organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An unknown solvate of 1-(2,4-di­chloro­benz­yl)-4-[(4-methyl­phen­yl)sulfon­yl]piperazine

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bCenter for Advanced Materials and Department of Chemistry, Tumkur University Tumkur, Karnataka 572103, India, cDepartment of Studies and Research in Chemistry, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India, dDepartment of Studies and Research in Physics, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India, and eDepartment of Physics, Karnatak University, Dharwad, Karnataka 580 003, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 29 March 2013; accepted 13 April 2013; online 24 April 2013)

In the title compound, C18H20Cl2N2O2S, the piperazine ring adopts a chair conformation. The dihedral angle between the sulfonyl-bound benzene ring and the best-fit plane through the six non-H atoms of the piperazine ring is 72.22 (12)°; those between the di­chloro­benzene ring and the sulfonyl and piperazine rings are 2.44 (13) and 74.16 (2)°, respectively. In the crystal, mol­ecules are connected through weak C—H⋯O inter­actions into a hexa­meric unit generating a R66(60) motif in the ab plane. The mol­ecules are also connected into C(4) chains through weak C—H⋯N inter­actions. The solvent used to grow the crystal was a mixture of di­chloro­methane and methanol, but the resulting electron density was uninter­pretable. The solvent contribution to the scattering was removed with the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. The formula mass and unit-cell characteristics do not take into account the disordered solvent.

Related literature

For similar structures, see: Sreenivasa et al. (2013a[Sreenivasa, S., Anitha, H. C., ManojKumar, K. E., Tonannavar, J., Jayashree, Y., Suchetan, P. A. & Palakshamurthy, B. S. (2013a). Acta Cryst. E69, o239.],b[Sreenivasa, S., ManojKumar, K. E., Suchetan, P. A., Tonannavar, J., Chavan, Y. & Palakshamurthy, B. S. (2013b). Acta Cryst. E69, o185.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20Cl2N2O2S

  • Mr = 399.32

  • Trigonal, [R \overline 3]

  • a = 28.2896 (5) Å

  • c = 13.3041 (3) Å

  • V = 9220.8 (3) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.31 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII diffractometer

  • 15194 measured reflections

  • 3596 independent reflections

  • 2637 reflections with I > 2σ(I)

  • Rint = 0.033

  • 3608 standard reflections every 22 reflections intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 0.95

  • 3596 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.70 3.575 (3) 157
C17—H17⋯N2ii 0.93 2.70 3.485 (3) 143
Symmetry codes: (i) [y+{\script{1\over 3}}, -x+y+{\script{2\over 3}}, -z+{\script{5\over 3}}]; (ii) [-x+y+{\script{2\over 3}}, -x+{\script{1\over 3}}, z+{\script{1\over 3}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continued efforts to study the crystal structures of N-(aryl)(4-tosylpiperazin-1-yl)methanone derivatives (Sreenivasa et al., 2013a,b), we report herein the crystal structure of the title compound.

In the title compound, Fig. 1, the piperazine ring adopts a chair conformation. The dihedral angle between the sulfonyl-bound benzene ring and the best fit plane through the six non-H atoms of the piperazine ring is 72.22 (12)°, while those between the dichlorobenzene and sulfonyl rings and the dichlorobenzene and piperazine rings are 2.44 (13) and 74.16 (2)° respectively. In the crystal, molecules are connected through weak C18—H18···O2 interactions into a hexameric unit generating a R66(60) motif, Fig. 2 and Table 1. The molecules are also connected into C(4) chains through a weak C17—H17···N2 interaction, Fig. 3 and Table 1.

Related literature top

For similar structures, see: Sreenivasa et al. (2013a,b).

Experimental top

A mixture of 1-tosylpiperazine (0.01 mmol), potassium carbonate (0.03 mmol) and 2,4-dichlorobenzyl bromide (0.01 mmol) was added into dry acetonitrile (5 ml). The mixture was stirred at 85°C for 8 h. The reaction was monitored by TLC. Solvent was removed by vacuum distillation and the crude product obtained was purified by column chromatography using 230–400 silica gel and petroleum ether/ethyl acetate as eluent. Colourless prisms were obtained from a mixture of dichloromethane/methanol (7:3) by slow evaporation.

Refinement top

All H atoms were included in calculated positions with C—H bond distances 0.93–0.97 Å and refined in a riding model approximation with Uiso(H) = 1.2–1.5Ueq(C). The solvent used to grow the crystal was a mixture of dichloromethane and methanol. But the resulting electron density was largely uninterpretable. It was decided to model it with the SQUEEZE routine in PLATON (Spek, 2009); more details are given in "_platon_squeeze_details".

Structure description top

As a part of our continued efforts to study the crystal structures of N-(aryl)(4-tosylpiperazin-1-yl)methanone derivatives (Sreenivasa et al., 2013a,b), we report herein the crystal structure of the title compound.

In the title compound, Fig. 1, the piperazine ring adopts a chair conformation. The dihedral angle between the sulfonyl-bound benzene ring and the best fit plane through the six non-H atoms of the piperazine ring is 72.22 (12)°, while those between the dichlorobenzene and sulfonyl rings and the dichlorobenzene and piperazine rings are 2.44 (13) and 74.16 (2)° respectively. In the crystal, molecules are connected through weak C18—H18···O2 interactions into a hexameric unit generating a R66(60) motif, Fig. 2 and Table 1. The molecules are also connected into C(4) chains through a weak C17—H17···N2 interaction, Fig. 3 and Table 1.

For similar structures, see: Sreenivasa et al. (2013a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound displaying R66(60) rings.
[Figure 3] Fig. 3. Molecular packing in the title compound displaying C(4) chains.
1-(2,4-Dichlorobenzyl)-4-[(4-methylphenyl)sulfonyl]piperazine top
Crystal data top
C18H20Cl2N2O2SDx = 1.294 Mg m3
Mr = 399.32Melting point: 423 K
Trigonal, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3Cell parameters from 2637 reflections
a = 28.2896 (5) Åθ = 2.5–25°
c = 13.3041 (3) ŵ = 0.43 mm1
V = 9220.8 (3) Å3T = 296 K
Z = 18Prism, colourless
F(000) = 37440.31 × 0.23 × 0.19 mm
Prism
Data collection top
Bruker APEXII
diffractometer
Rint = 0.033
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.5°
Graphite monochromatorh = 3133
phi and ω scansk = 2928
15194 measured reflectionsl = 1515
3596 independent reflections3608 standard reflections every 22 reflections
2637 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0587P)2 + 6.8101P]
where P = (Fo2 + 2Fc2)/3
3596 reflections(Δ/σ)max = 0.089
227 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
0 constraints
Crystal data top
C18H20Cl2N2O2SZ = 18
Mr = 399.32Mo Kα radiation
Trigonal, R3µ = 0.43 mm1
a = 28.2896 (5) ÅT = 296 K
c = 13.3041 (3) Å0.31 × 0.23 × 0.19 mm
V = 9220.8 (3) Å3
Data collection top
Bruker APEXII
diffractometer
Rint = 0.033
15194 measured reflections3608 standard reflections every 22 reflections
3596 independent reflections intensity decay: 1.0%
2637 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 0.95Δρmax = 0.20 e Å3
3596 reflectionsΔρmin = 0.25 e Å3
227 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64880 (8)0.09435 (8)0.76974 (16)0.0464 (5)
O20.62445 (6)0.00584 (6)0.79558 (13)0.0674 (5)
N20.44379 (7)0.01492 (7)0.71771 (13)0.0488 (4)
C20.65949 (9)0.14258 (9)0.81461 (18)0.0567 (6)
H20.64520.14230.87770.068*
N10.54532 (7)0.00797 (7)0.79761 (12)0.0458 (4)
C30.69137 (10)0.19115 (10)0.7653 (2)0.0654 (7)
H30.69840.22360.79590.079*
C40.71321 (9)0.19286 (10)0.67143 (19)0.0595 (6)
C50.70225 (9)0.14399 (11)0.62852 (19)0.0624 (6)
H50.71680.14420.56570.075*
C60.67040 (9)0.09499 (10)0.67628 (17)0.0563 (6)
H60.66340.06250.64590.068*
O10.61109 (6)0.04263 (7)0.93700 (12)0.0678 (5)
C70.74895 (12)0.24614 (12)0.6180 (2)0.0928 (9)
H7A0.78570.25270.61490.139*
H7B0.74850.27530.65410.139*
H7C0.73550.24430.55110.139*
C80.51725 (8)0.03596 (9)0.83632 (18)0.0530 (6)
H8A0.52930.06980.80010.064*
H8B0.52580.04450.90690.064*
C90.45666 (9)0.00078 (9)0.82310 (16)0.0531 (6)
H9A0.44440.03370.86240.064*
H9B0.43770.01760.84710.064*
C100.47094 (8)0.04358 (9)0.68121 (17)0.0522 (5)
H10A0.46150.05350.61130.063*
H10B0.45880.07690.71960.063*
C110.53211 (8)0.00766 (9)0.69135 (16)0.0538 (6)
H11A0.55020.02720.66880.065*
H11B0.54470.02470.65010.065*
C120.38530 (9)0.04161 (9)0.69488 (18)0.0571 (6)
H12A0.38040.05050.62390.068*
H12B0.37310.01560.70690.068*
C130.34892 (8)0.09302 (9)0.75381 (16)0.0475 (5)
C140.33447 (8)0.14556 (9)0.72265 (16)0.0492 (5)
C150.30393 (8)0.19090 (9)0.78093 (17)0.0545 (6)
H150.29570.22530.75860.065*
C160.28575 (9)0.18448 (9)0.87298 (17)0.0556 (6)
C170.29689 (9)0.13381 (10)0.90606 (18)0.0600 (6)
H170.28370.12980.96760.072*
C180.32797 (9)0.08920 (10)0.84600 (18)0.0565 (6)
H180.33530.05500.86810.068*
S10.60861 (2)0.03176 (2)0.83193 (4)0.05200 (18)
Cl10.35347 (3)0.15637 (3)0.60399 (5)0.0748 (2)
Cl20.24812 (3)0.24131 (3)0.94814 (6)0.0875 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (11)0.0542 (13)0.0499 (12)0.0250 (10)0.0040 (9)0.0026 (10)
O20.0607 (10)0.0627 (10)0.0950 (13)0.0431 (9)0.0010 (9)0.0009 (9)
N20.0427 (10)0.0504 (10)0.0573 (11)0.0264 (9)0.0001 (8)0.0044 (8)
C20.0525 (14)0.0616 (15)0.0552 (14)0.0278 (12)0.0022 (11)0.0055 (12)
N10.0436 (10)0.0480 (10)0.0497 (10)0.0258 (8)0.0012 (8)0.0079 (8)
C30.0589 (15)0.0552 (15)0.0773 (18)0.0248 (12)0.0085 (13)0.0102 (13)
C40.0424 (13)0.0638 (16)0.0652 (16)0.0213 (12)0.0084 (11)0.0070 (12)
C50.0506 (14)0.0795 (18)0.0567 (15)0.0321 (13)0.0024 (11)0.0042 (13)
C60.0487 (13)0.0640 (15)0.0590 (14)0.0303 (12)0.0012 (11)0.0053 (12)
O10.0661 (11)0.0780 (11)0.0511 (10)0.0297 (9)0.0086 (8)0.0039 (8)
C70.080 (2)0.078 (2)0.096 (2)0.0213 (16)0.0027 (17)0.0193 (17)
C80.0502 (13)0.0524 (13)0.0600 (14)0.0282 (11)0.0020 (10)0.0105 (10)
C90.0504 (13)0.0571 (14)0.0604 (14)0.0334 (11)0.0053 (11)0.0067 (11)
C100.0494 (13)0.0582 (13)0.0500 (13)0.0278 (11)0.0022 (10)0.0078 (10)
C110.0476 (13)0.0632 (14)0.0524 (13)0.0290 (11)0.0029 (10)0.0101 (11)
C120.0515 (13)0.0636 (15)0.0633 (15)0.0341 (12)0.0051 (11)0.0081 (11)
C130.0352 (11)0.0572 (13)0.0537 (13)0.0259 (10)0.0056 (9)0.0021 (10)
C140.0367 (11)0.0631 (14)0.0469 (12)0.0242 (11)0.0057 (9)0.0107 (10)
C150.0463 (12)0.0504 (13)0.0595 (14)0.0186 (11)0.0053 (10)0.0138 (11)
C160.0415 (12)0.0544 (14)0.0569 (14)0.0133 (11)0.0004 (10)0.0044 (11)
C170.0506 (13)0.0647 (15)0.0569 (14)0.0230 (12)0.0089 (11)0.0115 (12)
C180.0464 (13)0.0557 (14)0.0701 (16)0.0276 (11)0.0028 (11)0.0116 (12)
S10.0478 (3)0.0554 (4)0.0567 (4)0.0288 (3)0.0042 (2)0.0013 (3)
Cl10.0692 (4)0.0910 (5)0.0524 (4)0.0312 (4)0.0014 (3)0.0202 (3)
Cl20.0864 (5)0.0670 (4)0.0774 (5)0.0146 (4)0.0190 (4)0.0064 (3)
Geometric parameters (Å, º) top
C1—C21.377 (3)C8—H8A0.9700
C1—C61.382 (3)C8—H8B0.9700
C1—S11.760 (2)C9—H9A0.9700
O2—S11.4294 (16)C9—H9B0.9700
N2—C91.454 (3)C10—C111.512 (3)
N2—C101.451 (3)C10—H10A0.9700
N2—C121.467 (3)C10—H10B0.9700
C2—C31.375 (3)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
N1—C81.467 (2)C12—C131.514 (3)
N1—C111.473 (3)C12—H12A0.9700
N1—S11.6317 (17)C12—H12B0.9700
C3—C41.384 (3)C13—C181.390 (3)
C3—H30.9300C13—C141.393 (3)
C4—C51.380 (3)C14—C151.373 (3)
C4—C71.508 (3)C14—Cl11.743 (2)
C5—C61.374 (3)C15—C161.375 (3)
C5—H50.9300C15—H150.9300
C6—H60.9300C16—C171.377 (3)
O1—S11.4255 (17)C16—Cl21.734 (2)
C7—H7A0.9600C17—C181.376 (3)
C7—H7B0.9600C17—H170.9300
C7—H7C0.9600C18—H180.9300
C8—C91.506 (3)
C2—C1—C6120.0 (2)N2—C10—C11110.00 (17)
C2—C1—S1120.28 (17)N2—C10—H10A109.7
C6—C1—S1119.69 (17)C11—C10—H10A109.7
C9—N2—C10110.30 (16)N2—C10—H10B109.7
C9—N2—C12113.84 (17)C11—C10—H10B109.7
C10—N2—C12114.78 (17)H10A—C10—H10B108.2
C3—C2—C1119.5 (2)N1—C11—C10108.70 (17)
C3—C2—H2120.2N1—C11—H11A109.9
C1—C2—H2120.2C10—C11—H11A109.9
C8—N1—C11112.00 (16)N1—C11—H11B110.0
C8—N1—S1117.23 (13)C10—C11—H11B110.0
C11—N1—S1116.99 (13)H11A—C11—H11B108.3
C2—C3—C4121.6 (2)N2—C12—C13115.93 (17)
C2—C3—H3119.2N2—C12—H12A108.3
C4—C3—H3119.2C13—C12—H12A108.3
C5—C4—C3117.7 (2)N2—C12—H12B108.3
C5—C4—C7120.6 (2)C13—C12—H12B108.3
C3—C4—C7121.7 (3)H12A—C12—H12B107.4
C6—C5—C4121.7 (2)C18—C13—C14115.9 (2)
C6—C5—H5119.2C18—C13—C12119.6 (2)
C4—C5—H5119.2C14—C13—C12124.5 (2)
C5—C6—C1119.5 (2)C15—C14—C13122.7 (2)
C5—C6—H6120.3C15—C14—Cl1116.92 (17)
C1—C6—H6120.3C13—C14—Cl1120.33 (17)
C4—C7—H7A109.5C14—C15—C16118.8 (2)
C4—C7—H7B109.5C14—C15—H15120.6
H7A—C7—H7B109.5C16—C15—H15120.6
C4—C7—H7C109.5C15—C16—C17121.1 (2)
H7A—C7—H7C109.5C15—C16—Cl2119.20 (18)
H7B—C7—H7C109.5C17—C16—Cl2119.73 (18)
N1—C8—C9108.85 (16)C18—C17—C16118.5 (2)
N1—C8—H8A109.9C18—C17—H17120.7
C9—C8—H8A109.9C16—C17—H17120.7
N1—C8—H8B109.9C17—C18—C13122.9 (2)
C9—C8—H8B109.9C17—C18—H18118.6
H8A—C8—H8B108.3C13—C18—H18118.6
N2—C9—C8110.16 (17)O1—S1—O2119.49 (10)
N2—C9—H9A109.6O1—S1—N1106.79 (9)
C8—C9—H9A109.6O2—S1—N1106.62 (9)
N2—C9—H9B109.6O1—S1—C1107.86 (10)
C8—C9—H9B109.6O2—S1—C1107.72 (10)
H9A—C9—H9B108.1N1—S1—C1107.89 (9)
C6—C1—C2—C30.5 (3)C12—C13—C14—C15176.15 (19)
S1—C1—C2—C3179.42 (17)C18—C13—C14—Cl1174.77 (15)
C1—C2—C3—C40.1 (3)C12—C13—C14—Cl15.6 (3)
C2—C3—C4—C50.4 (3)C13—C14—C15—C161.5 (3)
C2—C3—C4—C7179.0 (2)Cl1—C14—C15—C16176.77 (17)
C3—C4—C5—C60.6 (3)C14—C15—C16—C171.2 (3)
C7—C4—C5—C6179.1 (2)C14—C15—C16—Cl2178.92 (16)
C4—C5—C6—C10.2 (3)C15—C16—C17—C181.7 (4)
C2—C1—C6—C50.3 (3)Cl2—C16—C17—C18178.44 (18)
S1—C1—C6—C5179.28 (17)C16—C17—C18—C130.5 (3)
C11—N1—C8—C957.6 (2)C14—C13—C18—C172.9 (3)
S1—N1—C8—C9163.12 (15)C12—C13—C18—C17176.7 (2)
C10—N2—C9—C860.6 (2)C8—N1—S1—O144.09 (18)
C12—N2—C9—C8168.74 (17)C11—N1—S1—O1178.60 (15)
N1—C8—C9—N258.1 (2)C8—N1—S1—O2172.90 (15)
C9—N2—C10—C1160.5 (2)C11—N1—S1—O249.80 (17)
C12—N2—C10—C11169.35 (18)C8—N1—S1—C171.63 (17)
C8—N1—C11—C1057.5 (2)C11—N1—S1—C165.67 (17)
S1—N1—C11—C10163.11 (15)C2—C1—S1—O123.1 (2)
N2—C10—C11—N157.9 (2)C6—C1—S1—O1155.79 (17)
C9—N2—C12—C1356.4 (2)C2—C1—S1—O2153.37 (17)
C10—N2—C12—C1372.1 (2)C6—C1—S1—O225.6 (2)
N2—C12—C13—C1888.3 (2)C2—C1—S1—N191.89 (18)
N2—C12—C13—C1491.3 (3)C6—C1—S1—N189.19 (18)
C18—C13—C14—C153.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.703.575 (3)157
C17—H17···N2ii0.932.703.485 (3)143
Symmetry codes: (i) y+1/3, x+y+2/3, z+5/3; (ii) x+y+2/3, x+1/3, z+1/3.

Experimental details

Crystal data
Chemical formulaC18H20Cl2N2O2S
Mr399.32
Crystal system, space groupTrigonal, R3
Temperature (K)296
a, c (Å)28.2896 (5), 13.3041 (3)
V3)9220.8 (3)
Z18
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.31 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15194, 3596, 2637
Rint0.033
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 0.95
No. of reflections3596
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: APEX2 (Bruker, 2009), APEX2 and SAINT-Plus (Bruker, 2009), SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.703.575 (3)157
C17—H17···N2ii0.932.703.485 (3)143
Symmetry codes: (i) y+1/3, x+y+2/3, z+5/3; (ii) x+y+2/3, x+1/3, z+1/3.
 

Acknowledgements

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, Tumkur, for his constant encouragement. JT thanks the SCXRD facility under a PURSE Grant (SR/S9/Z-23/2008/11, 2009) at USIC, Karnatak University.

References

First citationBruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasa, S., Anitha, H. C., ManojKumar, K. E., Tonannavar, J., Jayashree, Y., Suchetan, P. A. & Palakshamurthy, B. S. (2013a). Acta Cryst. E69, o239.  CSD CrossRef IUCr Journals Google Scholar
First citationSreenivasa, S., ManojKumar, K. E., Suchetan, P. A., Tonannavar, J., Chavan, Y. & Palakshamurthy, B. S. (2013b). Acta Cryst. E69, o185.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds