organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(3,3-Di­methyl­indolin-2-yl­­idene)meth­yl]-4-[(3,3-di­methyl-3H-indol-1-ium-2-yl)methyl­­idene]-3-oxo­cyclo­but-1-en-1-olate chloro­form disolvate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bExilica Limited, The Technocentre, Puma Way, Coventry CV1 2TT, England
*Correspondence e-mail: g.smith@qut.edu.au

(Received 14 April 2013; accepted 16 April 2013; online 27 April 2013)

In the title squaraine dye solvate, C26H24N2O2·2CHCl3, the dye mol­ecule is essentially planar, except for the methyl groups, having a maximum deviation over the 26-membered delocalized bond system of 0.060 (2) Å. It possesses crystallographic twofold rotational symmetry with the indole ring systems adopting a syn conformation. The mol­ecular structure features intra­molecular N—H⋯O hydrogen bonds enclosing conjoint S7 ring motifs about one of the dioxo­cyclo­butene O atoms, while the two chloro­form solvent mol­ecules are linked to the second O atom through C—H⋯O hydrogen bonds.

Related literature

For the first report of bis­(indole­nine)squaraine dyes with alkyl substituents on the N-atom of each of the indole­nine rings, see: Sprenger Von & Ziegenbein (1967[Sprenger Von, H.-E. & Ziegenbein, W. (1967). Angew. Chem. 79, 581-582.]). For background to bis­(indole­nine)squaraine dyes as biomarkers, see: Patsenker et al. (2011[Patsenker, L. D., Tatarets, A. L., Povrozin, Y. A. & Terpetschnig, E. A. (2011). Bioanal. Rev. 3, 115-137.]); Sameiro & Gonçalves (2009[Sameiro, M. & Gonçalves, T. (2009). Chem. Rev. 109, 190-212.]). For the structures of some analogues of the parent dye, see: Kobiyashi et al. (1986[Kobiyashi, Y., Goto, M. & Kurahashi, M. (1986). Bull. Chem. Soc. Jpn, 59, 311-312.]); Natsukawa & Nakazumi (1993[Natsukawa, K. & Nakazumi, H. (1993). Sangyo Gij. Sogo Kenk. Hokuku, 6, 16-21.]); Tong & Peng (1999[Tong, L. & Peng, B.-X. (1999). Dyes Pigments, 43, 73-76.]); Lynch & Byriel (1999[Lynch, D. E. & Byriel, K. A. (1999). Cryst. Eng. 2, 225-239.]); Lynch (2002[Lynch, D. E. (2002). Acta Cryst. E58, o1025-o1027.]); Arunkumar et al. (2007[Arunkumar, E., Sudeep, P. K., Kamat, P. V., Noll, B. C. & Smith, B. D. (2007). New J. Chem. 31, 677-683.]); Matsui et al. (2012[Matsui, M., Fukushima, M., Kubota, Y., Funabiki, K. & Shiro, M. (2012). Tetrahedron, 68, 1931-1935.]); Lynch et al. (2012[Lynch, D. E., Kirkham, V. B., Chowdhury, M. Z. H., Wane, E. S. & Heptinstall, J. (2012). Dyes Pigments, 60, 393-402.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N2O2·2CHCl3

  • Mr = 635.21

  • Monoclinic, C 2/c

  • a = 20.4270 (11) Å

  • b = 13.5433 (5) Å

  • c = 11.4259 (5) Å

  • β = 109.561 (5)°

  • V = 2978.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 200 K

  • 0.40 × 0.22 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.794, Tmax = 0.888

  • 10054 measured reflections

  • 2926 independent reflections

  • 2415 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.02

  • 2926 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 1.96 2.7835 (18) 156
C15—H15⋯O1 0.98 2.13 3.075 (3) 161

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Bis(indolenine)squaraine dyes, in which there is an alkyl substituent on the N-atom of each of the indolenine rings, were first reported on by Sprenger Von & Ziegenbein (1967) and have been studied since then for a range of opto-electronic applications such as long-wavelength protein-sensitive bioprobes (Lynch et al., 2012; Patsenker et al., 2011; Sameiro & Gonçalves, 2009). However, the parent dye compound 2,4-[(3,3-dimethyl-2-indolylidene)methyl]cyclobutenediylio-1,3-diolate, which has no N-alkyl substituent (R) on the indolenine ring, has remained relatively untouched in the literature, including reporting of the crystal structure. The crystal structures of a number of analogues with such substituents have been reported; for e.g. R = methyl (Kobiyashi et al., 1986), ethyl (Natsukawa & Nakazumi, 1993), isopropyl (Tong & Peng, 1999), n-butyl (Matsui et al., 2012), n-hexyl (Lynch & Byriel, 1999) and n-octyl (Lynch, 2002).

Evaporation of a solution of the dye in chloroform gave the title compound solvate as large green-black crystal prisms and its crystal structure is reported on herein. The dye molecule adopts the uncommon syn-conformation with respect to the indolenine rings, having crystallographic twofold rotational symmetry (Fig. 1). The structures of all other members of this series of N-alkyl-substituted squaraine dyes have the inversion-related anti-conformation.

The planarity of the delocalized 26-membered linked ring system in the overall molecule is indicated by maximum deviations of 0.059 (2) (C6 and C6i) and 0.060 (2) (C4 and C4i) from the least-squares plane [symmetry code (i): -x, y, -z + 3/2]. This planarity is further stabilized by the intramolecular N—H···O hydrogen bonds to O2 of the dioxocyclobutene ring (Table 1), closing conjoint S7 ring motifs.

Inter-species C—H···O hydrogen-bonding interactions link the two chloroform molecules to the second O-atom (O1). Although chloroform is a common solvent for the crystallization of squaraine dyes, chloroform solvates are uncommon with only three such structures reported on previously (Natsukawa & Nakazumi, 1993; Lynch & Byriel, 1999; Arunkumar et al., 2007).

Related literature top

For the first report of bis(indolenine)squaraine dyes with alkyl substituents on the N-atom of each of the indolenine rings, see: Sprenger Von & Ziegenbein (1967). For background to bis(indolenine)squaraine dyes as biomarkers, see: Patsenker et al. (2011); Sameiro & Gonçalves (2009). For the structures of some analogues of the parent dye, see: Kobiyashi et al. (1986); Natsukawa & Nakazumi (1993); Tong & Peng (1999); Lynch & Byriel (1999); Lynch (2002); Arunkumar et al. (2007); Matsui et al. (2012); Lynch et al. (2012).

Experimental top

Squaric acid (200 mg, 1.75 mmol) was added to 2.0 molar equivalents of 2,3,3-trimethylindolenine (0.56 g, 3.5 mmol) and quinoline (0.45 g, 3.5 mmol) in a 1:1 v/v mix of 1-butanol:toluene (30 ml) and the mixture was then refluxed for 16 h using a Dean and Stark apparatus. Upon cooling, metallic green crystals were collected in vacuo, washed with petroleum ether (60/40), and were used without further purification [Yield: 0.31 g (45%)]. Spectroscopic data are available in the archived CIF. For the X-ray diffraction analysis large green-black lustrous crystal prisms of the title compound were obtained from the room temperature evaporation of a solution of the dye in chloroform. A cleaved crystal specimen was used for the actual analysis.

Refinement top

The H atom of the N—H group was located in a difference Fourier but was subsequently refined as a riding atom: N-H = 0.88 Å with Uiso(H) = 1.2Ueq(N). C-bound H atoms were included in calculated positions and refined as riding atoms: C—H = 0.93 Å (aromatic or ethylenic), 0.96 Å (methyl) or 0.98 Å (methine) with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Structure description top

Bis(indolenine)squaraine dyes, in which there is an alkyl substituent on the N-atom of each of the indolenine rings, were first reported on by Sprenger Von & Ziegenbein (1967) and have been studied since then for a range of opto-electronic applications such as long-wavelength protein-sensitive bioprobes (Lynch et al., 2012; Patsenker et al., 2011; Sameiro & Gonçalves, 2009). However, the parent dye compound 2,4-[(3,3-dimethyl-2-indolylidene)methyl]cyclobutenediylio-1,3-diolate, which has no N-alkyl substituent (R) on the indolenine ring, has remained relatively untouched in the literature, including reporting of the crystal structure. The crystal structures of a number of analogues with such substituents have been reported; for e.g. R = methyl (Kobiyashi et al., 1986), ethyl (Natsukawa & Nakazumi, 1993), isopropyl (Tong & Peng, 1999), n-butyl (Matsui et al., 2012), n-hexyl (Lynch & Byriel, 1999) and n-octyl (Lynch, 2002).

Evaporation of a solution of the dye in chloroform gave the title compound solvate as large green-black crystal prisms and its crystal structure is reported on herein. The dye molecule adopts the uncommon syn-conformation with respect to the indolenine rings, having crystallographic twofold rotational symmetry (Fig. 1). The structures of all other members of this series of N-alkyl-substituted squaraine dyes have the inversion-related anti-conformation.

The planarity of the delocalized 26-membered linked ring system in the overall molecule is indicated by maximum deviations of 0.059 (2) (C6 and C6i) and 0.060 (2) (C4 and C4i) from the least-squares plane [symmetry code (i): -x, y, -z + 3/2]. This planarity is further stabilized by the intramolecular N—H···O hydrogen bonds to O2 of the dioxocyclobutene ring (Table 1), closing conjoint S7 ring motifs.

Inter-species C—H···O hydrogen-bonding interactions link the two chloroform molecules to the second O-atom (O1). Although chloroform is a common solvent for the crystallization of squaraine dyes, chloroform solvates are uncommon with only three such structures reported on previously (Natsukawa & Nakazumi, 1993; Lynch & Byriel, 1999; Arunkumar et al., 2007).

For the first report of bis(indolenine)squaraine dyes with alkyl substituents on the N-atom of each of the indolenine rings, see: Sprenger Von & Ziegenbein (1967). For background to bis(indolenine)squaraine dyes as biomarkers, see: Patsenker et al. (2011); Sameiro & Gonçalves (2009). For the structures of some analogues of the parent dye, see: Kobiyashi et al. (1986); Natsukawa & Nakazumi (1993); Tong & Peng (1999); Lynch & Byriel (1999); Lynch (2002); Arunkumar et al. (2007); Matsui et al. (2012); Lynch et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for the title compound (symmetry code: (i) -x, y, -z + 3/2). The displacement ellipsoids are drawn at the 40% probability level. The intra- and inter-species N-H···O and C-H···O hydrogen bonds are shown as dashed lines.
2-[(3,3-Dimethylindolin-2-ylidene)methyl]-4-[(3,3-dimethyl-3H-indol-1-ium-2-yl)methylidene]-3-oxocyclobut-1-en-1-olate chloroform disolvate top
Crystal data top
C26H24N2O2·2CHCl3F(000) = 1304
Mr = 635.21Dx = 1.416 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2690 reflections
a = 20.4270 (11) Åθ = 3.3–28.8°
b = 13.5433 (5) ŵ = 0.61 mm1
c = 11.4259 (5) ÅT = 200 K
β = 109.561 (5)°Prism, green
V = 2978.5 (3) Å30.40 × 0.22 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2926 independent reflections
Radiation source: Enhance (Mo) X-ray source2415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 2225
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1616
Tmin = 0.794, Tmax = 0.888l = 1314
10054 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.047P)2 + 4.0361P]
where P = (Fo2 + 2Fc2)/3
2926 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C26H24N2O2·2CHCl3V = 2978.5 (3) Å3
Mr = 635.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.4270 (11) ŵ = 0.61 mm1
b = 13.5433 (5) ÅT = 200 K
c = 11.4259 (5) Å0.40 × 0.22 × 0.20 mm
β = 109.561 (5)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2926 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2415 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.888Rint = 0.027
10054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.02Δρmax = 0.54 e Å3
2926 reflectionsΔρmin = 0.50 e Å3
176 parameters
Special details top

Experimental. Spectroscopic details of the as synthesized metallic green crystals of the title dye: UV/Vis (CHCl3), recorded on a Nicolet 205 F T—IR spectrometer: λmax (log ε): 665(5.54). IR (KBr, cm-1) recorded on a Unicam UV-4 spectrometer: λmax: 1623 (C—O). Electrospray mass spectra recorded in the the positive (ES+) ion mode: 397.1 [M+H]+, 460.1 [M+Na+MeCN]+, 815.3 [2M+Na]+, 1211.6 [3M+Na]+.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.000000.35895 (15)0.750000.0420 (8)
O20.000000.02418 (14)0.750000.0330 (7)
N10.08460 (9)0.01681 (12)0.60326 (15)0.0292 (5)
C10.000000.2681 (2)0.750000.0308 (9)
C20.03058 (10)0.19196 (14)0.69306 (18)0.0283 (6)
C30.000000.1172 (2)0.750000.0273 (8)
C40.07197 (11)0.19354 (15)0.61835 (19)0.0300 (6)
C50.09788 (10)0.11037 (14)0.57941 (18)0.0272 (6)
C60.14808 (11)0.10979 (15)0.50618 (19)0.0298 (6)
C70.19200 (12)0.05112 (17)0.4256 (2)0.0364 (7)
C80.18945 (12)0.15368 (18)0.4251 (2)0.0400 (8)
C90.15195 (12)0.20386 (17)0.4872 (2)0.0390 (7)
C100.11502 (12)0.15347 (15)0.55071 (19)0.0333 (7)
C110.11792 (11)0.05144 (15)0.54957 (18)0.0278 (6)
C120.15568 (10)0.00001 (15)0.48861 (18)0.0293 (6)
C130.21729 (12)0.15545 (17)0.5872 (2)0.0397 (7)
C140.11833 (13)0.16552 (17)0.3829 (2)0.0400 (8)
Cl10.10014 (5)0.46856 (7)0.50703 (7)0.0756 (3)
Cl20.09549 (5)0.60290 (5)0.70002 (8)0.0724 (3)
Cl30.17949 (4)0.42725 (6)0.76203 (7)0.0650 (3)
C150.10219 (14)0.47904 (18)0.6610 (2)0.0444 (8)
H10.058200.000300.647200.0350*
H40.083000.254700.592900.0360*
H70.217600.017700.384500.0440*
H80.213300.189100.382300.0480*
H90.151500.272500.486400.0470*
H100.089500.186800.592100.0400*
H1310.234200.120700.664800.0600*
H1320.210300.223700.602400.0600*
H1330.250600.150500.544900.0600*
H1410.150200.161000.337500.0600*
H1420.111600.233600.399200.0600*
H1430.074600.136800.334800.0600*
H150.062700.442500.669900.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0502 (14)0.0225 (10)0.0651 (15)0.00000.0351 (12)0.0000
O20.0396 (12)0.0231 (10)0.0439 (12)0.00000.0240 (10)0.0000
N10.0351 (9)0.0247 (9)0.0344 (9)0.0005 (7)0.0203 (8)0.0024 (7)
C10.0302 (15)0.0265 (15)0.0392 (16)0.00000.0161 (13)0.0000
C20.0261 (10)0.0252 (10)0.0342 (11)0.0004 (8)0.0111 (9)0.0009 (8)
C30.0260 (14)0.0265 (15)0.0304 (14)0.00000.0108 (12)0.0000
C40.0336 (11)0.0229 (10)0.0377 (11)0.0023 (8)0.0176 (9)0.0028 (8)
C50.0268 (10)0.0281 (10)0.0272 (10)0.0018 (8)0.0099 (8)0.0017 (8)
C60.0315 (11)0.0308 (11)0.0310 (10)0.0012 (9)0.0156 (9)0.0018 (8)
C70.0336 (12)0.0442 (13)0.0349 (11)0.0034 (10)0.0162 (10)0.0003 (9)
C80.0399 (13)0.0444 (14)0.0373 (12)0.0119 (11)0.0150 (10)0.0059 (10)
C90.0432 (13)0.0337 (12)0.0375 (12)0.0079 (10)0.0102 (10)0.0026 (9)
C100.0392 (12)0.0288 (11)0.0325 (11)0.0001 (9)0.0127 (9)0.0009 (8)
C110.0291 (10)0.0295 (10)0.0254 (9)0.0031 (8)0.0098 (8)0.0002 (8)
C120.0272 (10)0.0315 (11)0.0303 (10)0.0004 (9)0.0110 (8)0.0009 (8)
C130.0350 (12)0.0408 (13)0.0477 (13)0.0062 (10)0.0196 (11)0.0029 (10)
C140.0524 (15)0.0354 (12)0.0366 (12)0.0007 (11)0.0206 (11)0.0076 (9)
Cl10.0984 (7)0.0894 (6)0.0439 (4)0.0101 (5)0.0303 (4)0.0026 (4)
Cl20.0981 (6)0.0384 (4)0.0764 (5)0.0049 (4)0.0234 (5)0.0064 (3)
Cl30.0658 (5)0.0531 (4)0.0653 (5)0.0084 (4)0.0077 (4)0.0035 (3)
C150.0548 (15)0.0384 (13)0.0436 (13)0.0135 (12)0.0214 (12)0.0011 (10)
Geometric parameters (Å, º) top
Cl1—C151.751 (2)C7—C81.390 (3)
Cl2—C151.753 (3)C8—C91.384 (3)
Cl3—C151.760 (3)C9—C101.389 (3)
O1—C11.230 (3)C10—C111.383 (3)
O2—C31.260 (3)C11—C121.387 (3)
N1—C51.343 (3)C4—H40.9300
N1—C111.405 (3)C7—H70.9300
N1—H10.8800C8—H80.9300
C1—C2i1.466 (3)C9—H90.9300
C1—C21.466 (3)C10—H100.9300
C2—C41.388 (3)C13—H1330.9600
C2—C31.453 (3)C13—H1310.9600
C4—C51.380 (3)C13—H1320.9600
C5—C61.525 (3)C14—H1410.9600
C6—C121.516 (3)C14—H1420.9600
C6—C131.537 (3)C14—H1430.9600
C6—C141.533 (3)C15—H150.9800
C7—C121.380 (3)
C5—N1—C11111.84 (18)C6—C12—C7131.1 (2)
C11—N1—H1124.00C6—C12—C11109.10 (18)
C5—N1—H1124.00C2—C4—H4118.00
C2—C1—C2i90.59 (19)C5—C4—H4118.00
O1—C1—C2i134.70 (11)C8—C7—H7121.00
O1—C1—C2134.70 (11)C12—C7—H7121.00
C1—C2—C388.88 (16)C7—C8—H8119.00
C1—C2—C4134.41 (18)C9—C8—H8120.00
C3—C2—C4136.70 (18)C8—C9—H9119.00
O2—C3—C2134.18 (11)C10—C9—H9119.00
C2—C3—C2i91.64 (19)C9—C10—H10122.00
O2—C3—C2i134.18 (11)C11—C10—H10122.00
C2—C4—C5124.33 (19)C6—C13—H131109.00
N1—C5—C4125.4 (2)C6—C13—H132110.00
N1—C5—C6108.97 (17)C6—C13—H133109.00
C4—C5—C6125.59 (18)H131—C13—H132110.00
C5—C6—C12101.26 (16)H131—C13—H133110.00
C12—C6—C13111.12 (18)H132—C13—H133109.00
C12—C6—C14112.84 (17)C6—C14—H141109.00
C13—C6—C14110.92 (18)C6—C14—H142109.00
C5—C6—C13108.62 (17)C6—C14—H143109.00
C5—C6—C14111.66 (19)H141—C14—H142109.00
C8—C7—C12118.5 (2)H141—C14—H143109.00
C7—C8—C9121.0 (2)H142—C14—H143110.00
C8—C9—C10121.2 (2)Cl1—C15—Cl2110.82 (13)
C9—C10—C11117.0 (2)Cl1—C15—Cl3109.94 (16)
N1—C11—C12108.72 (17)Cl2—C15—Cl3110.12 (13)
C10—C11—C12122.6 (2)Cl1—C15—H15109.00
N1—C11—C10128.7 (2)Cl2—C15—H15109.00
C7—C12—C11119.8 (2)Cl3—C15—H15109.00
C11—N1—C5—C4179.2 (2)C4—C5—C6—C12178.6 (2)
C11—N1—C5—C62.7 (2)C4—C5—C6—C1364.3 (3)
C5—N1—C11—C10177.9 (2)C4—C5—C6—C1458.3 (3)
C5—N1—C11—C120.8 (2)C5—C6—C12—C7177.2 (2)
O1—C1—C2—C3180.00 (2)C5—C6—C12—C112.8 (2)
O1—C1—C2—C40.9 (3)C13—C6—C12—C767.6 (3)
C2i—C1—C2—C30.00 (12)C13—C6—C12—C11112.4 (2)
C2i—C1—C2—C4179.1 (2)C14—C6—C12—C757.7 (3)
C2—C1—C2i—C30.02 (16)C14—C6—C12—C11122.3 (2)
C1—C2—C3—O2180.00 (1)C12—C7—C8—C90.6 (3)
C1—C2—C3—C2i0.00 (11)C8—C7—C12—C6179.9 (2)
C4—C2—C3—O20.9 (3)C8—C7—C12—C110.1 (3)
C4—C2—C3—C2i179.1 (3)C7—C8—C9—C100.8 (4)
C1—C2—C4—C5176.79 (19)C8—C9—C10—C110.4 (3)
C3—C2—C4—C51.9 (4)C9—C10—C11—N1178.4 (2)
C2—C4—C5—N13.0 (3)C9—C10—C11—C120.1 (3)
C2—C4—C5—C6174.8 (2)N1—C11—C12—C61.5 (2)
N1—C5—C6—C123.3 (2)N1—C11—C12—C7178.52 (19)
N1—C5—C6—C13113.77 (19)C10—C11—C12—C6179.7 (2)
N1—C5—C6—C14123.59 (19)C10—C11—C12—C70.2 (3)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.881.962.7835 (18)156
C15—H15···O10.982.133.075 (3)161

Experimental details

Crystal data
Chemical formulaC26H24N2O2·2CHCl3
Mr635.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)20.4270 (11), 13.5433 (5), 11.4259 (5)
β (°) 109.561 (5)
V3)2978.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.40 × 0.22 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.794, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
10054, 2926, 2415
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.02
No. of reflections2926
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.50

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.881.962.7835 (18)156
C15—H15···O10.982.133.075 (3)161
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council and the Science and Engineering Faculty and the University Library, Queensland University of Technology. John Langley (Southampton University, England) is thanked for the collection of electrospray mass spectroscopy data.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationArunkumar, E., Sudeep, P. K., Kamat, P. V., Noll, B. C. & Smith, B. D. (2007). New J. Chem. 31, 677–683.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKobiyashi, Y., Goto, M. & Kurahashi, M. (1986). Bull. Chem. Soc. Jpn, 59, 311–312.  Google Scholar
First citationLynch, D. E. (2002). Acta Cryst. E58, o1025–o1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & Byriel, K. A. (1999). Cryst. Eng. 2, 225–239.  CSD CrossRef CAS Google Scholar
First citationLynch, D. E., Kirkham, V. B., Chowdhury, M. Z. H., Wane, E. S. & Heptinstall, J. (2012). Dyes Pigments, 60, 393–402.  Web of Science CSD CrossRef Google Scholar
First citationMatsui, M., Fukushima, M., Kubota, Y., Funabiki, K. & Shiro, M. (2012). Tetrahedron, 68, 1931–1935.  Web of Science CSD CrossRef CAS Google Scholar
First citationNatsukawa, K. & Nakazumi, H. (1993). Sangyo Gij. Sogo Kenk. Hokuku, 6, 16–21.  CAS Google Scholar
First citationPatsenker, L. D., Tatarets, A. L., Povrozin, Y. A. & Terpetschnig, E. A. (2011). Bioanal. Rev. 3, 115–137.  CrossRef Google Scholar
First citationSameiro, M. & Gonçalves, T. (2009). Chem. Rev. 109, 190–212.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSprenger Von, H.-E. & Ziegenbein, W. (1967). Angew. Chem. 79, 581–582.  Google Scholar
First citationTong, L. & Peng, B.-X. (1999). Dyes Pigments, 43, 73–76.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds