organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-Histidinium p-toluene­sulfonate

aDepartment of Physics, Anna University, Chennai 600 025, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 17 April 2013; accepted 24 April 2013; online 30 April 2013)

In the title salt, C6H10N3O2+·C7H7O3S, the imidazole ring makes a dihedral angle of 70.93 (12)° with the plane of the toluene ring. In the crystal, the ions are linked via N—H⋯O and weak C—H⋯O hydrogen bonds forming two-dimensional networks lying parallel to (001). These networks are linked via C—H⋯π inter­actions, forming a three-dimensional structure.

Related literature

For related structures of 4-toluene­sulfonate salts, see: Koshima et al. (2004[Koshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4,807-811.]); Biradha & Mahata (2005[Biradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49-51.]); Sivakumar et al. (2012[Sivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.]). For the structure of L-histidine, see: Madden et al. (1972[Madden, J. J., McGandy, E. L. & Seeman, N. C. (1972). Acta Cryst. B28, 2377-2382.]); Andra et al. (2010[Andra, K. K., Bullinger, J. C., Bann, J. G. & Eichhorn, D. M. (2010). Acta Cryst. E66, o2713.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N3O2+·C7H7O3S

  • Mr = 327.36

  • Orthorhombic, P 21 21 21

  • a = 5.2700 (2) Å

  • b = 7.3691 (3) Å

  • c = 38.2042 (14) Å

  • V = 1483.67 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.952

  • 8400 measured reflections

  • 3638 independent reflections

  • 3533 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 1.20

  • 3638 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1479 Friedel pairs

  • Flack parameter: 0.07 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids the C1–C6 and N1/N2/C8–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.00 2.828 (2) 160
N2—H2A⋯O3ii 0.86 1.89 2.746 (2) 175
N3—H3B⋯O4iii 0.96 (3) 1.80 (3) 2.755 (2) 176 (2)
N3—H3C⋯O4iv 0.83 (3) 2.10 (3) 2.896 (2) 161 (2)
N3—H3D⋯O3i 0.92 (2) 2.15 (2) 3.000 (2) 153.4 (19)
C8—H8⋯O1v 0.93 2.41 2.967 (3) 118
C9—H9⋯O5vi 0.93 2.47 3.062 (3) 122
C6—H6⋯Cg2 0.93 2.73 3.515 (2) 143
C8—H8⋯Cg1ii 0.93 2.71 3.394 (2) 131
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) x+1, y-1, z; (vi) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit of the title compound, Fig. 1, contains an L-histidinium cation and a 4-toluenesulfonate anion. The histidine molecule exists as an histidinium ion due to the protonation at the N atom of the imidazole ring. The 4-toluenesulfonic acid exists as a 4-toluenesulfonate since the proton is transferred to the amino acid.

In the crystal, the imidazole ring (N1/N2/C8-C10) makes a dihedral angle of 70.93 (12)° with the toluene ring (C1-C6).

In the crystal, the ions are linked via N-H···O and weak C-H···O hydrogen bonds forming two-dimensional networks lying parallel to (001); see Table 1 and Fig. 2. These networks are linked via C-H···π interactions forming a three-dimensional structure.

Related literature top

For related structures of 4-toluenesulfonate salts, see: Koshima et al. (2004); Biradha & Mahata (2005); Sivakumar et al. (2012). For the structure of L-histidine, see: Madden et al. (1972); Andra et al. (2010).

Experimental top

L-histidine and 4-toluenesulfonic acid were mixed in an equimolar (1:1) ratio using distilled water as solvent and stirred for 1 h, giving a clear solution. The solution was filtered into a clean beaker and optimally closed and kept at room temperature for slow evaporation. After a period of 10 days, block-like colourless crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

The NH3 H atoms were located in a difference Fourier map and refined freely. The NH H atoms and the C-bound H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å, C—H = 0.93 and 0.98 Å for CH(aromatic) and CH(methine) H atoms, respectively, and 0.96 Å for CH2 and CH3 H atoms, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Structure description top

The asymmetric unit of the title compound, Fig. 1, contains an L-histidinium cation and a 4-toluenesulfonate anion. The histidine molecule exists as an histidinium ion due to the protonation at the N atom of the imidazole ring. The 4-toluenesulfonic acid exists as a 4-toluenesulfonate since the proton is transferred to the amino acid.

In the crystal, the imidazole ring (N1/N2/C8-C10) makes a dihedral angle of 70.93 (12)° with the toluene ring (C1-C6).

In the crystal, the ions are linked via N-H···O and weak C-H···O hydrogen bonds forming two-dimensional networks lying parallel to (001); see Table 1 and Fig. 2. These networks are linked via C-H···π interactions forming a three-dimensional structure.

For related structures of 4-toluenesulfonate salts, see: Koshima et al. (2004); Biradha & Mahata (2005); Sivakumar et al. (2012). For the structure of L-histidine, see: Madden et al. (1972); Andra et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H-atoms not involved in hydrogen bonds have been omitted for clarity).
L-Histidinium p-toluenesulfonate top
Crystal data top
C6H10N3O2+·C7H7O3SF(000) = 688
Mr = 327.36Dx = 1.466 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3638 reflections
a = 5.2700 (2) Åθ = 2.1–28.3°
b = 7.3691 (3) ŵ = 0.25 mm1
c = 38.2042 (14) ÅT = 293 K
V = 1483.67 (10) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3638 independent reflections
Radiation source: fine-focus sealed tube3533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.930, Tmax = 0.952k = 96
8400 measured reflectionsl = 4150
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.5138P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.014
3638 reflectionsΔρmax = 0.22 e Å3
212 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 1479 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (7)
Crystal data top
C6H10N3O2+·C7H7O3SV = 1483.67 (10) Å3
Mr = 327.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.2700 (2) ŵ = 0.25 mm1
b = 7.3691 (3) ÅT = 293 K
c = 38.2042 (14) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3638 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3533 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.952Rint = 0.022
8400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.22 e Å3
S = 1.20Δρmin = 0.29 e Å3
3638 reflectionsAbsolute structure: Flack (1983), 1479 Friedel pairs
212 parametersAbsolute structure parameter: 0.07 (7)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5686 (4)0.8856 (3)0.08354 (5)0.0267 (4)
C20.3546 (5)0.8904 (3)0.06249 (6)0.0378 (5)
H20.24470.98910.06330.045*
C30.3067 (5)0.7455 (4)0.04012 (6)0.0445 (6)
H30.16450.74930.02570.053*
C40.4653 (5)0.5955 (3)0.03871 (6)0.0410 (5)
C50.6786 (5)0.5940 (3)0.05970 (6)0.0413 (5)
H50.78880.49560.05880.050*
C60.7307 (4)0.7383 (3)0.08214 (6)0.0352 (5)
H60.87470.73550.09620.042*
C70.4046 (8)0.4355 (4)0.01540 (8)0.0698 (9)
H7A0.26040.46400.00100.105*
H7B0.36670.33150.02960.105*
H7C0.54790.40930.00070.105*
C81.2390 (4)0.5424 (3)0.13142 (5)0.0305 (4)
H81.36370.52580.11450.037*
C91.0008 (4)0.6656 (3)0.17226 (5)0.0312 (4)
H90.93490.74960.18800.037*
C100.9162 (4)0.4935 (2)0.16686 (5)0.0240 (4)
C110.7122 (4)0.3892 (2)0.18479 (5)0.0242 (4)
H11A0.60390.33300.16730.029*
H11B0.60890.47190.19850.029*
C120.8209 (3)0.2411 (2)0.20905 (4)0.0190 (3)
H120.94730.16930.19630.023*
C130.9463 (3)0.3308 (2)0.24112 (5)0.0217 (4)
N11.0671 (3)0.4207 (2)0.14111 (4)0.0261 (3)
H11.05250.31320.13260.031*
N21.2021 (4)0.6914 (2)0.15002 (5)0.0325 (4)
H2A1.29040.78920.14840.039*
N30.6079 (3)0.1216 (2)0.22022 (4)0.0227 (3)
O10.4968 (4)1.2199 (2)0.10150 (5)0.0513 (5)
O20.8939 (3)1.0777 (2)0.11806 (5)0.0564 (5)
O30.5067 (4)0.9933 (2)0.14701 (4)0.0448 (4)
O41.1834 (3)0.3507 (2)0.23929 (4)0.0344 (4)
O50.8051 (3)0.3822 (2)0.26480 (4)0.0340 (3)
S10.62131 (10)1.05973 (6)0.114496 (13)0.02896 (12)
H3D0.534 (4)0.064 (3)0.2015 (6)0.027 (5)*
H3B0.673 (5)0.024 (4)0.2341 (7)0.037 (7)*
H3C0.487 (5)0.173 (4)0.2300 (6)0.036 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0301 (10)0.0217 (8)0.0283 (8)0.0061 (8)0.0041 (8)0.0026 (7)
C20.0372 (12)0.0342 (10)0.0421 (11)0.0033 (9)0.0061 (10)0.0038 (9)
C30.0450 (14)0.0514 (14)0.0372 (11)0.0084 (12)0.0092 (10)0.0068 (10)
C40.0515 (14)0.0352 (12)0.0363 (11)0.0120 (10)0.0078 (10)0.0102 (9)
C50.0457 (13)0.0272 (10)0.0509 (13)0.0019 (9)0.0099 (11)0.0077 (9)
C60.0312 (11)0.0306 (10)0.0437 (11)0.0002 (9)0.0012 (9)0.0043 (9)
C70.095 (3)0.0578 (17)0.0570 (16)0.0227 (19)0.0094 (17)0.0293 (14)
C80.0280 (10)0.0273 (9)0.0361 (10)0.0045 (9)0.0013 (8)0.0055 (8)
C90.0449 (12)0.0186 (8)0.0302 (10)0.0051 (8)0.0014 (9)0.0016 (7)
C100.0275 (9)0.0202 (8)0.0244 (8)0.0024 (7)0.0016 (8)0.0021 (6)
C110.0245 (9)0.0210 (8)0.0273 (8)0.0011 (7)0.0025 (7)0.0032 (7)
C120.0161 (8)0.0176 (7)0.0234 (8)0.0030 (6)0.0006 (6)0.0000 (6)
C130.0214 (9)0.0139 (7)0.0300 (9)0.0024 (6)0.0055 (7)0.0004 (6)
N10.0307 (9)0.0176 (7)0.0301 (7)0.0037 (6)0.0013 (6)0.0002 (6)
N20.0392 (10)0.0221 (8)0.0362 (9)0.0119 (7)0.0043 (8)0.0049 (7)
N30.0188 (7)0.0202 (7)0.0290 (8)0.0031 (7)0.0001 (7)0.0008 (6)
O10.0761 (14)0.0229 (7)0.0550 (10)0.0084 (8)0.0015 (10)0.0024 (7)
O20.0336 (9)0.0439 (9)0.0917 (14)0.0153 (8)0.0063 (9)0.0324 (10)
O30.0614 (11)0.0379 (8)0.0350 (8)0.0244 (8)0.0022 (8)0.0085 (6)
O40.0192 (7)0.0312 (7)0.0529 (9)0.0031 (6)0.0052 (6)0.0140 (6)
O50.0322 (8)0.0386 (8)0.0312 (7)0.0045 (6)0.0018 (6)0.0095 (6)
S10.0314 (3)0.0191 (2)0.0364 (2)0.00777 (18)0.0038 (2)0.00459 (18)
Geometric parameters (Å, º) top
C1—C61.382 (3)C9—H90.9300
C1—C21.386 (3)C10—N11.374 (2)
C1—S11.7671 (19)C10—C111.488 (3)
C2—C31.391 (3)C11—C121.542 (2)
C2—H20.9300C11—H11A0.9700
C3—C41.387 (4)C11—H11B0.9700
C3—H30.9300C12—N31.490 (2)
C4—C51.381 (4)C12—C131.541 (2)
C4—C71.512 (3)C12—H120.9800
C5—C61.393 (3)C13—O51.231 (2)
C5—H50.9300C13—O41.260 (2)
C6—H60.9300N1—H10.8600
C7—H7A0.9600N2—H2A0.8600
C7—H7B0.9600N3—H3D0.92 (2)
C7—H7C0.9600N3—H3B0.96 (3)
C8—N21.322 (3)N3—H3C0.83 (3)
C8—N11.327 (2)O1—S11.4391 (17)
C8—H80.9300O2—S11.4490 (18)
C9—C101.360 (3)O3—S11.4652 (17)
C9—N21.372 (3)
C6—C1—C2120.04 (18)C10—C11—C12111.95 (15)
C6—C1—S1119.94 (16)C10—C11—H11A109.2
C2—C1—S1119.85 (16)C12—C11—H11A109.2
C1—C2—C3119.0 (2)C10—C11—H11B109.2
C1—C2—H2120.5C12—C11—H11B109.2
C3—C2—H2120.5H11A—C11—H11B107.9
C4—C3—C2121.8 (2)N3—C12—C13110.43 (14)
C4—C3—H3119.1N3—C12—C11108.10 (14)
C2—C3—H3119.1C13—C12—C11109.47 (14)
C5—C4—C3118.3 (2)N3—C12—H12109.6
C5—C4—C7120.5 (2)C13—C12—H12109.6
C3—C4—C7121.1 (3)C11—C12—H12109.6
C4—C5—C6120.8 (2)O5—C13—O4127.17 (18)
C4—C5—H5119.6O5—C13—C12117.22 (16)
C6—C5—H5119.6O4—C13—C12115.52 (17)
C1—C6—C5120.1 (2)C8—N1—C10109.33 (16)
C1—C6—H6119.9C8—N1—H1125.3
C5—C6—H6119.9C10—N1—H1125.3
C4—C7—H7A109.5C8—N2—C9109.36 (17)
C4—C7—H7B109.5C8—N2—H2A125.3
H7A—C7—H7B109.5C9—N2—H2A125.3
C4—C7—H7C109.5C12—N3—H3D111.8 (14)
H7A—C7—H7C109.5C12—N3—H3B109.6 (15)
H7B—C7—H7C109.5H3D—N3—H3B104 (2)
N2—C8—N1108.10 (18)C12—N3—H3C115.8 (18)
N2—C8—H8125.9H3D—N3—H3C104 (2)
N1—C8—H8125.9H3B—N3—H3C112 (2)
C10—C9—N2106.77 (19)O1—S1—O2114.19 (12)
C10—C9—H9126.6O1—S1—O3112.24 (12)
N2—C9—H9126.6O2—S1—O3111.07 (12)
C9—C10—N1106.42 (17)O1—S1—C1107.04 (10)
C9—C10—C11130.43 (19)O2—S1—C1106.56 (10)
N1—C10—C11123.10 (16)O3—S1—C1105.06 (9)
C6—C1—C2—C30.0 (3)N3—C12—C13—O539.4 (2)
S1—C1—C2—C3175.30 (18)C11—C12—C13—O579.5 (2)
C1—C2—C3—C40.9 (4)N3—C12—C13—O4143.72 (16)
C2—C3—C4—C51.4 (4)C11—C12—C13—O497.38 (19)
C2—C3—C4—C7177.3 (2)N2—C8—N1—C100.4 (2)
C3—C4—C5—C61.0 (4)C9—C10—N1—C80.7 (2)
C7—C4—C5—C6177.7 (2)C11—C10—N1—C8176.84 (17)
C2—C1—C6—C50.3 (3)N1—C8—N2—C90.1 (2)
S1—C1—C6—C5174.95 (17)C10—C9—N2—C80.6 (2)
C4—C5—C6—C10.2 (3)C6—C1—S1—O1157.65 (17)
N2—C9—C10—N10.8 (2)C2—C1—S1—O127.0 (2)
N2—C9—C10—C11176.54 (19)C6—C1—S1—O235.1 (2)
C9—C10—C11—C12106.9 (2)C2—C1—S1—O2149.61 (18)
N1—C10—C11—C1270.1 (2)C6—C1—S1—O382.85 (19)
C10—C11—C12—N3169.02 (15)C2—C1—S1—O392.46 (19)
C10—C11—C12—C1370.64 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids the C1–C6 and N1/N2/C8–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.002.828 (2)160
N2—H2A···O3ii0.861.892.746 (2)175
N3—H3B···O4iii0.96 (3)1.80 (3)2.755 (2)176 (2)
N3—H3C···O4iv0.83 (3)2.10 (3)2.896 (2)161 (2)
N3—H3D···O3i0.92 (2)2.15 (2)3.000 (2)153.4 (19)
C8—H8···O1v0.932.412.967 (3)118
C9—H9···O5vi0.932.473.062 (3)122
C6—H6···Cg20.932.733.515 (2)143
C8—H8···Cg1ii0.932.713.394 (2)131
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+2, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y1, z; (vi) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H10N3O2+·C7H7O3S
Mr327.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.2700 (2), 7.3691 (3), 38.2042 (14)
V3)1483.67 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.930, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
8400, 3638, 3533
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.20
No. of reflections3638
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.29
Absolute structureFlack (1983), 1479 Friedel pairs
Absolute structure parameter0.07 (7)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids the C1–C6 and N1/N2/C8–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.002.828 (2)160
N2—H2A···O3ii0.861.892.746 (2)175
N3—H3B···O4iii0.96 (3)1.80 (3)2.755 (2)176 (2)
N3—H3C···O4iv0.83 (3)2.10 (3)2.896 (2)161 (2)
N3—H3D···O3i0.92 (2)2.15 (2)3.000 (2)153.4 (19)
C8—H8···O1v0.932.412.967 (3)118
C9—H9···O5vi0.932.473.062 (3)122
C6—H6···Cg20.932.733.515 (2)143
C8—H8···Cg1ii0.932.713.394 (2)131
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+2, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y1, z; (vi) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the TBI X–ray facility, CAS in Crystallography and Biophysics, University of Madras, India for data collection. TS and DV thank the UGC (SAP–CAS) for the departmental facilities. TS also thanks the DST Inspire program for financial assistance.

References

First citationAndra, K. K., Bullinger, J. C., Bann, J. G. & Eichhorn, D. M. (2010). Acta Cryst. E66, o2713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBiradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49–51.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4,807–811.  Web of Science CSD CrossRef CAS Google Scholar
First citationMadden, J. J., McGandy, E. L. & Seeman, N. C. (1972). Acta Cryst. B28, 2377–2382.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds