metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ3-Methoxido-κ3O:O:O-tris­­(μ-L-p-tyrosinato-κ3N,O:O)tris­­(L-p-tyrosinato-κ2N,O)trinickel(II,III) methanol tetra­solvate

aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand, and bDepartment of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, England
*Correspondence e-mail: apinpus@gmail.com

(Received 17 April 2013; accepted 19 April 2013; online 24 April 2013)

A trinuclear nickel complex, [Ni3(C9H10NO3)6(CH3O)]·4CH4O, was synthesized and characterized as a neutral cluster containing the incomplete cubane {Ni3(μ1-O)(μ2-O)2(μ3-O)} core of 2M3–1 topology. The three nickel cations show similar octa­hedral coordination, {Ni(μ1-O)(μ2-O)2(μ3-O)(μ1-N)2}; the positive charge is balanced by six tyrosinate ligands and one methoxide ion. The mean oxidation state of each NiII ion is therefore +2.33. The common coordination modes, chelating (via the amino N and the carboxyl­ate O atoms) and bridging (via the carboxyl­ate O atom), are exhibited by the tyrosinates. Three inter­ligand (intra­cluster) N—H⋯O hydrogen-bonding inter­actions stabilize the incomplete cubane-type moiety. Additional N—H⋯O, O—H⋯O and C—H⋯O inter­actions are formed between clusters, and between the clusters and methanol mol­ecules to regulate the spatial orientation of the tyrosinate and the assembly of the clusters in the crystal. The approximate equilateral triangular arrangement of the three nickel cations in the incomplete cubane-type moiety suggests the possible magnetic frustration, and the proximity of these metal cations indicates weak metallic bonds. The structure contains approximately 39% solvent-accessible volume between the clusters. This is filled with 17 mol­ecules of disordered methanol and was modelled with SQUEEZE [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]; the reported unit-cell characteristics do not take these mol­ecules into account. The H atoms of the solvent mol­ecules have not been included in the crystal data.

Related literature

For related incomplete cubane clusters, see: Ama et al. (2000[Ama, T., Rashid, Md. M., Yonemura, T., Kawaguchi, H. & Yasui, T. (2000). Coord. Chem. Rev. 198, 101-116.]); Lalia-Kantouri et al. (2010[Lalia-Kantouri, M., Papadopoulos, C. D., Hatzidimitriou, A. G., Bakas, T. & Pachini, S. (2010). Z. Anorg. Allg. Chem. 636, 531-538.]). For a nickel complex with L-tyrosine, see: Pei & Wang (2006[Pei, Y. & Wang, L. (2006). Acta Cryst. E62, m1668-m1670.]). For structures with tyrosinate, see: Wojciechowska et al. (2011[Wojciechowska, A., Daszkiewicz, M., Staszak, Z., Trusz-Zdybek, A., Bienko, A. & Ozarowski, A. (2011). Inorg. Chem. 50, 11532-11542.], 2012[Wojciechowska, A., Gagor, A., Wysokinski, R. & Trusz-Zdybek, A. (2012). J. Inorg. Biochem. 117, 93-102.]). For assignment of topology, see: Blatov (2012[Blatov, V. A. (2012). Struct. Chem. 23, 955-963.]). For background to magnetic frustration, see: Hendrickson et al. (2005[Hendrickson, D., Yang, E.-C., Isidro, R. M., Kirman, C., Lawrence, J., Edwards, R. S., Hill, S., Yamaguchi, A., Ishimoto, H., Wernsdorfer, W., Ramsey, C., Dalal, N. & Olmstead, M. M. (2005). Polyhedron, 24, 2280-2283.]); Nakatsuji et al. (2005[Nakatsuji, S., Nambu, Y., Tonomura, H., Sakai, O., Jonas, S., Broholm, C., Tsunetsugu, H., Qiu, Y. & Maeno, Y. (2005). Science, 309, 1607-1700.]). For the CSD, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni3(C9H10NO3)6(CH3O)]·4CH4O

  • Mr = 1400.28

  • Monoclinic, P 21

  • a = 12.5688 (6) Å

  • b = 25.3381 (9) Å

  • c = 13.1058 (7) Å

  • β = 96.740 (4)°

  • V = 4145.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 150 K

  • 0.36 × 0.35 × 0.34 mm

Data collection
  • Stoe IPDS2 diffractometer

  • Absorption correction: analytical (a face-indexed absorption correction was applied using the Tompa method; Meulenaer de & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.716, Tmax = 0.780

  • 41350 measured reflections

  • 16565 independent reflections

  • 11845 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 0.88

  • 16565 reflections

  • 780 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 8080 Friedel pairs

  • Flack parameter: 0.023 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O15i 0.90 2.26 3.082 (4) 153
N1—H1B⋯O18i 0.90 2.20 3.042 (4) 157
O3—H3⋯O3M 0.82 1.79 2.601 (5) 170
O6—H6A⋯O14ii 0.82 1.88 2.685 (4) 166
N3—H3C⋯O13 0.90 2.36 3.174 (4) 150
O9—H9A⋯O2iii 0.82 1.78 2.597 (4) 173
N4—H4B⋯O17 0.90 2.29 3.050 (5) 142
O12—H12⋯O2Miii 0.82 1.90 2.669 (7) 155
N5—H5A⋯O1 0.90 2.46 3.251 (4) 146
N5—H5A⋯O9iv 0.90 2.54 3.216 (4) 133
O15—H15A⋯O8v 0.82 2.02 2.815 (4) 164
O15—H15A⋯O7v 0.82 2.47 2.983 (4) 122
O18—H18A⋯O11v 0.82 1.84 2.638 (4) 163
C1M—H1M1⋯O1 0.96 2.52 3.042 (4) 114
C30—H30A⋯O11 0.97 2.55 2.893 (5) 101
C38—H38⋯O9iv 0.98 2.38 3.178 (5) 138
C54—H54⋯O5 0.93 2.42 3.338 (5) 167
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x-1, y, z; (iv) x+1, y, z; (v) x, y, z-1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the investigation of anti-bacterial and anti-fungal activities of the divalent metal complexes using (S)-2-amino-2-methyl-3-(4'-hydroxyphenyl)propanoic acid (L-tyrosine) under basic conditions, single crystals of [Ni3(C9H11NO3)6(OCH3)].4CH3OH (1) were prepared and isolated.

The asymmetric unit of 1 contains a neutral cluster of ninety-one non-hydrogen atoms comprising three Ni ions, six tyrosinate ligands, a methoxide ion and four methanol molecules (Fig. 1). The three Ni ions adopt similar octahedral coordination geometries, completed by two monodentate amino N atoms, one monodentate carboxylate O atom, two carboxylate bridging µ2-O atoms, and one bridging µ3-O atom of the methoxide ion: {Ni(µ1-O)(µ2-O)23-O)((µ1-N)2}. The six tyrosinate ligands exhibit the common chelating mode of coordination, using the amino N atoms and either the carboxylate µ2-η2:η0 O atoms (O4, O10, O16) or the carboxylate µ1-η1:η0 O atoms (O1, O7, O13). These generate two five-membered chelate rings about each Ni center. These coordination modes are commonly found in the tyrosinate ligands (Pei & Wang, 2006; Wojciechowska et al., 2011, 2012). Curiously, none of the phenolic groups of the tyrosine ligands within 1 are coordinated to the metal, despite conditions sufficiently basic to produce methoxide. The presence of the coordinated methoxide should invalidate any assumption on the presence of any extra-framework species with positive charges. The positive charge of Ni ions is therefore balanced by six tyrosinate ligands and one methoxide ion, resulting in the mean oxidation state of each nickel to be +2.33 (possibly a combination of two NiII and one NiIII). The solid conclusion may be derived by a magnetic study of 1.

The three {Ni(µ1-O)(µ2-O)23-O)((µ1-N)2} octahedra are condensed by edge-sharing and the addition of a µ3-OCH3 group (O1M) results in a trinuclear cluster with the {Ni31-O)(µ2-O)23-O)} incomplete cubane core (Fig. 2) (Ama et al., 2000; Lalia-Kantouri et al., 2010). Notably, the nickel ions present within the cluster must display a total positive charge of +7 to balanced the six tyrosinate ions and one methoxide ion. This corresponds to a mean oxidation state for the nickel of +2.33. The complete cubane core [Ni4O4] is rather well illustrated within the CSD (Allen, 2002) with over 100 examples. There are only 10 examples of the incomplete cubane core [Ni3O4]; the core within 1 is rather more symmetric than many of these examples. If the Ni atoms are taken as nodes, the{Ni31-O)(µ2-O)23-O)} core can be characterized as the 2-connected uninodal net of 2M3–1 topology with the vertex symbol [3] (Blatov, 2012).

The summation of the inner angles for each quadrilateral face of the {Ni31-O)(µ2-O)23-O)} core, i.e. {Ni1—O10—Ni2—O1M}, {Ni1—O4—Ni3—O1M} and {Ni2—O16—Ni3—O1M}, of ca. 360° suggest the planarity of these faces. Distributions of the Ni—µ3-O1M distances and the Ni—µ3-O1M—Ni angles in the ranges 2.067 (2) - 2.109 (2) Å and 97.17 (10) - 99.59 (10)°, respectively, imply an asymmetrical arrangement of the three Ni atoms about the apical µ3-O1M atom. This is also evident from the distances between any two Ni ions which vary within the range 3.132 (1) - 3.174 (1) Å. These relatively short distances between pairs of Ni cations may signal the presence of weak metallic bonds within 1. In nickel metal the Ni—Ni distance is 2.49 Å, while in the CSD Ni to Ni distances lie in the range 2.194 - 3.441 Å (Allen, 2002). The triangular arrangement of Ni ions within the cluster may also induce spin disorder and be associated with magnetic frustration. (Hendrickson et al., 2005; Lalia-Kantouri et al., 2010; Nakatsuji et al., 2005).

According to previous literature, three inter-ligand (intra-cluster) hydrogen bonding interactions of N—H···O type were reported to be important in stabilizing the incomplete cubane structure (Ama et al., 2000). This seems to be partially true for the {Ni31-O)(µ2-O)23-O)} core in 1, in which three N—H···O hydrogen bonding interactions, i.e. N3—H3C···O13, N4—H4B···O17 and N5—H5A···O1 [N···O 3.050 (5) - 3.251 (4) Å, N—H···O 142° - 150°], are present (Fig. 3). Atoms N1 and N5, in addition, reinforce the stability of the {Ni31-O)(µ2-O)23-O)} core via the inter-cluster interactions, i.e. N1—H1A···O15, N1—H1B···O18 and N5—H5A···O9 [N···O 3.042 (4) - 3.216 (4) Å, N—H···O 132.69° - 156.47°] (Fig. 4). The presence of the —CH2— group in the structure of the tyrosinate provides flexibility in spatial arrangement of the —(C6H4)OH part, depending on the surrounding environment. In the crystal structure of 1, the arrangement of these motifs is regulated by the strong O—H···O hydrogen bonding interactions (Fig. 4). The OH groups of all tyrosinate anions are associated in the O—H···O interactions with the neighboring clusters and methanol molecules [O—H···O 2.597 (4) - 2.983 (4) Å, O—H···O 122 - 173°], and these generate the supramolecular assembly in 1. The arrangement of these clusters occurs in such a way to maximize the hydrogen bonding interactions of which the weak hydrogen bonding of C—H···O type are also present, i.e. the intra-cluster C30—H30A···O11 and C54—H54···O5, and the inter-cluster C1M—H1M1···O1 and C38—H38···O9.

The clusters are arranged by the 21 screw axis into layers in the xz plane. These layers are stacked in an ABAB arrangement parallel to b. There exist hydrogen bonds between the clusters, both within the layers and between them. This packing arrangement of clusters is rather inefficient and the structure contains large voids centred on the origin such that approximately 39% of the structure is solvent accessible volume. Methanol molecules within these regions were poorly located and the reflection data were treated with the SQUEEZE algorithm (Spek, 2009) to model electron density within these regions. These calculations reveal that each void contains around 279 electrons consistent with around 17 molecules of methanol, giving an overall composition for 1 of [Ni3(C9H11NO3)6(OCH3)].21CH3OH. The methanol is lost very quickly when crystals are removed from solvent and this has prevented extensive analysis of the properties of 1.

The presence of methoxide suggests that it should be possible to obtain similar structures with other weakly coordinating anions. Similarly, replacement of method by other, bulkier and less volatile solvents, may enable further studies on similar compounds, in particular magnetic measurements. Clusters of this type therefore may be suitable for fundamental magnetic studies by variation of ligand bulk, or may prove suitable nodes in the construction of framework solids by appropriate ligand choice.

Related literature top

For related incomplete cubane clusters, see: Ama et al. (2000); Lalia-Kantouri et al. (2010). For a nickel complex with L-tyrosine, see Pei & Wang (2006). For structures with tyrosinate, see: Wojciechowska et al. (2011, 2012). For assignment of topology, see: Blatov (2012). For background to magnetic frustration, see: Hendrickson et al. (2005); Nakatsuji et al. (2005). For the CSD, see: Allen (2002).

Experimental top

Ni(NO3)2.6H2O (0.0148 g, 0.5 mmol; 98% Alfa Aesar) and 4-(HO)C6H4CH2CH(NH2)CO2H (L-tyrosine; 0.0185 g, 0.10 mmol; 98% Sigma-Aldrich) were dissolved in methanol (5.0 cm3; 99.8% Fisher Scientific) using a glass vial (vial A). A few drops of HCl (37% Fisher Scientific) were necessary to completely dissolve the L-Tyr. To a smaller glass vial, ca. 0.2 cm3 of (C2H5)3N (triethylamine; 99% Fisher Scientific) was added and the vial closed using lid with a small pin hole (vial B). Vial B was then inserted in vial A, which was then closed tightly. After ca 4 months, a few blue blocks crystallized from the solution, and were isolated for X-ray diffraction data collection.

Refinement top

The O-, N- and C-bound H-atoms were placed in calculated positions [O—H = 0.82 Å, N—H = 0.90 Å and C—H = 0.93 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(O, N and C)] and were included in the refinement in the riding model approximation. In order to take the contribution of the disordered methanol into account, the 'SQUEEZE option' in the program PLATON (Spek, 2009) was implemented. This resulted in an improvement of the R and wR from 0.073 and 0.212 to 0.040 and 0.097, respectively.

Structure description top

In the investigation of anti-bacterial and anti-fungal activities of the divalent metal complexes using (S)-2-amino-2-methyl-3-(4'-hydroxyphenyl)propanoic acid (L-tyrosine) under basic conditions, single crystals of [Ni3(C9H11NO3)6(OCH3)].4CH3OH (1) were prepared and isolated.

The asymmetric unit of 1 contains a neutral cluster of ninety-one non-hydrogen atoms comprising three Ni ions, six tyrosinate ligands, a methoxide ion and four methanol molecules (Fig. 1). The three Ni ions adopt similar octahedral coordination geometries, completed by two monodentate amino N atoms, one monodentate carboxylate O atom, two carboxylate bridging µ2-O atoms, and one bridging µ3-O atom of the methoxide ion: {Ni(µ1-O)(µ2-O)23-O)((µ1-N)2}. The six tyrosinate ligands exhibit the common chelating mode of coordination, using the amino N atoms and either the carboxylate µ2-η2:η0 O atoms (O4, O10, O16) or the carboxylate µ1-η1:η0 O atoms (O1, O7, O13). These generate two five-membered chelate rings about each Ni center. These coordination modes are commonly found in the tyrosinate ligands (Pei & Wang, 2006; Wojciechowska et al., 2011, 2012). Curiously, none of the phenolic groups of the tyrosine ligands within 1 are coordinated to the metal, despite conditions sufficiently basic to produce methoxide. The presence of the coordinated methoxide should invalidate any assumption on the presence of any extra-framework species with positive charges. The positive charge of Ni ions is therefore balanced by six tyrosinate ligands and one methoxide ion, resulting in the mean oxidation state of each nickel to be +2.33 (possibly a combination of two NiII and one NiIII). The solid conclusion may be derived by a magnetic study of 1.

The three {Ni(µ1-O)(µ2-O)23-O)((µ1-N)2} octahedra are condensed by edge-sharing and the addition of a µ3-OCH3 group (O1M) results in a trinuclear cluster with the {Ni31-O)(µ2-O)23-O)} incomplete cubane core (Fig. 2) (Ama et al., 2000; Lalia-Kantouri et al., 2010). Notably, the nickel ions present within the cluster must display a total positive charge of +7 to balanced the six tyrosinate ions and one methoxide ion. This corresponds to a mean oxidation state for the nickel of +2.33. The complete cubane core [Ni4O4] is rather well illustrated within the CSD (Allen, 2002) with over 100 examples. There are only 10 examples of the incomplete cubane core [Ni3O4]; the core within 1 is rather more symmetric than many of these examples. If the Ni atoms are taken as nodes, the{Ni31-O)(µ2-O)23-O)} core can be characterized as the 2-connected uninodal net of 2M3–1 topology with the vertex symbol [3] (Blatov, 2012).

The summation of the inner angles for each quadrilateral face of the {Ni31-O)(µ2-O)23-O)} core, i.e. {Ni1—O10—Ni2—O1M}, {Ni1—O4—Ni3—O1M} and {Ni2—O16—Ni3—O1M}, of ca. 360° suggest the planarity of these faces. Distributions of the Ni—µ3-O1M distances and the Ni—µ3-O1M—Ni angles in the ranges 2.067 (2) - 2.109 (2) Å and 97.17 (10) - 99.59 (10)°, respectively, imply an asymmetrical arrangement of the three Ni atoms about the apical µ3-O1M atom. This is also evident from the distances between any two Ni ions which vary within the range 3.132 (1) - 3.174 (1) Å. These relatively short distances between pairs of Ni cations may signal the presence of weak metallic bonds within 1. In nickel metal the Ni—Ni distance is 2.49 Å, while in the CSD Ni to Ni distances lie in the range 2.194 - 3.441 Å (Allen, 2002). The triangular arrangement of Ni ions within the cluster may also induce spin disorder and be associated with magnetic frustration. (Hendrickson et al., 2005; Lalia-Kantouri et al., 2010; Nakatsuji et al., 2005).

According to previous literature, three inter-ligand (intra-cluster) hydrogen bonding interactions of N—H···O type were reported to be important in stabilizing the incomplete cubane structure (Ama et al., 2000). This seems to be partially true for the {Ni31-O)(µ2-O)23-O)} core in 1, in which three N—H···O hydrogen bonding interactions, i.e. N3—H3C···O13, N4—H4B···O17 and N5—H5A···O1 [N···O 3.050 (5) - 3.251 (4) Å, N—H···O 142° - 150°], are present (Fig. 3). Atoms N1 and N5, in addition, reinforce the stability of the {Ni31-O)(µ2-O)23-O)} core via the inter-cluster interactions, i.e. N1—H1A···O15, N1—H1B···O18 and N5—H5A···O9 [N···O 3.042 (4) - 3.216 (4) Å, N—H···O 132.69° - 156.47°] (Fig. 4). The presence of the —CH2— group in the structure of the tyrosinate provides flexibility in spatial arrangement of the —(C6H4)OH part, depending on the surrounding environment. In the crystal structure of 1, the arrangement of these motifs is regulated by the strong O—H···O hydrogen bonding interactions (Fig. 4). The OH groups of all tyrosinate anions are associated in the O—H···O interactions with the neighboring clusters and methanol molecules [O—H···O 2.597 (4) - 2.983 (4) Å, O—H···O 122 - 173°], and these generate the supramolecular assembly in 1. The arrangement of these clusters occurs in such a way to maximize the hydrogen bonding interactions of which the weak hydrogen bonding of C—H···O type are also present, i.e. the intra-cluster C30—H30A···O11 and C54—H54···O5, and the inter-cluster C1M—H1M1···O1 and C38—H38···O9.

The clusters are arranged by the 21 screw axis into layers in the xz plane. These layers are stacked in an ABAB arrangement parallel to b. There exist hydrogen bonds between the clusters, both within the layers and between them. This packing arrangement of clusters is rather inefficient and the structure contains large voids centred on the origin such that approximately 39% of the structure is solvent accessible volume. Methanol molecules within these regions were poorly located and the reflection data were treated with the SQUEEZE algorithm (Spek, 2009) to model electron density within these regions. These calculations reveal that each void contains around 279 electrons consistent with around 17 molecules of methanol, giving an overall composition for 1 of [Ni3(C9H11NO3)6(OCH3)].21CH3OH. The methanol is lost very quickly when crystals are removed from solvent and this has prevented extensive analysis of the properties of 1.

The presence of methoxide suggests that it should be possible to obtain similar structures with other weakly coordinating anions. Similarly, replacement of method by other, bulkier and less volatile solvents, may enable further studies on similar compounds, in particular magnetic measurements. Clusters of this type therefore may be suitable for fundamental magnetic studies by variation of ligand bulk, or may prove suitable nodes in the construction of framework solids by appropriate ligand choice.

For related incomplete cubane clusters, see: Ama et al. (2000); Lalia-Kantouri et al. (2010). For a nickel complex with L-tyrosine, see Pei & Wang (2006). For structures with tyrosinate, see: Wojciechowska et al. (2011, 2012). For assignment of topology, see: Blatov (2012). For background to magnetic frustration, see: Hendrickson et al. (2005); Nakatsuji et al. (2005). For the CSD, see: Allen (2002).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of 1 showing atom-labeling scheme and with 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The incomplete cubane core of 1. Only selected atoms from the ligands are drawn. Atoms are shown as 30% probability ellipsoids.
[Figure 3] Fig. 3. View of intra-cluster hydrogen bonding interactions (dash lines), showing the donor and acceptor atoms in a ball-and-stick model and with 50% probability ellipsoids for the incomplete cubane core. Weak C—H···O hydrogen bonding interactions are omitted. [Symmetry codes: (i) 1 - x, -1/2 + y, 1 - z (ii) -1 + x, y, z (iii) 1 + x, y, z.]
[Figure 4] Fig. 4. View of inter-cluster hydrogen bonding interactions (dash lines), showing the donor and acceptor atoms in a ball-and-stick model and with 50% probability ellipsoids for the incomplete cubane core. Weak C—H···O hydrogen bonding interactions are omitted. [Symmetry codes: (i) 1 - x, -1/2 + y, 1 - z (ii) -1 + x, y, z (iii) 1 + x, y, z.]
µ3-Methoxido-κ3O:O:O-tris(µ-L-p-tyrosinato-κ3N,O:O)tris(L-p-tyrosinato-κ2N,O)trinickel(II,III) methanol tetrasolvate top
Crystal data top
[Ni3(C9H10NO3)6(CH3O)]·4CH4OF(000) = 1454
Mr = 1400.28Dx = 1.122 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3495 reflections
a = 12.5688 (6) Åθ = 1.6–28.3°
b = 25.3381 (9) ŵ = 0.74 mm1
c = 13.1058 (7) ÅT = 150 K
β = 96.740 (4)°Block, light-blue
V = 4145.0 (3) Å30.36 × 0.35 × 0.34 mm
Z = 2
Data collection top
Stoe IPDS2
diffractometer
16565 independent reflections
Radiation source: fine-focus sealed tube11845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 6.67 pixels mm-1θmax = 26.1°, θmin = 1.6°
ω scansh = 1515
Absorption correction: analytical
(a face-indexed absorption correction was applied using the Tompa method; Meulenaer de & Tompa, 1965)
k = 3131
Tmin = 0.716, Tmax = 0.780l = 1614
41350 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0444P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.002
16565 reflectionsΔρmax = 0.83 e Å3
780 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 8080 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.023 (9)
Crystal data top
[Ni3(C9H10NO3)6(CH3O)]·4CH4OV = 4145.0 (3) Å3
Mr = 1400.28Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.5688 (6) ŵ = 0.74 mm1
b = 25.3381 (9) ÅT = 150 K
c = 13.1058 (7) Å0.36 × 0.35 × 0.34 mm
β = 96.740 (4)°
Data collection top
Stoe IPDS2
diffractometer
16565 independent reflections
Absorption correction: analytical
(a face-indexed absorption correction was applied using the Tompa method; Meulenaer de & Tompa, 1965)
11845 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.780Rint = 0.074
41350 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.83 e Å3
S = 0.88Δρmin = 0.38 e Å3
16565 reflectionsAbsolute structure: Flack (1983), 8080 Friedel pairs
780 parametersAbsolute structure parameter: 0.023 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.67401 (3)0.209152 (16)0.66058 (4)0.03463 (11)
O1M0.64605 (17)0.28831 (10)0.62163 (19)0.0350 (5)
N10.7077 (2)0.21031 (14)0.8182 (2)0.0432 (7)
H1A0.66910.23590.84400.052*
H1B0.68840.17930.84390.052*
O10.83540 (19)0.22349 (9)0.6684 (2)0.0369 (6)
C10.8803 (3)0.23246 (14)0.7588 (3)0.0404 (9)
O20.9740 (2)0.25142 (11)0.7761 (2)0.0483 (7)
C20.8238 (3)0.21973 (14)0.8507 (3)0.0426 (9)
H20.82960.25070.89580.051*
C30.8785 (3)0.17307 (16)0.9118 (3)0.0477 (10)
H3A0.94980.18410.94030.057*
H3B0.83850.16550.96910.057*
C40.8886 (3)0.12271 (16)0.8527 (3)0.0478 (10)
C50.9647 (3)0.11715 (17)0.7819 (4)0.0558 (11)
H51.00820.14590.77130.067*
C60.9773 (4)0.07274 (18)0.7297 (4)0.0614 (12)
H61.02950.07070.68510.074*
C70.9103 (4)0.02862 (17)0.7426 (4)0.0590 (12)
C80.8360 (4)0.03291 (17)0.8129 (4)0.0612 (13)
H80.79160.00460.82340.073*
C90.8280 (3)0.07957 (17)0.8676 (4)0.0567 (11)
H90.77950.08130.91590.068*
O30.9161 (3)0.01815 (12)0.6914 (3)0.0763 (10)
H30.96440.01660.65450.114*
N20.6949 (2)0.12825 (11)0.6396 (3)0.0416 (8)
H2A0.73210.11400.69570.050*
H2B0.63100.11200.62820.050*
O40.66026 (18)0.20168 (9)0.5025 (2)0.0370 (6)
C100.7201 (3)0.16670 (13)0.4722 (3)0.0363 (9)
O50.7561 (2)0.16689 (11)0.3872 (2)0.0455 (6)
C110.7544 (3)0.12247 (13)0.5498 (3)0.0405 (9)
H110.83010.12850.57430.049*
C120.7462 (3)0.06642 (14)0.5046 (4)0.0524 (11)
H12A0.78010.06600.44180.063*
H12B0.78590.04250.55270.063*
C130.6346 (3)0.04650 (13)0.4814 (3)0.0420 (9)
C140.5666 (3)0.06193 (14)0.3962 (4)0.0467 (10)
H140.59220.08580.35090.056*
C150.4626 (3)0.04394 (14)0.3745 (4)0.0473 (10)
H150.41910.05560.31660.057*
C160.4246 (3)0.00790 (15)0.4418 (3)0.0476 (10)
C170.4897 (3)0.00772 (15)0.5270 (3)0.0469 (10)
H170.46480.03180.57230.056*
C180.5934 (3)0.01222 (16)0.5464 (3)0.0501 (10)
H180.63600.00180.60590.060*
O60.3242 (2)0.01120 (10)0.4159 (2)0.0552 (8)
H6A0.30930.03180.46040.083*
Ni20.48220 (3)0.291099 (15)0.62530 (4)0.03586 (11)
N30.4712 (2)0.37166 (11)0.6007 (2)0.0358 (7)
H3C0.52280.38200.56290.043*
H3D0.40740.37940.56530.043*
O70.4971 (2)0.31369 (9)0.7749 (2)0.0407 (6)
C190.5061 (3)0.36282 (14)0.7897 (3)0.0404 (9)
O80.5333 (3)0.38163 (11)0.8774 (2)0.0601 (8)
C200.4830 (3)0.40097 (13)0.7005 (3)0.0368 (8)
H200.54450.42480.70100.044*
C210.3828 (3)0.43479 (14)0.7125 (3)0.0423 (9)
H21A0.38880.44870.78190.051*
H21B0.38130.46450.66580.051*
C220.2789 (3)0.40506 (13)0.6917 (3)0.0390 (9)
C230.2428 (3)0.37308 (15)0.7650 (3)0.0451 (9)
H230.28130.37200.83010.054*
C240.1507 (3)0.34206 (15)0.7456 (3)0.0434 (9)
H240.12780.32100.79690.052*
C250.0942 (3)0.34335 (15)0.6479 (3)0.0428 (9)
C260.1283 (3)0.37557 (17)0.5735 (4)0.0528 (11)
H260.09000.37690.50840.063*
C270.2194 (3)0.40591 (15)0.5956 (4)0.0479 (10)
H270.24150.42750.54470.058*
O90.0065 (2)0.31212 (11)0.6231 (2)0.0548 (7)
H9A0.00560.29510.67370.082*
N40.3258 (2)0.26513 (11)0.6264 (3)0.0389 (7)
H4A0.28400.29150.64470.047*
H4B0.29910.25350.56370.047*
O100.50697 (18)0.21246 (10)0.6586 (2)0.0396 (6)
C280.4328 (3)0.18951 (14)0.6989 (3)0.0360 (8)
O110.4391 (2)0.14462 (10)0.7387 (2)0.0448 (6)
C290.3300 (3)0.22191 (14)0.7017 (3)0.0394 (9)
H290.33600.23870.76950.047*
C300.2260 (3)0.18813 (15)0.6932 (3)0.0425 (9)
H30A0.23800.15830.73940.051*
H30B0.16930.20930.71660.051*
C310.1882 (3)0.16788 (15)0.5888 (3)0.0462 (10)
C320.0857 (3)0.18068 (18)0.5424 (4)0.0610 (13)
H320.04370.20380.57560.073*
C330.0455 (4)0.16009 (19)0.4494 (4)0.0635 (13)
H330.02480.16760.42280.076*
C340.1067 (4)0.1288 (2)0.3951 (4)0.0661 (13)
C350.2115 (4)0.1169 (2)0.4365 (5)0.0740 (16)
H350.25560.09730.39860.089*
C360.2488 (3)0.13418 (18)0.5326 (4)0.0577 (12)
H360.31630.12340.56180.069*
O120.0715 (3)0.10594 (17)0.3024 (3)0.0922 (12)
H120.01080.11640.28280.138*
Ni30.64300 (3)0.280740 (15)0.46105 (4)0.03642 (11)
N50.8050 (2)0.28923 (12)0.4539 (2)0.0386 (7)
H5A0.84110.27790.51330.046*
H5B0.82430.26890.40290.046*
O130.64711 (19)0.36165 (10)0.4467 (2)0.0436 (7)
C370.7391 (3)0.38049 (14)0.4409 (3)0.0422 (9)
O140.7563 (2)0.42996 (10)0.4409 (3)0.0553 (8)
C380.8346 (3)0.34438 (14)0.4360 (3)0.0437 (10)
H380.88760.35430.49370.052*
C390.8885 (3)0.35072 (18)0.3408 (4)0.0565 (11)
H39A0.90920.38740.33470.068*
H39B0.95340.32970.34760.068*
C400.8211 (3)0.33499 (17)0.2459 (4)0.0558 (11)
C410.7431 (4)0.3691 (2)0.1951 (4)0.0692 (14)
H410.73370.40220.22340.083*
C420.6809 (4)0.3557 (2)0.1066 (4)0.0690 (13)
H420.63050.37950.07630.083*
C430.6922 (3)0.30699 (17)0.0614 (3)0.0530 (11)
C440.7645 (4)0.27061 (18)0.1084 (3)0.0602 (12)
H440.76970.23700.08070.072*
C450.8300 (3)0.2852 (2)0.1989 (3)0.0555 (10)
H450.88070.26130.22850.067*
O150.6373 (3)0.29244 (14)0.0297 (2)0.0757 (9)
H15A0.59680.31630.05120.114*
N60.5834 (3)0.26790 (13)0.3064 (3)0.0452 (8)
H6B0.58770.29800.27060.054*
H6C0.62320.24320.27930.054*
O160.48472 (19)0.27843 (10)0.4722 (2)0.0409 (6)
C460.4195 (3)0.26377 (15)0.3922 (3)0.0444 (9)
O170.3229 (2)0.26011 (14)0.3935 (3)0.0698 (9)
C470.4695 (3)0.25007 (15)0.2987 (3)0.0442 (9)
H470.42920.26760.23950.053*
C480.4619 (3)0.18945 (15)0.2818 (3)0.0463 (10)
H48A0.50850.17220.33610.056*
H48B0.38910.17830.28800.056*
C490.4916 (3)0.17103 (14)0.1804 (3)0.0416 (9)
C500.4162 (3)0.17076 (15)0.0914 (3)0.0483 (10)
H500.34660.18200.09610.058*
C510.4432 (3)0.15440 (15)0.0011 (3)0.0452 (9)
H510.39140.15450.05800.054*
C520.5463 (3)0.13756 (15)0.0125 (3)0.0435 (9)
C530.6209 (3)0.13709 (17)0.0737 (3)0.0522 (11)
H530.69000.12520.06840.063*
C540.5945 (3)0.15397 (16)0.1677 (3)0.0481 (10)
H540.64690.15390.22400.058*
O180.5789 (2)0.12088 (11)0.1018 (2)0.0493 (7)
H18A0.52880.12270.14780.074*
O3M1.0553 (3)0.02010 (15)0.5593 (3)0.0815 (10)*
C1M0.7126 (3)0.32667 (13)0.6751 (3)0.0384 (9)
H1M10.78590.32000.66520.058*
H1M20.70490.32500.74700.058*
H1M30.69230.36110.64920.058*
O2M0.8596 (5)0.1098 (2)0.2522 (4)0.1298 (17)*
C3M1.0306 (5)0.0038 (3)0.4648 (5)0.0954 (18)*
C2M0.8170 (8)0.0539 (4)0.2325 (7)0.140 (3)*
O4M0.6264 (6)0.4805 (3)0.9009 (6)0.177 (3)*
C4M0.5490 (9)0.5181 (5)0.9249 (9)0.172 (4)*
O5M0.3634 (7)0.3045 (4)1.0147 (6)0.215 (3)*
C5M0.2700 (8)0.3219 (4)1.0342 (7)0.142 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0304 (2)0.0249 (2)0.0472 (3)0.00070 (19)0.0011 (2)0.0033 (2)
O1M0.0297 (11)0.0255 (12)0.0488 (14)0.0037 (11)0.0001 (11)0.0059 (13)
N10.0360 (15)0.0412 (16)0.053 (2)0.0085 (15)0.0067 (14)0.0080 (17)
O10.0336 (12)0.0317 (13)0.0440 (16)0.0004 (10)0.0013 (12)0.0034 (11)
C10.0353 (19)0.0343 (18)0.050 (3)0.0008 (16)0.0009 (19)0.0015 (18)
O20.0377 (14)0.0554 (16)0.0489 (18)0.0156 (12)0.0075 (12)0.0015 (13)
C20.0403 (18)0.039 (2)0.048 (2)0.0038 (16)0.0012 (17)0.0046 (17)
C30.043 (2)0.053 (2)0.047 (3)0.0058 (18)0.0026 (19)0.005 (2)
C40.044 (2)0.045 (2)0.052 (3)0.0069 (18)0.0030 (19)0.0143 (19)
C50.048 (2)0.051 (2)0.066 (3)0.001 (2)0.001 (2)0.016 (2)
C60.061 (3)0.060 (3)0.065 (3)0.022 (2)0.014 (2)0.008 (2)
C70.062 (3)0.043 (2)0.072 (3)0.015 (2)0.007 (2)0.014 (2)
C80.068 (3)0.039 (2)0.079 (4)0.011 (2)0.018 (3)0.014 (2)
C90.043 (2)0.054 (2)0.075 (3)0.0042 (19)0.016 (2)0.011 (2)
O30.092 (2)0.0403 (16)0.098 (3)0.0149 (17)0.017 (2)0.0075 (17)
N20.0390 (16)0.0276 (15)0.055 (2)0.0005 (13)0.0062 (16)0.0028 (15)
O40.0306 (12)0.0285 (13)0.0505 (16)0.0010 (10)0.0018 (11)0.0048 (12)
C100.0255 (16)0.0301 (17)0.049 (3)0.0015 (14)0.0118 (17)0.0123 (17)
O50.0422 (14)0.0469 (15)0.0460 (18)0.0047 (12)0.0009 (13)0.0061 (13)
C110.0377 (19)0.0246 (16)0.057 (3)0.0008 (15)0.0040 (18)0.0050 (17)
C120.047 (2)0.0325 (19)0.074 (3)0.0084 (17)0.009 (2)0.012 (2)
C130.044 (2)0.0233 (17)0.056 (3)0.0032 (15)0.004 (2)0.0103 (17)
C140.045 (2)0.0256 (17)0.069 (3)0.0033 (16)0.003 (2)0.0084 (18)
C150.039 (2)0.0322 (19)0.067 (3)0.0031 (16)0.009 (2)0.0080 (19)
C160.046 (2)0.0349 (19)0.061 (3)0.0006 (17)0.001 (2)0.0070 (19)
C170.056 (2)0.0332 (19)0.051 (3)0.0023 (18)0.001 (2)0.0068 (18)
C180.049 (2)0.042 (2)0.055 (3)0.0013 (18)0.013 (2)0.004 (2)
O60.0456 (15)0.0383 (14)0.079 (2)0.0074 (12)0.0034 (15)0.0070 (14)
Ni20.0298 (2)0.0241 (2)0.0525 (3)0.00098 (18)0.0001 (2)0.0018 (2)
N30.0310 (15)0.0288 (15)0.046 (2)0.0016 (12)0.0017 (14)0.0017 (14)
O70.0397 (13)0.0277 (12)0.0528 (17)0.0013 (10)0.0032 (12)0.0049 (11)
C190.0345 (18)0.035 (2)0.049 (3)0.0052 (15)0.0072 (18)0.0006 (18)
O80.087 (2)0.0409 (14)0.0453 (18)0.0113 (15)0.0201 (16)0.0072 (14)
C200.0369 (19)0.0251 (16)0.047 (2)0.0045 (15)0.0018 (17)0.0022 (16)
C210.040 (2)0.0293 (17)0.055 (3)0.0007 (15)0.0047 (18)0.0007 (17)
C220.0329 (18)0.0289 (17)0.055 (3)0.0049 (15)0.0039 (18)0.0020 (17)
C230.038 (2)0.049 (2)0.047 (3)0.0048 (17)0.0014 (19)0.0023 (19)
C240.0348 (18)0.048 (2)0.046 (2)0.0067 (17)0.0018 (18)0.0051 (18)
C250.0280 (17)0.046 (2)0.054 (3)0.0023 (16)0.0039 (18)0.0057 (19)
C260.036 (2)0.054 (2)0.065 (3)0.0026 (18)0.009 (2)0.025 (2)
C270.038 (2)0.041 (2)0.063 (3)0.0026 (17)0.001 (2)0.017 (2)
O90.0318 (13)0.0611 (17)0.069 (2)0.0089 (12)0.0054 (13)0.0149 (15)
N40.0329 (15)0.0278 (14)0.056 (2)0.0001 (12)0.0029 (14)0.0076 (14)
O100.0294 (11)0.0236 (11)0.0647 (18)0.0029 (11)0.0007 (12)0.0042 (13)
C280.0399 (19)0.0334 (18)0.032 (2)0.0048 (15)0.0058 (16)0.0072 (16)
O110.0424 (14)0.0324 (13)0.0554 (18)0.0034 (11)0.0123 (13)0.0062 (12)
C290.0352 (18)0.041 (2)0.041 (2)0.0084 (15)0.0010 (16)0.0060 (16)
C300.0379 (19)0.0405 (19)0.048 (3)0.0036 (16)0.0008 (18)0.0030 (18)
C310.038 (2)0.0355 (19)0.063 (3)0.0091 (17)0.001 (2)0.0093 (19)
C320.049 (2)0.059 (3)0.071 (3)0.015 (2)0.010 (2)0.023 (2)
C330.051 (2)0.057 (3)0.082 (4)0.006 (2)0.001 (3)0.014 (3)
C340.060 (3)0.068 (3)0.067 (3)0.003 (2)0.009 (2)0.021 (3)
C350.050 (3)0.064 (3)0.106 (4)0.004 (2)0.001 (3)0.040 (3)
C360.033 (2)0.059 (3)0.077 (3)0.0037 (19)0.011 (2)0.029 (2)
O120.081 (3)0.101 (3)0.090 (3)0.010 (2)0.006 (2)0.033 (2)
Ni30.0310 (2)0.0278 (2)0.0490 (3)0.00175 (18)0.0016 (2)0.0004 (2)
N50.0376 (15)0.0345 (15)0.0420 (17)0.0044 (15)0.0027 (13)0.0044 (15)
O130.0316 (13)0.0301 (13)0.067 (2)0.0019 (11)0.0009 (13)0.0051 (13)
C370.044 (2)0.0297 (18)0.052 (3)0.0033 (16)0.0003 (19)0.0033 (17)
O140.0427 (15)0.0307 (13)0.091 (2)0.0059 (12)0.0022 (15)0.0084 (14)
C380.0322 (18)0.0358 (19)0.064 (3)0.0066 (15)0.0073 (19)0.0021 (18)
C390.051 (2)0.051 (2)0.068 (3)0.008 (2)0.008 (2)0.003 (2)
C400.040 (2)0.053 (3)0.074 (3)0.0022 (19)0.009 (2)0.008 (2)
C410.077 (3)0.060 (3)0.068 (4)0.013 (3)0.004 (3)0.011 (3)
C420.078 (3)0.060 (3)0.064 (3)0.022 (3)0.011 (3)0.004 (3)
C430.052 (2)0.063 (3)0.040 (2)0.010 (2)0.007 (2)0.008 (2)
C440.073 (3)0.055 (3)0.052 (3)0.023 (2)0.003 (2)0.001 (2)
C450.054 (2)0.062 (3)0.049 (2)0.008 (2)0.0030 (19)0.004 (2)
O150.084 (2)0.072 (2)0.065 (2)0.028 (2)0.0147 (17)0.0137 (19)
N60.0452 (17)0.0402 (17)0.048 (2)0.0112 (14)0.0028 (15)0.0045 (15)
O160.0355 (12)0.0340 (14)0.0521 (16)0.0046 (12)0.0008 (12)0.0027 (13)
C460.0300 (19)0.045 (2)0.054 (3)0.0014 (16)0.0109 (18)0.0026 (19)
O170.0342 (16)0.100 (3)0.071 (2)0.0017 (15)0.0130 (14)0.0005 (19)
C470.042 (2)0.044 (2)0.043 (3)0.0003 (17)0.0103 (18)0.0034 (18)
C480.043 (2)0.043 (2)0.050 (3)0.0106 (17)0.0079 (19)0.0107 (19)
C490.042 (2)0.0322 (18)0.048 (2)0.0059 (16)0.0057 (18)0.0027 (17)
C500.0361 (19)0.045 (2)0.061 (3)0.0011 (17)0.0061 (19)0.000 (2)
C510.040 (2)0.051 (2)0.040 (2)0.0015 (17)0.0104 (18)0.0021 (19)
C520.043 (2)0.043 (2)0.044 (2)0.0086 (17)0.0039 (19)0.0094 (18)
C530.041 (2)0.056 (2)0.056 (3)0.0042 (19)0.009 (2)0.019 (2)
C540.039 (2)0.059 (3)0.044 (3)0.0040 (19)0.0073 (19)0.007 (2)
O180.0405 (14)0.0566 (16)0.0477 (18)0.0053 (13)0.0080 (13)0.0044 (14)
C1M0.0333 (17)0.0302 (18)0.051 (2)0.0019 (15)0.0035 (17)0.0046 (17)
Geometric parameters (Å, º) top
Ni1—O12.051 (2)C27—H270.9300
Ni1—N12.060 (3)O9—H9A0.8200
Ni1—O42.067 (3)N4—C291.471 (5)
Ni1—N22.089 (3)N4—H4A0.9000
Ni1—O1M2.089 (3)N4—H4B0.9000
Ni1—O102.098 (2)O10—C281.265 (4)
O1M—C1M1.413 (4)C28—O111.250 (4)
O1M—Ni22.067 (2)C28—C291.535 (5)
O1M—Ni32.109 (2)C29—C301.556 (5)
N1—C21.490 (5)C29—H290.9800
N1—H1A0.9000C30—C311.486 (6)
N1—H1B0.9000C30—H30A0.9700
O1—C11.272 (5)C30—H30B0.9700
C1—O21.268 (4)C31—C321.397 (6)
C1—C21.504 (5)C31—C361.409 (6)
C2—C31.544 (5)C32—C331.367 (6)
C2—H20.9800C32—H320.9300
C3—C41.506 (6)C33—C341.362 (6)
C3—H3A0.9700C33—H330.9300
C3—H3B0.9700C34—O121.371 (6)
C4—C91.360 (6)C34—C351.397 (7)
C4—C51.415 (6)C35—C361.363 (7)
C5—C61.336 (6)C35—H350.9300
C5—H50.9300C36—H360.9300
C6—C71.421 (6)O12—H120.8200
C6—H60.9300Ni3—O162.013 (2)
C7—O31.368 (5)Ni3—O132.060 (3)
C7—C81.392 (6)Ni3—N52.060 (3)
C8—C91.392 (6)Ni3—N62.102 (3)
C8—H80.9300N5—C381.472 (5)
C9—H90.9300N5—H5A0.9000
O3—H30.8200N5—H5B0.9000
N2—C111.473 (5)O13—C371.261 (4)
N2—H2A0.9000C37—O141.272 (4)
N2—H2B0.9000C37—C381.517 (5)
O4—C101.256 (4)C38—C391.497 (6)
O4—Ni32.080 (2)C38—H380.9800
C10—O51.251 (4)C39—C401.475 (7)
C10—C111.541 (5)C39—H39A0.9700
C11—C121.538 (5)C39—H39B0.9700
C11—H110.9800C40—C411.413 (7)
C12—C131.488 (5)C40—C451.414 (7)
C12—H12A0.9700C41—C421.363 (7)
C12—H12B0.9700C41—H410.9300
C13—C181.361 (6)C42—C431.383 (7)
C13—C141.381 (6)C42—H420.9300
C14—C151.382 (5)C43—O151.358 (5)
C14—H140.9300C43—C441.387 (6)
C15—C161.392 (6)C44—C451.411 (6)
C15—H150.9300C44—H440.9300
C16—O61.356 (5)C45—H450.9300
C16—C171.364 (6)O15—H15A0.8200
C17—C181.393 (6)N6—C471.494 (5)
C17—H170.9300N6—H6B0.9000
C18—H180.9300N6—H6C0.9000
O6—H6A0.8200O16—C461.307 (5)
Ni2—O72.030 (3)C46—O171.219 (4)
Ni2—O162.036 (3)C46—C471.483 (6)
Ni2—O102.056 (3)C47—C481.553 (5)
Ni2—N32.069 (3)C47—H470.9800
Ni2—N42.074 (3)C48—C491.497 (6)
N3—C201.496 (5)C48—H48A0.9700
N3—H3C0.9000C48—H48B0.9700
N3—H3D0.9000C49—C541.392 (5)
O7—C191.263 (4)C49—C501.414 (5)
C19—O81.255 (5)C50—C511.361 (6)
C19—C201.518 (5)C50—H500.9300
C20—C211.546 (5)C51—C521.390 (5)
C20—H200.9800C51—H510.9300
C21—C221.505 (5)C52—O181.352 (5)
C21—H21A0.9700C52—C531.381 (6)
C21—H21B0.9700C53—C541.381 (6)
C22—C231.374 (5)C53—H530.9300
C22—C271.387 (6)C54—H540.9300
C23—C241.398 (5)O18—H18A0.8200
C23—H230.9300O3M—C3M1.382 (7)
C24—C251.390 (6)C1M—H1M10.9600
C24—H240.9300C1M—H1M20.9600
C25—O91.365 (5)C1M—H1M30.9600
C25—C261.378 (6)O2M—C2M1.526 (10)
C26—C271.382 (6)O4M—C4M1.423 (12)
C26—H260.9300O5M—C5M1.306 (11)
O1—Ni1—N182.06 (11)C25—C26—H26120.0
O1—Ni1—O491.83 (10)C27—C26—H26120.0
N1—Ni1—O4171.72 (11)C26—C27—C22121.8 (4)
O1—Ni1—N292.38 (11)C26—C27—H27119.1
N1—Ni1—N297.58 (14)C22—C27—H27119.1
O4—Ni1—N277.00 (12)C25—O9—H9A109.5
O1—Ni1—O1M88.80 (9)C29—N4—Ni2106.4 (2)
N1—Ni1—O1M103.90 (12)C29—N4—H4A110.5
O4—Ni1—O1M81.44 (9)Ni2—N4—H4A110.5
N2—Ni1—O1M158.43 (11)C29—N4—H4B110.5
O1—Ni1—O10167.32 (10)Ni2—N4—H4B110.5
N1—Ni1—O1095.69 (11)H4A—N4—H4B108.6
O4—Ni1—O1091.47 (10)C28—O10—Ni2115.7 (2)
N2—Ni1—O10100.29 (11)C28—O10—Ni1139.6 (2)
O1M—Ni1—O1079.59 (9)Ni2—O10—Ni199.64 (10)
C1M—O1M—Ni2119.9 (2)O11—C28—O10125.3 (3)
C1M—O1M—Ni1117.8 (2)O11—C28—C29119.3 (3)
Ni2—O1M—Ni199.59 (10)O10—C28—C29115.3 (3)
C1M—O1M—Ni3119.8 (2)N4—C29—C28110.2 (3)
Ni2—O1M—Ni397.17 (10)N4—C29—C30113.5 (3)
Ni1—O1M—Ni398.01 (10)C28—C29—C30114.0 (3)
C2—N1—Ni1111.6 (2)N4—C29—H29106.2
C2—N1—H1A109.3C28—C29—H29106.2
Ni1—N1—H1A109.3C30—C29—H29106.2
C2—N1—H1B109.3C31—C30—C29115.5 (3)
Ni1—N1—H1B109.3C31—C30—H30A108.4
H1A—N1—H1B108.0C29—C30—H30A108.4
C1—O1—Ni1114.0 (2)C31—C30—H30B108.4
O2—C1—O1122.4 (4)C29—C30—H30B108.4
O2—C1—C2117.0 (4)H30A—C30—H30B107.5
O1—C1—C2120.6 (3)C32—C31—C36116.2 (4)
N1—C2—C1110.1 (3)C32—C31—C30120.0 (4)
N1—C2—C3112.8 (3)C36—C31—C30123.8 (4)
C1—C2—C3110.8 (3)C33—C32—C31121.7 (4)
N1—C2—H2107.6C33—C32—H32119.2
C1—C2—H2107.6C31—C32—H32119.2
C3—C2—H2107.6C34—C33—C32121.0 (4)
C4—C3—C2116.2 (3)C34—C33—H33119.5
C4—C3—H3A108.2C32—C33—H33119.5
C2—C3—H3A108.2C33—C34—O12124.4 (4)
C4—C3—H3B108.2C33—C34—C35119.1 (5)
C2—C3—H3B108.2O12—C34—C35116.4 (4)
H3A—C3—H3B107.4C36—C35—C34119.8 (4)
C9—C4—C5116.6 (4)C36—C35—H35120.1
C9—C4—C3121.6 (4)C34—C35—H35120.1
C5—C4—C3121.7 (4)C35—C36—C31121.9 (4)
C6—C5—C4123.3 (4)C35—C36—H36119.1
C6—C5—H5118.4C31—C36—H36119.1
C4—C5—H5118.4C34—O12—H12109.5
C5—C6—C7119.6 (4)O16—Ni3—O1394.09 (10)
C5—C6—H6120.2O16—Ni3—N5175.41 (12)
C7—C6—H6120.2O13—Ni3—N581.74 (11)
O3—C7—C8118.1 (4)O16—Ni3—O491.53 (10)
O3—C7—C6123.8 (4)O13—Ni3—O4168.31 (11)
C8—C7—C6118.1 (4)N5—Ni3—O492.24 (11)
C7—C8—C9120.1 (4)O16—Ni3—N679.74 (12)
C7—C8—H8119.9O13—Ni3—N694.34 (12)
C9—C8—H8119.9N5—Ni3—N6102.40 (12)
C4—C9—C8122.2 (4)O4—Ni3—N696.75 (11)
C4—C9—H9118.9O16—Ni3—O1M80.37 (9)
C8—C9—H9118.9O13—Ni3—O1M90.18 (11)
C7—O3—H3109.5N5—Ni3—O1M97.66 (10)
C11—N2—Ni1106.6 (2)O4—Ni3—O1M80.65 (10)
C11—N2—H2A110.4N6—Ni3—O1M159.86 (10)
Ni1—N2—H2A110.4C38—N5—Ni3112.1 (2)
C11—N2—H2B110.4C38—N5—H5A109.2
Ni1—N2—H2B110.4Ni3—N5—H5A109.2
H2A—N2—H2B108.6C38—N5—H5B109.2
C10—O4—Ni1113.5 (2)Ni3—N5—H5B109.2
C10—O4—Ni3130.1 (2)H5A—N5—H5B107.9
Ni1—O4—Ni399.65 (10)C37—O13—Ni3114.5 (2)
O5—C10—O4124.9 (4)O13—C37—O14122.0 (3)
O5—C10—C11119.2 (3)O13—C37—C38120.7 (3)
O4—C10—C11115.8 (3)O14—C37—C38117.3 (3)
N2—C11—C12112.5 (3)N5—C38—C39112.5 (3)
N2—C11—C10109.0 (3)N5—C38—C37110.4 (3)
C12—C11—C10114.6 (3)C39—C38—C37114.1 (4)
N2—C11—H11106.7N5—C38—H38106.4
C12—C11—H11106.7C39—C38—H38106.4
C10—C11—H11106.7C37—C38—H38106.4
C13—C12—C11114.2 (3)C40—C39—C38113.7 (4)
C13—C12—H12A108.7C40—C39—H39A108.8
C11—C12—H12A108.7C38—C39—H39A108.8
C13—C12—H12B108.7C40—C39—H39B108.8
C11—C12—H12B108.7C38—C39—H39B108.8
H12A—C12—H12B107.6H39A—C39—H39B107.7
C18—C13—C14116.2 (4)C41—C40—C45115.2 (5)
C18—C13—C12120.5 (4)C41—C40—C39122.0 (4)
C14—C13—C12123.3 (4)C45—C40—C39122.8 (4)
C13—C14—C15123.6 (4)C42—C41—C40123.1 (5)
C13—C14—H14118.2C42—C41—H41118.5
C15—C14—H14118.2C40—C41—H41118.5
C14—C15—C16118.2 (4)C41—C42—C43120.6 (5)
C14—C15—H15120.9C41—C42—H42119.7
C16—C15—H15120.9C43—C42—H42119.7
O6—C16—C17123.5 (4)O15—C43—C42123.4 (4)
O6—C16—C15117.0 (4)O15—C43—C44116.7 (4)
C17—C16—C15119.4 (4)C42—C43—C44119.9 (4)
C16—C17—C18120.2 (4)C43—C44—C45119.1 (4)
C16—C17—H17119.9C43—C44—H44120.5
C18—C17—H17119.9C45—C44—H44120.5
C13—C18—C17122.2 (4)C44—C45—C40122.1 (4)
C13—C18—H18118.9C44—C45—H45118.9
C17—C18—H18118.9C40—C45—H45118.9
C16—O6—H6A109.5C43—O15—H15A109.5
O7—Ni2—O16170.42 (10)C47—N6—Ni3110.1 (2)
O7—Ni2—O1094.22 (10)C47—N6—H6B109.6
O16—Ni2—O1092.13 (11)Ni3—N6—H6B109.6
O7—Ni2—O1M93.04 (10)C47—N6—H6C109.6
O16—Ni2—O1M80.85 (9)Ni3—N6—H6C109.6
O10—Ni2—O1M81.11 (9)H6B—N6—H6C108.2
O7—Ni2—N382.47 (11)C46—O16—Ni3118.9 (2)
O16—Ni2—N390.61 (12)C46—O16—Ni2139.0 (2)
O10—Ni2—N3174.38 (12)Ni3—O16—Ni2101.34 (11)
O1M—Ni2—N394.50 (11)O17—C46—O16122.8 (4)
O7—Ni2—N493.59 (11)O17—C46—C47120.9 (4)
O16—Ni2—N494.65 (11)O16—C46—C47116.3 (3)
O10—Ni2—N479.10 (10)C46—C47—N6111.6 (3)
O1M—Ni2—N4159.52 (10)C46—C47—C48108.9 (3)
N3—Ni2—N4105.56 (11)N6—C47—C48110.6 (3)
C20—N3—Ni2110.8 (2)C46—C47—H47108.6
C20—N3—H3C109.5N6—C47—H47108.6
Ni2—N3—H3C109.5C48—C47—H47108.6
C20—N3—H3D109.5C49—C48—C47114.6 (3)
Ni2—N3—H3D109.5C49—C48—H48A108.6
H3C—N3—H3D108.1C47—C48—H48A108.6
C19—O7—Ni2115.0 (3)C49—C48—H48B108.6
O8—C19—O7121.6 (4)C47—C48—H48B108.6
O8—C19—C20118.1 (3)H48A—C48—H48B107.6
O7—C19—C20120.3 (4)C54—C49—C50116.2 (4)
N3—C20—C19110.3 (3)C54—C49—C48122.4 (4)
N3—C20—C21111.5 (3)C50—C49—C48121.5 (4)
C19—C20—C21111.0 (3)C51—C50—C49121.6 (4)
N3—C20—H20108.0C51—C50—H50119.2
C19—C20—H20108.0C49—C50—H50119.2
C21—C20—H20108.0C50—C51—C52121.5 (4)
C22—C21—C20113.8 (3)C50—C51—H51119.3
C22—C21—H21A108.8C52—C51—H51119.3
C20—C21—H21A108.8O18—C52—C53117.4 (4)
C22—C21—H21B108.8O18—C52—C51124.8 (4)
C20—C21—H21B108.8C53—C52—C51117.8 (4)
H21A—C21—H21B107.7C54—C53—C52121.1 (4)
C23—C22—C27117.2 (3)C54—C53—H53119.5
C23—C22—C21121.2 (4)C52—C53—H53119.5
C27—C22—C21121.4 (3)C53—C54—C49121.8 (4)
C22—C23—C24122.6 (4)C53—C54—H54119.1
C22—C23—H23118.7C49—C54—H54119.1
C24—C23—H23118.7C52—O18—H18A109.5
C25—C24—C23118.5 (4)O1M—C1M—H1M1109.5
C25—C24—H24120.7O1M—C1M—H1M2109.5
C23—C24—H24120.7H1M1—C1M—H1M2109.5
O9—C25—C26119.0 (4)O1M—C1M—H1M3109.5
O9—C25—C24121.2 (3)H1M1—C1M—H1M3109.5
C26—C25—C24119.8 (4)H1M2—C1M—H1M3109.5
C25—C26—C27120.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O15i0.902.263.082 (4)153
N1—H1B···O18i0.902.203.042 (4)157
O3—H3···O3M0.821.792.601 (5)170
O6—H6A···O14ii0.821.882.685 (4)166
N3—H3C···O130.902.363.174 (4)150
O9—H9A···O2iii0.821.782.597 (4)173
N4—H4B···O170.902.293.050 (5)142
O12—H12···O2Miii0.821.902.669 (7)155
N5—H5A···O10.902.463.251 (4)146
N5—H5A···O9iv0.902.543.216 (4)133
O15—H15A···O8v0.822.022.815 (4)164
O15—H15A···O7v0.822.472.983 (4)122
O18—H18A···O11v0.821.842.638 (4)163
C1M—H1M1···O10.962.523.042 (4)114
C30—H30A···O110.972.552.893 (5)101
C38—H38···O9iv0.982.383.178 (5)138
C54—H54···O50.932.423.338 (5)167
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni3(C9H10NO3)6(CH3O)]·4CH4O
Mr1400.28
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)12.5688 (6), 25.3381 (9), 13.1058 (7)
β (°) 96.740 (4)
V3)4145.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.36 × 0.35 × 0.34
Data collection
DiffractometerStoe IPDS2
Absorption correctionAnalytical
(a face-indexed absorption correction was applied using the Tompa method; Meulenaer de & Tompa, 1965)
Tmin, Tmax0.716, 0.780
No. of measured, independent and
observed [I > 2σ(I)] reflections
41350, 16565, 11845
Rint0.074
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 0.88
No. of reflections16565
No. of parameters780
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.38
Absolute structureFlack (1983), 8080 Friedel pairs
Absolute structure parameter0.023 (9)

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O15i0.902.263.082 (4)153
N1—H1B···O18i0.902.203.042 (4)157
O3—H3···O3M0.821.792.601 (5)170
O6—H6A···O14ii0.821.882.685 (4)166
N3—H3C···O130.902.363.174 (4)150
O9—H9A···O2iii0.821.782.597 (4)173
N4—H4B···O170.902.293.050 (5)142
O12—H12···O2Miii0.821.902.669 (7)155
N5—H5A···O10.902.463.251 (4)146
N5—H5A···O9iv0.902.543.216 (4)133
O15—H15A···O8v0.822.022.815 (4)164
O15—H15A···O7v0.822.472.983 (4)122
O18—H18A···O11v0.821.842.638 (4)163
C1M—H1M1···O10.962.523.042 (4)114
C30—H30A···O110.972.552.893 (5)101
C38—H38···O9iv0.982.383.178 (5)138
C54—H54···O50.932.423.338 (5)167
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y, z1.
 

Acknowledgements

The Thailand Research Fund and the National Research University Project under the Thailand office of the Higher Education Commission are acknowledged for financial support. W. Tapala thanks the Royal Golden Jubilee PhD Program and the Graduate School of Chiang Mai University for graduate scholarships.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAma, T., Rashid, Md. M., Yonemura, T., Kawaguchi, H. & Yasui, T. (2000). Coord. Chem. Rev. 198, 101–116.  Web of Science CrossRef CAS Google Scholar
First citationBlatov, V. A. (2012). Struct. Chem. 23, 955–963.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHendrickson, D., Yang, E.-C., Isidro, R. M., Kirman, C., Lawrence, J., Edwards, R. S., Hill, S., Yamaguchi, A., Ishimoto, H., Wernsdorfer, W., Ramsey, C., Dalal, N. & Olmstead, M. M. (2005). Polyhedron, 24, 2280–2283.  Web of Science CrossRef CAS Google Scholar
First citationLalia-Kantouri, M., Papadopoulos, C. D., Hatzidimitriou, A. G., Bakas, T. & Pachini, S. (2010). Z. Anorg. Allg. Chem. 636, 531–538.  CAS Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNakatsuji, S., Nambu, Y., Tonomura, H., Sakai, O., Jonas, S., Broholm, C., Tsunetsugu, H., Qiu, Y. & Maeno, Y. (2005). Science, 309, 1607–1700.  Web of Science CrossRef Google Scholar
First citationPei, Y. & Wang, L. (2006). Acta Cryst. E62, m1668–m1670.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojciechowska, A., Daszkiewicz, M., Staszak, Z., Trusz-Zdybek, A., Bienko, A. & Ozarowski, A. (2011). Inorg. Chem. 50, 11532–11542.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWojciechowska, A., Gagor, A., Wysokinski, R. & Trusz-Zdybek, A. (2012). J. Inorg. Biochem. 117, 93–102.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds