organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2,7-di­methyl-3-(4-methyl­phenyl­sulfin­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 28 March 2013; accepted 9 April 2013; online 13 April 2013)

In the title compound, C17H15BrO2S, the 4-methyl­benzene ring makes a dihedral angle of 89.01 (7)° with the mean plane [r.m.s. deviation = 0.013 (2) Å] of the benzo­furan fragment. In the crystal, mol­ecules are linked into supra­molecular layers that stack along [001] by weak C—H⋯O, C—H⋯π and C—S⋯π [3.364 (2) Å] inter­actions.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2011a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o351.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1039.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrO2S

  • Mr = 363.26

  • Triclinic, [P \overline 1]

  • a = 6.1794 (6) Å

  • b = 10.057 (1) Å

  • c = 12.5793 (12) Å

  • α = 84.072 (6)°

  • β = 79.738 (6)°

  • γ = 85.471 (6)°

  • V = 763.67 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 173 K

  • 0.22 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.640, Tmax = 0.746

  • 13108 measured reflections

  • 3331 independent reflections

  • 2180 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.089

  • S = 1.04

  • 3331 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 4-methyl­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.58 3.338 (4) 137
C17—H17CCgii 0.98 2.77 3.739 (4) 169
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 5-bromo-2,7-dimethyl-1-benzofuran derivatives containing 4-fluorophenylsulfinyl (Choi et al., 2011a) and 4-cyclohexylsulfinyl (Choi et al., 2011b) substituents in the 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-methylbenzene ring and the mean plane of the benzofuran ring is 89.01 (7)°. In the crystal structure (Fig. 2), molecules are connected by weak C–H···O and C–H···π interactions (Table 1, Cg is the centroid of the C11-C16 4-methylphenyl ring), and by intermolecular C–S···π interactions between the sulfur atom and the 4-methylphenyl ring of an adjacent molecule, with a S1···Cgiii being 3.364 (2) Å.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2011a,b).

Experimental top

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-bromo-2,7-dimethyl-3-(4-methylphenylsulfanyl)-1-benzofuran (302 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 79%, M.pt: 406-407 K; Rf = 0.63 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of its acetone solution held at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our continuing study of 5-bromo-2,7-dimethyl-1-benzofuran derivatives containing 4-fluorophenylsulfinyl (Choi et al., 2011a) and 4-cyclohexylsulfinyl (Choi et al., 2011b) substituents in the 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-methylbenzene ring and the mean plane of the benzofuran ring is 89.01 (7)°. In the crystal structure (Fig. 2), molecules are connected by weak C–H···O and C–H···π interactions (Table 1, Cg is the centroid of the C11-C16 4-methylphenyl ring), and by intermolecular C–S···π interactions between the sulfur atom and the 4-methylphenyl ring of an adjacent molecule, with a S1···Cgiii being 3.364 (2) Å.

For background information and the crystal structures of related compounds, see: Choi et al. (2011a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O, C–H···π and C–S···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 2, - y + 1, - z + 1; (ii) - x + 1, - y + 2, - z + 1; (iii) - x + 1,- y + 1, - z + 1.]
5-Bromo-2,7-dimethyl-3-(4-methylphenylsulfinyl)-1-benzofuran top
Crystal data top
C17H15BrO2SZ = 2
Mr = 363.26F(000) = 368
Triclinic, P1Dx = 1.580 Mg m3
Hall symbol: -P 1Melting point = 406–407 K
a = 6.1794 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.057 (1) ÅCell parameters from 3261 reflections
c = 12.5793 (12) Åθ = 2.4–26.4°
α = 84.072 (6)°µ = 2.83 mm1
β = 79.738 (6)°T = 173 K
γ = 85.471 (6)°Block, colourless
V = 763.67 (13) Å30.22 × 0.13 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3331 independent reflections
Radiation source: rotating anode2180 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.075
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.0°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.640, Tmax = 0.746l = 1615
13108 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0171P)2 + 0.341P]
where P = (Fo2 + 2Fc2)/3
3331 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C17H15BrO2Sγ = 85.471 (6)°
Mr = 363.26V = 763.67 (13) Å3
Triclinic, P1Z = 2
a = 6.1794 (6) ÅMo Kα radiation
b = 10.057 (1) ŵ = 2.83 mm1
c = 12.5793 (12) ÅT = 173 K
α = 84.072 (6)°0.22 × 0.13 × 0.12 mm
β = 79.738 (6)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3331 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2180 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.746Rint = 0.075
13108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
3331 reflectionsΔρmin = 0.52 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.08078 (6)0.92372 (4)0.82890 (3)0.04049 (15)
S10.60771 (14)0.49101 (9)0.65693 (6)0.0281 (2)
O10.2942 (3)0.5989 (2)0.93938 (16)0.0285 (6)
O20.8519 (3)0.4747 (2)0.64788 (17)0.0355 (6)
C10.5062 (5)0.5624 (3)0.7794 (2)0.0243 (8)
C20.6048 (5)0.6623 (3)0.8261 (2)0.0237 (8)
C30.7900 (5)0.7364 (3)0.7958 (3)0.0273 (8)
H30.88740.72710.72910.033*
C40.8251 (5)0.8235 (3)0.8669 (3)0.0284 (8)
C50.6844 (5)0.8414 (3)0.9642 (3)0.0303 (9)
H50.71640.90431.00980.036*
C60.4982 (5)0.7692 (3)0.9961 (2)0.0273 (8)
C70.4681 (5)0.6809 (3)0.9246 (3)0.0241 (8)
C80.3243 (5)0.5271 (3)0.8496 (3)0.0271 (8)
C90.3398 (6)0.7855 (4)1.1002 (3)0.0399 (10)
H9A0.19350.81521.08380.060*
H9B0.39110.85221.13990.060*
H9C0.33150.69951.14470.060*
C100.1534 (6)0.4332 (3)0.8474 (3)0.0335 (9)
H10A0.01880.48380.83170.050*
H10B0.12180.38130.91810.050*
H10C0.20620.37230.79110.050*
C110.5490 (5)0.6350 (3)0.5679 (2)0.0247 (8)
C120.7171 (5)0.6888 (3)0.4924 (3)0.0290 (8)
H120.86420.65150.48830.035*
C130.6670 (6)0.7983 (4)0.4229 (3)0.0340 (9)
H130.78230.83690.37160.041*
C140.4543 (6)0.8527 (3)0.4259 (3)0.0304 (8)
C150.2879 (6)0.7931 (4)0.4998 (3)0.0326 (9)
H150.13990.82790.50200.039*
C160.3330 (5)0.6843 (3)0.5699 (3)0.0303 (8)
H160.21700.64350.61920.036*
C170.4004 (6)0.9735 (4)0.3523 (3)0.0432 (10)
H17A0.24330.97810.34770.065*
H17B0.48800.96660.27980.065*
H17C0.43481.05460.38140.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0302 (2)0.0392 (3)0.0535 (3)0.00854 (17)0.00904 (17)0.00239 (19)
S10.0288 (5)0.0298 (6)0.0253 (5)0.0003 (4)0.0035 (4)0.0036 (4)
O10.0286 (14)0.0304 (15)0.0237 (13)0.0015 (11)0.0017 (10)0.0003 (11)
O20.0250 (13)0.0460 (17)0.0343 (14)0.0097 (11)0.0052 (10)0.0069 (12)
C10.0237 (19)0.026 (2)0.0219 (18)0.0001 (15)0.0024 (14)0.0001 (16)
C20.0204 (18)0.027 (2)0.0226 (18)0.0015 (15)0.0032 (14)0.0007 (16)
C30.0243 (19)0.031 (2)0.0237 (18)0.0013 (16)0.0006 (14)0.0009 (17)
C40.026 (2)0.026 (2)0.034 (2)0.0021 (16)0.0092 (16)0.0000 (17)
C50.036 (2)0.028 (2)0.028 (2)0.0004 (17)0.0082 (16)0.0043 (17)
C60.035 (2)0.026 (2)0.0211 (18)0.0019 (17)0.0076 (15)0.0001 (16)
C70.0242 (19)0.021 (2)0.0242 (19)0.0022 (16)0.0014 (14)0.0050 (16)
C80.028 (2)0.026 (2)0.0256 (19)0.0013 (16)0.0066 (15)0.0030 (17)
C90.048 (2)0.043 (3)0.027 (2)0.0022 (19)0.0015 (17)0.0063 (18)
C100.032 (2)0.033 (2)0.035 (2)0.0082 (17)0.0044 (15)0.0015 (18)
C110.0236 (19)0.031 (2)0.0201 (17)0.0027 (16)0.0042 (14)0.0040 (16)
C120.0238 (19)0.033 (2)0.031 (2)0.0040 (16)0.0046 (15)0.0064 (17)
C130.031 (2)0.037 (2)0.034 (2)0.0136 (18)0.0034 (16)0.0002 (19)
C140.036 (2)0.032 (2)0.0258 (19)0.0061 (17)0.0085 (16)0.0029 (17)
C150.028 (2)0.036 (2)0.036 (2)0.0038 (17)0.0113 (16)0.0051 (18)
C160.025 (2)0.035 (2)0.0296 (19)0.0075 (16)0.0008 (15)0.0011 (17)
C170.052 (3)0.039 (3)0.041 (2)0.0099 (19)0.0174 (19)0.0050 (19)
Geometric parameters (Å, º) top
Br1—C41.904 (3)C9—H9B0.9800
S1—O21.490 (2)C9—H9C0.9800
S1—C11.760 (3)C10—H10A0.9800
S1—C111.792 (3)C10—H10B0.9800
O1—C81.380 (4)C10—H10C0.9800
O1—C71.381 (4)C11—C121.380 (4)
C1—C81.347 (4)C11—C161.383 (4)
C1—C21.439 (4)C12—C131.385 (4)
C2—C31.390 (4)C12—H120.9500
C2—C71.390 (4)C13—C141.379 (4)
C3—C41.369 (4)C13—H130.9500
C3—H30.9500C14—C151.387 (5)
C4—C51.389 (5)C14—C171.503 (5)
C5—C61.385 (4)C15—C161.375 (4)
C5—H50.9500C15—H150.9500
C6—C71.372 (4)C16—H160.9500
C6—C91.504 (4)C17—H17A0.9800
C8—C101.477 (5)C17—H17B0.9800
C9—H9A0.9800C17—H17C0.9800
O2—S1—C1106.70 (14)H9A—C9—H9C109.5
O2—S1—C11106.82 (14)H9B—C9—H9C109.5
C1—S1—C1196.87 (15)C8—C10—H10A109.5
C8—O1—C7106.4 (2)C8—C10—H10B109.5
C8—C1—C2107.4 (3)H10A—C10—H10B109.5
C8—C1—S1125.2 (3)C8—C10—H10C109.5
C2—C1—S1127.3 (2)H10A—C10—H10C109.5
C3—C2—C7118.9 (3)H10B—C10—H10C109.5
C3—C2—C1135.8 (3)C12—C11—C16120.7 (3)
C7—C2—C1105.3 (3)C12—C11—S1119.6 (2)
C4—C3—C2116.7 (3)C16—C11—S1119.4 (2)
C4—C3—H3121.7C11—C12—C13118.6 (3)
C2—C3—H3121.7C11—C12—H12120.7
C3—C4—C5123.3 (3)C13—C12—H12120.7
C3—C4—Br1117.6 (3)C14—C13—C12121.8 (3)
C5—C4—Br1119.1 (3)C14—C13—H13119.1
C6—C5—C4121.2 (3)C12—C13—H13119.1
C6—C5—H5119.4C13—C14—C15118.2 (3)
C4—C5—H5119.4C13—C14—C17121.9 (3)
C7—C6—C5114.6 (3)C15—C14—C17120.0 (3)
C7—C6—C9122.1 (3)C16—C15—C14121.2 (3)
C5—C6—C9123.3 (3)C16—C15—H15119.4
C6—C7—O1124.7 (3)C14—C15—H15119.4
C6—C7—C2125.3 (3)C15—C16—C11119.3 (3)
O1—C7—C2110.0 (3)C15—C16—H16120.3
C1—C8—O1110.8 (3)C11—C16—H16120.3
C1—C8—C10133.4 (3)C14—C17—H17A109.5
O1—C8—C10115.8 (3)C14—C17—H17B109.5
C6—C9—H9A109.5H17A—C17—H17B109.5
C6—C9—H9B109.5C14—C17—H17C109.5
H9A—C9—H9B109.5H17A—C17—H17C109.5
C6—C9—H9C109.5H17B—C17—H17C109.5
O2—S1—C1—C8139.0 (3)C1—C2—C7—C6179.1 (3)
C11—S1—C1—C8111.1 (3)C3—C2—C7—O1179.8 (3)
O2—S1—C1—C237.5 (3)C1—C2—C7—O10.1 (3)
C11—S1—C1—C272.4 (3)C2—C1—C8—O10.9 (3)
C8—C1—C2—C3179.7 (3)S1—C1—C8—O1177.9 (2)
S1—C1—C2—C32.7 (5)C2—C1—C8—C10178.6 (3)
C8—C1—C2—C70.4 (3)S1—C1—C8—C104.3 (5)
S1—C1—C2—C7177.4 (2)C7—O1—C8—C10.9 (3)
C7—C2—C3—C40.3 (4)C7—O1—C8—C10179.1 (2)
C1—C2—C3—C4179.8 (3)O2—S1—C11—C1213.2 (3)
C2—C3—C4—C51.1 (5)C1—S1—C11—C12123.1 (3)
C2—C3—C4—Br1178.7 (2)O2—S1—C11—C16171.8 (3)
C3—C4—C5—C60.9 (5)C1—S1—C11—C1662.0 (3)
Br1—C4—C5—C6179.0 (2)C16—C11—C12—C133.8 (5)
C4—C5—C6—C70.2 (4)S1—C11—C12—C13178.6 (2)
C4—C5—C6—C9179.6 (3)C11—C12—C13—C141.2 (5)
C5—C6—C7—O1179.9 (3)C12—C13—C14—C151.3 (5)
C9—C6—C7—O10.1 (5)C12—C13—C14—C17178.5 (3)
C5—C6—C7—C21.1 (5)C13—C14—C15—C161.4 (5)
C9—C6—C7—C2178.7 (3)C17—C14—C15—C16178.5 (3)
C8—O1—C7—C6179.6 (3)C14—C15—C16—C111.1 (5)
C8—O1—C7—C20.6 (3)C12—C11—C16—C153.7 (5)
C3—C2—C7—C60.8 (5)S1—C11—C16—C15178.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 4-methylphenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.583.338 (4)137
C17—H17C···Cgii0.982.773.739 (4)169
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H15BrO2S
Mr363.26
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.1794 (6), 10.057 (1), 12.5793 (12)
α, β, γ (°)84.072 (6), 79.738 (6), 85.471 (6)
V3)763.67 (13)
Z2
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.22 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.640, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
13108, 3331, 2180
Rint0.075
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.089, 1.04
No. of reflections3331
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.52

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 4-methylphenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.583.338 (4)137
C17—H17C···Cgii0.982.773.739 (4)169
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds