01597 (17)0.34864 (10)0.0926 (5)
O20.05160 (17)0.22486 (16)0.42087 (11)0.0941 (5)
N10.56918 (13)0.17929 (11)0.77181 (8)0.0456 (3)
N20.56849 (16)0.29926 (12)0.74072 (9)0.0558 (4)
N30.46446 (17)0.02875 (14)0.74119 (11)0.0629 (4)
H1N0.5319 (15)0.0597 (18)0.7748 (12)0.075*
H2N0.4200 (19)0.0813 (16)0.6962 (11)0.075*
C10.8680 (2)0.1459 (2)1.11796 (13)0.0687 (5)
H1A0.92520.07181.11230.103*
H1B0.80480.13901.16730.103*
H1C0.92410.22281.13280.103*
C20.78997 (16)0.15254 (14)1.02637 (11)0.0478 (4)
C30.85553 (17)0.16857 (19)0.94457 (13)0.0624 (5)
H30.95060.17650.94640.075*
C40.78454 (17)0.17326 (18)0.85982 (12)0.0583 (4)
H40.83140.18250.80530.070*
C50.64441 (15)0.16413 (13)0.85703 (10)0.0406 (3)
C60.57641 (16)0.14683 (18)0.93748 (11)0.0564 (4)
H60.48130.13910.93550.068*
C70.64917 (17)0.14102 (18)1.02109 (11)0.0575 (4)
H70.60220.12911.07510.069*
C80.48562 (15)0.09408 (13)0.71784 (10)0.0415 (3)
C90.42651 (15)0.15896 (13)0.64773 (9)0.0404 (3)
C100.48195 (18)0.28428 (15)0.66748 (10)0.0513 (4)
H100.45970.35090.63210.062*
C110.32854 (15)0.11204 (14)0.57068 (10)0.0420 (3)
C120.32865 (19)0.01296 (16)0.52498 (12)0.0569 (4)
H120.39080.07070.54580.068*
C130.2395 (2)0.05524 (18)0.44922 (13)0.0680 (5)
H130.24080.13940.41950.082*
C140.15023 (19)0.03216 (19)0.42066 (12)0.0610 (5)
C150.14910 (18)0.15617 (18)0.46424 (12)0.0578 (4)
C160.23427 (17)0.19885 (15)0.53917 (11)0.0509 (4)
H160.23010.28300.56860.061*
C170.0015 (3)0.1391 (3)0.34386 (19)0.1104 (9)
H17A0.10070.13440.34550.132*
H17B0.02300.17030.28510.132*
O30.00982 (14)0.54440 (13)0.17121 (10)0.0746 (4)
O40.01550 (13)0.38075 (14)0.29402 (9)0.0685 (4)
N40.39249 (13)0.31673 (12)0.17245 (9)0.0458 (3)
N50.33173 (15)0.19573 (12)0.16344 (10)0.0563 (4)
N60.41337 (19)0.50194 (14)0.09039 (10)0.0634 (4)
H3N0.427 (2)0.5557 (16)0.1430 (9)0.076*
H4N0.386 (2)0.5369 (18)0.0393 (10)0.076*
C180.7688 (2)0.4236 (2)0.48865 (14)0.0753 (6)
H18A0.72710.39840.54380.113*
H18B0.79280.51400.49870.113*
H18C0.84980.37470.47650.113*
C190.66949 (18)0.39817 (15)0.40553 (12)0.0525 (4)
C200.70590 (18)0.42017 (18)0.31628 (13)0.0586 (4)
H200.79380.45160.30770.070*
C210.61593 (17)0.39708 (17)0.23905 (12)0.0534 (4)
H210.64350.41250.17960.064*
C220.48521 (16)0.35108 (14)0.25076 (10)0.0430 (3)
C230.44556 (18)0.32943 (17)0.33975 (11)0.0539 (4)
H230.35710.29950.34860.065*
C240.5377 (2)0.35237 (17)0.41535 (11)0.0587 (4)
H240.51030.33650.47480.070*
C250.36066 (16)0.38099 (14)0.09701 (10)0.0418 (3)
C260.27733 (15)0.29921 (14)0.03560 (10)0.0427 (3)
C270.26475 (17)0.18800 (15)0.08121 (12)0.0532 (4)
H270.21370.11520.05580.064*
C280.21039 (14)0.32219 (14)0.05457 (10)0.0424 (3)
C290.14039 (16)0.43657 (15)0.06373 (11)0.0480 (4)
H290.14290.50440.01530.058*
C300.06824 (16)0.44450 (15)0.14665 (12)0.0500 (4)
C310.06488 (15)0.34652 (17)0.21981 (11)0.0487 (4)
C320.13435 (16)0.23582 (17)0.21447 (11)0.0524 (4)
H320.13320.17020.26450.063*
C330.20731 (15)0.22566 (15)0.13039 (11)0.0484 (4)
H330.25610.15110.12470.058*
C340.0848 (2)0.4919 (2)0.25516 (15)0.0751 (6)
H34A0.17760.46860.24040.090*
H34B0.08910.55510.29990.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1014 (11)0.1036 (12)0.0658 (9)0.0138 (9)0.0459 (8)0.0029 (8)
O20.1030 (11)0.0994 (11)0.0758 (10)0.0264 (9)0.0522 (9)0.0041 (8)
N10.0574 (8)0.0396 (6)0.0388 (7)0.0019 (5)0.0142 (6)0.0058 (5)
N20.0851 (10)0.0404 (7)0.0410 (7)0.0072 (6)0.0169 (7)0.0076 (5)
N30.0804 (11)0.0434 (7)0.0639 (10)0.0094 (7)0.0347 (8)0.0143 (6)
C10.0753 (13)0.0721 (12)0.0569 (11)0.0031 (10)0.0314 (9)0.0100 (9)
C20.0530 (9)0.0442 (8)0.0448 (8)0.0021 (7)0.0169 (7)0.0045 (6)
C30.0398 (9)0.0831 (12)0.0649 (11)0.0149 (8)0.0139 (8)0.0191 (9)
C40.0478 (9)0.0790 (12)0.0498 (9)0.0143 (8)0.0029 (7)0.0188 (8)
C50.0467 (8)0.0388 (7)0.0352 (7)0.0006 (6)0.0108 (6)0.0034 (6)
C60.0380 (8)0.0868 (12)0.0438 (9)0.0081 (8)0.0041 (7)0.0053 (8)
C70.0527 (10)0.0838 (12)0.0359 (8)0.0059 (9)0.0010 (7)0.0060 (8)
C80.0457 (8)0.0405 (7)0.0374 (7)0.0016 (6)0.0081 (6)0.0029 (6)
C90.0477 (8)0.0417 (7)0.0314 (7)0.0060 (6)0.0039 (6)0.0027 (6)
C100.0778 (11)0.0413 (8)0.0344 (8)0.0026 (7)0.0111 (7)0.0064 (6)
C110.0487 (8)0.0456 (8)0.0312 (7)0.0033 (6)0.0052 (6)0.0036 (6)
C120.0684 (11)0.0495 (9)0.0505 (9)0.0083 (8)0.0148 (8)0.0011 (7)
C130.0876 (14)0.0545 (10)0.0567 (11)0.0033 (9)0.0176 (10)0.0094 (8)
C140.0654 (11)0.0727 (12)0.0416 (9)0.0104 (9)0.0182 (8)0.0011 (8)
C150.0610 (10)0.0688 (11)0.0435 (9)0.0069 (8)0.0157 (8)0.0106 (8)
C160.0639 (10)0.0485 (8)0.0391 (8)0.0091 (7)0.0119 (7)0.0018 (6)
C170.119 (2)0.117 (2)0.0897 (18)0.0012 (17)0.0649 (16)0.0106 (15)
O30.0836 (9)0.0649 (8)0.0748 (9)0.0165 (7)0.0190 (7)0.0105 (6)
O40.0636 (8)0.0895 (10)0.0523 (7)0.0004 (7)0.0138 (6)0.0123 (6)
N40.0543 (8)0.0406 (6)0.0420 (7)0.0039 (6)0.0040 (6)0.0051 (5)
N50.0611 (9)0.0426 (7)0.0653 (9)0.0088 (6)0.0129 (7)0.0122 (6)
N60.1031 (12)0.0469 (8)0.0389 (8)0.0208 (8)0.0140 (8)0.0076 (6)
C180.0871 (14)0.0711 (12)0.0653 (12)0.0104 (10)0.0261 (11)0.0042 (10)
C190.0632 (11)0.0436 (8)0.0494 (9)0.0081 (7)0.0097 (8)0.0023 (7)
C200.0499 (9)0.0651 (11)0.0609 (11)0.0029 (8)0.0042 (8)0.0102 (8)
C210.0544 (10)0.0629 (10)0.0440 (9)0.0031 (8)0.0029 (7)0.0109 (7)
C220.0523 (9)0.0383 (7)0.0379 (8)0.0025 (6)0.0025 (6)0.0028 (6)
C230.0564 (10)0.0600 (10)0.0450 (9)0.0057 (8)0.0047 (7)0.0055 (7)
C240.0777 (12)0.0623 (10)0.0360 (8)0.0017 (9)0.0020 (8)0.0058 (7)
C250.0510 (8)0.0396 (7)0.0340 (7)0.0004 (6)0.0014 (6)0.0005 (6)
C260.0402 (8)0.0420 (8)0.0440 (8)0.0027 (6)0.0014 (6)0.0018 (6)
C270.0508 (9)0.0422 (8)0.0648 (11)0.0065 (7)0.0122 (8)0.0041 (7)
C280.0353 (7)0.0480 (8)0.0425 (8)0.0029 (6)0.0001 (6)0.0000 (6)
C290.0497 (9)0.0464 (8)0.0459 (8)0.0007 (7)0.0007 (7)0.0025 (6)
C300.0478 (9)0.0492 (9)0.0535 (9)0.0018 (7)0.0012 (7)0.0088 (7)
C310.0394 (8)0.0666 (10)0.0399 (8)0.0067 (7)0.0023 (6)0.0070 (7)
C320.0455 (9)0.0631 (10)0.0444 (9)0.0042 (7)0.0002 (7)0.0098 (7)
C330.0403 (8)0.0503 (9)0.0517 (9)0.0030 (6)0.0020 (7)0.0061 (7)
C340.0674 (12)0.0865 (14)0.0729 (13)0.0056 (11)0.0168 (10)0.0199 (11)
Geometric parameters (Å, º) top
O1—C141.378 (2)O3—C301.3741 (19)
O1—C171.403 (3)O3—C341.431 (2)
O2—C151.376 (2)O4—C311.3824 (19)
O2—C171.413 (3)O4—C341.421 (3)
N1—C81.3492 (18)N4—C251.3635 (18)
N1—N21.3746 (17)N4—N51.3737 (18)
N1—C51.4270 (17)N4—C221.4237 (19)
N2—C101.3159 (19)N5—C271.319 (2)
N3—C81.373 (2)N6—C251.367 (2)
N3—H1N0.890 (9)N6—H3N0.889 (9)
N3—H2N0.891 (9)N6—H4N0.888 (9)
C1—C21.501 (2)C18—C191.504 (2)
C1—H1A0.9600C18—H18A0.9600
C1—H1B0.9600C18—H18B0.9600
C1—H1C0.9600C18—H18C0.9600
C2—C31.376 (2)C19—C201.378 (2)
C2—C71.377 (2)C19—C241.381 (3)
C3—C41.381 (2)C20—C211.383 (2)
C3—H30.9300C20—H200.9300
C4—C51.369 (2)C21—C221.377 (2)
C4—H40.9300C21—H210.9300
C5—C61.374 (2)C22—C231.383 (2)
C6—C71.377 (2)C23—C241.379 (2)
C6—H60.9300C23—H230.9300
C7—H70.9300C24—H240.9300
C8—C91.3884 (19)C25—C261.382 (2)
C9—C101.398 (2)C26—C271.399 (2)
C9—C111.4674 (19)C26—C281.472 (2)
C10—H100.9300C27—H270.9300
C11—C121.389 (2)C28—C331.390 (2)
C11—C161.404 (2)C28—C291.403 (2)
C12—C131.391 (2)C29—C301.370 (2)
C12—H120.9300C29—H290.9300
C13—C141.361 (3)C30—C311.374 (2)
C13—H130.9300C31—C321.359 (2)
C14—C151.369 (3)C32—C331.392 (2)
C15—C161.361 (2)C32—H320.9300
C16—H160.9300C33—H330.9300
C17—H17A0.9700C34—H34A0.9700
C17—H17B0.9700C34—H34B0.9700
C14—O1—C17105.27 (16)C30—O3—C34104.72 (14)
C15—O2—C17105.11 (17)C31—O4—C34104.44 (13)
C8—N1—N2111.81 (12)C25—N4—N5111.66 (12)
C8—N1—C5129.50 (12)C25—N4—C22130.28 (12)
N2—N1—C5118.45 (12)N5—N4—C22117.78 (12)
C10—N2—N1103.64 (12)C27—N5—N4103.58 (12)
C8—N3—H1N115.8 (13)C25—N6—H3N118.6 (13)
C8—N3—H2N113.6 (13)C25—N6—H4N115.1 (13)
H1N—N3—H2N119.2 (19)H3N—N6—H4N116.5 (19)
C2—C1—H1A109.5C19—C18—H18A109.5
C2—C1—H1B109.5C19—C18—H18B109.5
H1A—C1—H1B109.5H18A—C18—H18B109.5
C2—C1—H1C109.5C19—C18—H18C109.5
H1A—C1—H1C109.5H18A—C18—H18C109.5
H1B—C1—H1C109.5H18B—C18—H18C109.5
C3—C2—C7117.43 (14)C20—C19—C24117.10 (15)
C3—C2—C1121.71 (15)C20—C19—C18121.41 (17)
C7—C2—C1120.86 (16)C24—C19—C18121.49 (16)
C2—C3—C4122.06 (15)C19—C20—C21122.14 (17)
C2—C3—H3119.0C19—C20—H20118.9
C4—C3—H3119.0C21—C20—H20118.9
C5—C4—C3119.24 (16)C22—C21—C20119.58 (15)
C5—C4—H4120.4C22—C21—H21120.2
C3—C4—H4120.4C20—C21—H21120.2
C4—C5—C6119.89 (14)C21—C22—C23119.46 (15)
C4—C5—N1119.88 (14)C21—C22—N4121.55 (13)
C6—C5—N1120.15 (13)C23—C22—N4118.85 (14)
C5—C6—C7119.95 (15)C24—C23—C22119.72 (16)
C5—C6—H6120.0C24—C23—H23120.1
C7—C6—H6120.0C22—C23—H23120.1
C2—C7—C6121.39 (15)C23—C24—C19121.99 (15)
C2—C7—H7119.3C23—C24—H24119.0
C6—C7—H7119.3C19—C24—H24119.0
N1—C8—N3120.78 (13)N4—C25—N6121.33 (13)
N1—C8—C9107.35 (12)N4—C25—C26107.16 (13)
N3—C8—C9131.66 (14)N6—C25—C26131.45 (14)
C8—C9—C10103.36 (12)C25—C26—C27103.66 (13)
C8—C9—C11129.93 (13)C25—C26—C28129.50 (14)
C10—C9—C11126.70 (13)C27—C26—C28126.78 (14)
N2—C10—C9113.82 (13)N5—C27—C26113.94 (14)
N2—C10—H10123.1N5—C27—H27123.0
C9—C10—H10123.1C26—C27—H27123.0
C12—C11—C16118.51 (14)C33—C28—C29118.87 (14)
C12—C11—C9122.89 (13)C33—C28—C26119.78 (13)
C16—C11—C9118.54 (13)C29—C28—C26121.19 (13)
C11—C12—C13122.64 (15)C30—C29—C28117.52 (14)
C11—C12—H12118.7C30—C29—H29121.2
C13—C12—H12118.7C28—C29—H29121.2
C14—C13—C12116.94 (16)C29—C30—C31122.34 (15)
C14—C13—H13121.5C29—C30—O3128.16 (15)
C12—C13—H13121.5C31—C30—O3109.50 (14)
C13—C14—C15121.39 (15)C32—C31—C30121.80 (15)
C13—C14—O1128.86 (17)C32—C31—O4128.42 (15)
C15—C14—O1109.75 (16)C30—C31—O4109.78 (15)
C16—C15—C14122.54 (15)C31—C32—C33116.63 (14)
C16—C15—O2127.73 (17)C31—C32—H32121.7
C14—C15—O2109.74 (15)C33—C32—H32121.7
C15—C16—C11117.97 (15)C28—C33—C32122.80 (15)
C15—C16—H16121.0C28—C33—H33118.6
C11—C16—H16121.0C32—C33—H33118.6
O1—C17—O2109.53 (17)O4—C34—O3107.51 (14)
O1—C17—H17A109.8O4—C34—H34A110.2
O2—C17—H17A109.8O3—C34—H34A110.2
O1—C17—H17B109.8O4—C34—H34B110.2
O2—C17—H17B109.8O3—C34—H34B110.2
H17A—C17—H17B108.2H34A—C34—H34B108.5
C8—N1—N2—C100.48 (18)C25—N4—N5—C270.77 (18)
C5—N1—N2—C10174.38 (13)C22—N4—N5—C27173.75 (13)
C7—C2—C3—C40.1 (3)C24—C19—C20—C210.4 (3)
C1—C2—C3—C4179.25 (17)C18—C19—C20—C21179.89 (16)
C2—C3—C4—C51.2 (3)C19—C20—C21—C220.3 (3)
C3—C4—C5—C61.8 (3)C20—C21—C22—C230.4 (2)
C3—C4—C5—N1174.93 (15)C20—C21—C22—N4175.21 (14)
C8—N1—C5—C4117.59 (19)C25—N4—C22—C2146.4 (2)
N2—N1—C5—C468.6 (2)N5—N4—C22—C21126.91 (16)
C8—N1—C5—C665.7 (2)C25—N4—C22—C23137.94 (17)
N2—N1—C5—C6108.15 (18)N5—N4—C22—C2348.74 (19)
C4—C5—C6—C71.2 (3)C21—C22—C23—C240.9 (2)
N1—C5—C6—C7175.60 (15)N4—C22—C23—C24174.84 (14)
C3—C2—C7—C60.8 (3)C22—C23—C24—C190.7 (3)
C1—C2—C7—C6179.96 (17)C20—C19—C24—C230.1 (3)
C5—C6—C7—C20.2 (3)C18—C19—C24—C23179.61 (16)
N2—N1—C8—N3175.36 (15)N5—N4—C25—N6178.24 (15)
C5—N1—C8—N31.2 (2)C22—N4—C25—N64.6 (2)
N2—N1—C8—C90.06 (18)N5—N4—C25—C260.68 (17)
C5—N1—C8—C9174.19 (14)C22—N4—C25—C26172.97 (14)
N1—C8—C9—C100.53 (17)N4—C25—C26—C270.29 (16)
N3—C8—C9—C10174.19 (18)N6—C25—C26—C27177.51 (18)
N1—C8—C9—C11179.89 (14)N4—C25—C26—C28177.61 (14)
N3—C8—C9—C115.4 (3)N6—C25—C26—C285.2 (3)
N1—N2—C10—C90.85 (19)N4—N5—C27—C260.59 (19)
C8—C9—C10—N20.89 (19)C25—C26—C27—N50.20 (19)
C11—C9—C10—N2179.51 (14)C28—C26—C27—N5177.22 (14)
C8—C9—C11—C1234.1 (2)C25—C26—C28—C33138.92 (16)
C10—C9—C11—C12146.40 (18)C27—C26—C28—C3344.3 (2)
C8—C9—C11—C16148.63 (16)C25—C26—C28—C2945.8 (2)
C10—C9—C11—C1630.9 (2)C27—C26—C28—C29130.89 (17)
C16—C11—C12—C130.2 (3)C33—C28—C29—C302.3 (2)
C9—C11—C12—C13177.07 (17)C26—C28—C29—C30172.96 (14)
C11—C12—C13—C140.1 (3)C28—C29—C30—C311.2 (2)
C12—C13—C14—C150.4 (3)C28—C29—C30—O3178.57 (16)
C12—C13—C14—O1179.75 (19)C34—O3—C30—C29167.77 (18)
C17—O1—C14—C13174.4 (2)C34—O3—C30—C3111.99 (19)
C17—O1—C14—C155.4 (2)C29—C30—C31—C320.6 (3)
C13—C14—C15—C161.3 (3)O3—C30—C31—C32179.63 (15)
O1—C14—C15—C16178.84 (17)C29—C30—C31—O4179.92 (15)
C13—C14—C15—O2178.86 (19)O3—C30—C31—O40.15 (19)
O1—C14—C15—O21.0 (2)C34—O4—C31—C32168.27 (18)
C17—O2—C15—C16176.4 (2)C34—O4—C31—C3012.29 (19)
C17—O2—C15—C143.8 (3)C30—C31—C32—C331.1 (2)
C14—C15—C16—C111.6 (3)O4—C31—C32—C33179.54 (15)
O2—C15—C16—C11178.62 (18)C29—C28—C33—C321.9 (2)
C12—C11—C16—C151.0 (2)C26—C28—C33—C32173.45 (14)
C9—C11—C16—C15176.39 (15)C31—C32—C33—C280.2 (2)
C14—O1—C17—O27.8 (3)C31—O4—C34—O319.6 (2)
C15—O2—C17—O17.2 (3)C30—O3—C34—O419.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C28–C33, C19–C24 and C2–C7 rings, respectviely.
D—H···AD—HH···AD···AD—H···A
N3—H1N···N5i0.89 (2)2.20 (2)3.059 (2)161 (2)
N6—H3N···N2ii0.89 (1)2.11 (1)2.9914 (19)170 (2)
C1—H1C···O3ii0.962.543.479 (2)164
C3—H3···Cg1iii0.932.833.5365 (19)133
C10—H10···Cg2ii0.932.883.6055 (17)135
C27—H27···Cg3i0.932.943.5903 (18)128
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H15N3O2
Mr293.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7690 (7), 10.4250 (7), 14.283 (1)
α, β, γ (°)96.626 (2), 91.903 (2), 91.164 (2)
V3)1443.67 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.965, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
29089, 6620, 4674
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.02
No. of reflections6620
No. of parameters412
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C28–C33, C19–C24 and C2–C7 rings, respectviely.
D—H···AD—HH···AD···AD—H···A
N3—H1N···N5i0.890 (16)2.203 (17)3.059 (2)161.4 (17)
N6—H3N···N2ii0.889 (14)2.112 (14)2.9914 (19)170.3 (17)
C1—H1C···O3ii0.962.543.479 (2)164
C3—H3···Cg1iii0.932.833.5365 (19)133
C10—H10···Cg2ii0.932.883.6055 (17)135
C27—H27···Cg3i0.932.943.5903 (18)128
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

Acknowledgements

The authors are grateful to the Department of Science and Technology (DST), and SAIF, IIT Madras, Chennai, India, for the X-ray data collection. MCP is thankful to the University Grant Commission, New Delhi, India, for research funding under research project No. 39–715/2010(SR). We also thank the Ministry of Higher Education, Malaysia, for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SADABS and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChimenti, F., Bolasco, A., Manna, F., Secci, D., Chimenti, P., Granese, A., Befani, O., Turini, P., Cirilli, R., La Torre, F., Alcaro, S., Ortuso, F. & Langer, T. (2006). Curr. Med. Chem. 13, 1411–1428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeng, H., Yu, Z., Shi, G., Chen, M., Tao, K. & Hou, T. (2012). Chem. Biol. Drug Des. 79, 279–289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDing, X.-L., Zhang, H.-Y., Qi, L., Zhao, B.-X., Lian, S., Lv, H.-S. & Miao, J.-Y. (2009). Bioorg. Med. Chem. Lett. 19, 5325–5328.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMuruganantham, R., Mobin, S. M. & Namboothiri, I. N. N. (2007). Org. Lett. 9, 1125–1128.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, D.-M., Brady, E. J., Candelore, M. R., Dallas-Yang, Q., Ding, V. D.-H., Feeney, W. P., Jiang, G., McCann, M. E., Mock, S., Qureshi, S. A., Saperstein, R., Shen, X., Tong, X., Tota, L. M., Wright, M. J., Yang, X., Zheng, S., Chapman, K. T., Zhang, B. B., Tata, J. R. & Parmee, E. R. (2011). Bioorg. Med. Chem. Lett. 21, 76–81.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Iwai, N., Hiyama, Y., Suzuki, K., Ito, H., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). J. Med. Chem. 47, 3693–3696.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds