organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R,4S,5R)-Methyl 3,5-bis­­[(tert-butyl­di­methyl­sil­yl)­­oxy]-4-meth­­oxy­cyclo­hex-1-ene­carboxyl­ate

aSchool of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China, and bTianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: liyl@tjipr.com

(Received 28 January 2013; accepted 19 March 2013; online 5 April 2013)

The title compound, C21H42O5Si2, was synthesized from (3R,4S,5R)-methyl 3,5-bis­[(tert-butyl­dimethyl­sil­yl)­oxy]-4-hy­droxy­cyclo­hex-1-ene­carboxyl­ate by an esterification reaction. The cyclo­hexene ring adopts a half-chair conformation. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming helical chains propagating along [010].

Related literature

The title compound is an inter­mediate in the synthesis of vandetanib {systematic name: N-(4-bromo-2-fluoro­phen­yl)-6-meth­oxy-7-[(1-methyl-4-piperidin­yl)meth­oxy]-4-quinazolinamine} derivatives. For vandetanib as a tyrosine kinase inhib­itor, see: Heymach (2005[Heymach, J. V. (2005). Br. J. Cancer, 92(Suppl 1), 14-20.]); Morabito et al. (2009[Morabito, A., Piccirillo, M. C., Falasconi, F., De Feo, G., Del Giudice, A., Bryce, J., Di Maio, M., De Maio, E., Normanno, N. & Perrone, F. (2009). Oncologist, 14, 378-390.]); Wells et al. (2010[Wells, S. A., Gosnell, J. E., Gagel, R. F., Moley, J., Pfister, D., Sosa, J. A., Skinner, M., Krebs, A., Vasselli, J. & Schlumberger, M. (2010). J. Clin. Oncol. 28, 767-772.]); Natale et al. (2009[Natale, R. B., Thongprasert, S., Greco, F. A., Thomas, M., Tsai, C. M., Sunpaweravong, P., Ferry, D., Langmuir, P., Rowbottom, J. A. & Goss, G. D. (2009). J. Clin. Oncol. 27(15S), abstr. 8009.]).

[Scheme 1]

Experimental

Crystal data
  • C21H42O5Si2

  • Mr = 430.72

  • Monoclinic, P 21

  • a = 10.760 (5) Å

  • b = 8.321 (4) Å

  • c = 14.601 (7) Å

  • β = 98.997 (9)°

  • V = 1291.3 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.981

  • 13589 measured reflections

  • 6015 independent reflections

  • 4456 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.073

  • S = 0.98

  • 6015 reflections

  • 265 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2745 Friedel pairs

  • Flack parameter: −0.04 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O3i 0.98 2.55 3.410 (3) 147
C9—H9A⋯O3ii 0.98 2.59 3.527 (3) 161
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Vandetanib is a small molecule tyrosine kinase inhibitor, which can act on the tumor cells epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR) and the RET tyrosine kinase (Heymach, 2005; Morabito et al., 2009). Vandetanib has a good therapeutic effect for Medullary thyroid cancer and Non-small cell lung cancer (Wells et al., 2010; Natale et al., 2009).

(3R,4S,5R)-Methyl 3,5-bis[(tert-butyldimethylsilyl)oxy]-4-methoxycyclohex-1-enecarboxylate (Fig. 1) is an intermediate to synthetize Vandetanib derivatives. Here, the synthesis and crystallographic characterization of the compound are reported.

The crystal structure of the compound has monoclinic (P21) symmetry at 113 K. No hydrogen-bonding or ππ interactions are observed in the crystal structure. Despite the relatively large steric size of substituent groups, the cyclohexene still has a nearly ideal half-chair form with carbon atoms C3, C4,C5 and C2 lying in one plane.

Related literature top

The title compound is an intermediate in the synthesis of derivatives of vandetanib {systematic name: N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methyl-4-piperidinyl)methoxy]-4-quinazolinamine}. For vandetanib as a tyrosine kinase inhibitor, see: Heymach (2005); Morabito et al. (2009); Wells et al. (2010); Natale et al. (2009).

Experimental top

Solid sodium hydroxide (2.8 g, 0.07 mol) was added to a stirred solution of (3R,4S,5R)-methyl 3,5-bis((tert-butyldimethylsilyl)oxy)-4-hydroxycyclohex-1-εnecarboxylate (5.6 g, 0.134 mol) in acetonitrile (60 ml) at room temperature.The reaction mixture was added dropwise to a solution of dimethyl sulfate (4.2 ml, 0.044 mol) in acetonitrile (60 ml). After the dropwise addition, the temperature was raised to 40 °C. The reaction was completed within 15 hrs at 40 °C stirring. The solvent was removed under reduced pressure, and ethyl acetate (300 ml) and H2O (100 ml) were added three times to extract the solid. The ethyl acetate layer was dried with anhydrous magnesium sulfate and a white solid was obtained after removal of the solvent. The yield was 4.8 g (82.7%). About 0.5g of the product was put in an ampoule bottle and 10 ml absolute methanol was added. The white single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature after 1 week.

Refinement top

H atoms were placed at calculated positions with C-H = 0.98 Å (methyl), 0.99 Å (methylene), 1.00 Å (methine sp3) and 0.95 Å (methine sp2) and refined as riding atoms with Uiso(H) = 1.5Ueq(C) (methyl) or 1.2Ueq(C) (others).

Structure description top

Vandetanib is a small molecule tyrosine kinase inhibitor, which can act on the tumor cells epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR) and the RET tyrosine kinase (Heymach, 2005; Morabito et al., 2009). Vandetanib has a good therapeutic effect for Medullary thyroid cancer and Non-small cell lung cancer (Wells et al., 2010; Natale et al., 2009).

(3R,4S,5R)-Methyl 3,5-bis[(tert-butyldimethylsilyl)oxy]-4-methoxycyclohex-1-enecarboxylate (Fig. 1) is an intermediate to synthetize Vandetanib derivatives. Here, the synthesis and crystallographic characterization of the compound are reported.

The crystal structure of the compound has monoclinic (P21) symmetry at 113 K. No hydrogen-bonding or ππ interactions are observed in the crystal structure. Despite the relatively large steric size of substituent groups, the cyclohexene still has a nearly ideal half-chair form with carbon atoms C3, C4,C5 and C2 lying in one plane.

The title compound is an intermediate in the synthesis of derivatives of vandetanib {systematic name: N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methyl-4-piperidinyl)methoxy]-4-quinazolinamine}. For vandetanib as a tyrosine kinase inhibitor, see: Heymach (2005); Morabito et al. (2009); Wells et al. (2010); Natale et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of C21H42O5Si2 with atom-labelling scheme and ellipsoids drawn at the 50% probability level.
Methyl (3R,4S,5R)-3,5-bis[(tert-butyldimethylsilyl)oxy]-4-methoxycyclohex-1-enecarboxylate top
Crystal data top
C21H42O5Si2F(000) = 472
Mr = 430.72Dx = 1.108 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.760 (5) ÅCell parameters from 4632 reflections
b = 8.321 (4) Åθ = 1.9–27.9°
c = 14.601 (7) ŵ = 0.16 mm1
β = 98.997 (9)°T = 113 K
V = 1291.3 (10) Å3Prism, colourless
Z = 20.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
6015 independent reflections
Radiation source: rotating anode4456 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.058
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω and φ scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 1010
Tmin = 0.968, Tmax = 0.981l = 1919
13589 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
6015 reflectionsΔρmax = 0.21 e Å3
265 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 2745 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (9)
Crystal data top
C21H42O5Si2V = 1291.3 (10) Å3
Mr = 430.72Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.760 (5) ŵ = 0.16 mm1
b = 8.321 (4) ÅT = 113 K
c = 14.601 (7) Å0.20 × 0.18 × 0.12 mm
β = 98.997 (9)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
6015 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
4456 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.981Rint = 0.058
13589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.21 e Å3
S = 0.98Δρmin = 0.29 e Å3
6015 reflectionsAbsolute structure: Flack (1983), 2745 Friedel pairs
265 parametersAbsolute structure parameter: 0.04 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.43693 (6)0.59832 (8)0.75544 (5)0.02755 (16)
Si20.93837 (6)0.92816 (8)0.82849 (4)0.02554 (16)
O10.55081 (13)0.59788 (19)0.69212 (10)0.0277 (4)
O20.66743 (13)0.92780 (19)0.57018 (10)0.0307 (4)
O30.75863 (16)0.3984 (2)0.44370 (12)0.0421 (5)
O40.93371 (15)0.4208 (2)0.54942 (11)0.0367 (4)
O50.86351 (13)0.89726 (17)0.72306 (10)0.0246 (4)
C10.5623 (2)0.7011 (3)0.61583 (16)0.0274 (6)
H10.47770.74360.58850.033*
C20.61777 (19)0.6039 (3)0.54295 (15)0.0290 (5)
H2A0.57170.50110.53190.035*
H2B0.60660.66440.48380.035*
C30.7562 (2)0.5697 (3)0.57327 (15)0.0250 (5)
C40.8238 (2)0.6447 (3)0.64413 (15)0.0238 (5)
H40.91010.61670.65980.029*
C50.7728 (2)0.7704 (3)0.70088 (15)0.0242 (5)
H50.75640.72020.76010.029*
C60.6494 (2)0.8400 (3)0.65060 (15)0.0266 (6)
H60.60930.90980.69350.032*
C70.6928 (2)1.0957 (3)0.58602 (16)0.0488 (7)
H7A0.62651.14340.61630.073*
H7B0.69501.14960.52660.073*
H7C0.77431.10860.62600.073*
C80.4174 (2)0.8026 (3)0.80365 (17)0.0441 (7)
H8A0.49490.83350.84440.066*
H8B0.34730.80160.83920.066*
H8C0.39980.88010.75270.066*
C90.2855 (2)0.5375 (3)0.68386 (17)0.0412 (7)
H9A0.25370.62590.64230.062*
H9B0.22390.51220.72460.062*
H9C0.29920.44260.64700.062*
C100.4906 (2)0.4488 (3)0.84924 (16)0.0327 (6)
C110.4060 (3)0.4598 (3)0.92525 (17)0.0537 (8)
H11A0.43290.37940.97330.081*
H11B0.31840.43960.89780.081*
H11C0.41310.56730.95290.081*
C120.4852 (3)0.2784 (3)0.80998 (19)0.0501 (8)
H12A0.53570.27270.75980.075*
H12B0.39770.25050.78580.075*
H12C0.51860.20280.85910.075*
C130.6274 (2)0.4848 (3)0.89552 (17)0.0515 (8)
H13A0.65190.40940.94670.077*
H13B0.63250.59500.91940.077*
H13C0.68420.47270.84960.077*
C140.8129 (2)0.4543 (3)0.51520 (17)0.0299 (6)
C150.9983 (3)0.3166 (3)0.49216 (19)0.0448 (7)
H15A0.95610.21190.48530.067*
H15B1.08580.30220.52160.067*
H15C0.99640.36560.43090.067*
C161.0379 (2)0.7499 (3)0.86556 (17)0.0409 (7)
H16A0.98430.65490.86640.061*
H16B1.08470.76840.92780.061*
H16C1.09730.73240.82200.061*
C170.8227 (2)0.9581 (3)0.90962 (15)0.0384 (7)
H17A0.76331.04300.88570.058*
H17B0.86740.98930.97070.058*
H17C0.77680.85780.91510.058*
C181.0368 (2)1.1119 (3)0.81908 (16)0.0314 (6)
C191.1006 (2)1.1013 (3)0.73279 (15)0.0429 (7)
H19A1.15971.19080.73260.064*
H19B1.03671.10690.67710.064*
H19C1.14620.99930.73330.064*
C201.1383 (2)1.1213 (4)0.90549 (17)0.0510 (8)
H20A1.19891.03390.90390.076*
H20B1.09881.11130.96130.076*
H20C1.18201.22480.90640.076*
C210.9558 (3)1.2647 (3)0.8138 (2)0.0521 (9)
H21A0.91371.27100.86850.078*
H21B0.89241.26130.75770.078*
H21C1.00951.35930.81160.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0247 (4)0.0286 (4)0.0307 (4)0.0038 (3)0.0084 (3)0.0005 (3)
Si20.0258 (4)0.0250 (3)0.0258 (4)0.0017 (3)0.0038 (3)0.0023 (3)
O10.0305 (9)0.0244 (8)0.0305 (9)0.0039 (8)0.0118 (7)0.0027 (8)
O20.0330 (10)0.0296 (9)0.0293 (9)0.0063 (9)0.0039 (8)0.0070 (8)
O30.0526 (12)0.0404 (11)0.0344 (10)0.0022 (10)0.0103 (9)0.0126 (9)
O40.0402 (11)0.0333 (9)0.0389 (10)0.0074 (10)0.0137 (9)0.0083 (9)
O50.0239 (9)0.0259 (9)0.0238 (8)0.0070 (7)0.0027 (7)0.0000 (7)
C10.0271 (15)0.0303 (13)0.0261 (13)0.0032 (11)0.0076 (12)0.0023 (11)
C20.0293 (14)0.0325 (13)0.0261 (13)0.0070 (13)0.0071 (11)0.0070 (13)
C30.0284 (13)0.0223 (13)0.0269 (13)0.0053 (10)0.0121 (11)0.0011 (10)
C40.0228 (13)0.0242 (13)0.0258 (13)0.0020 (10)0.0081 (11)0.0010 (10)
C50.0263 (14)0.0243 (12)0.0228 (13)0.0053 (11)0.0060 (11)0.0002 (10)
C60.0297 (15)0.0285 (13)0.0223 (13)0.0015 (11)0.0065 (11)0.0026 (11)
C70.0525 (17)0.0375 (15)0.0521 (18)0.0128 (16)0.0055 (14)0.0143 (16)
C80.0436 (18)0.0375 (15)0.057 (2)0.0024 (14)0.0250 (16)0.0008 (14)
C90.0345 (16)0.0421 (16)0.0460 (17)0.0101 (12)0.0030 (13)0.0066 (14)
C100.0306 (15)0.0356 (15)0.0330 (14)0.0086 (12)0.0089 (12)0.0021 (12)
C110.065 (2)0.057 (2)0.0444 (18)0.0087 (16)0.0247 (16)0.0125 (16)
C120.055 (2)0.0378 (17)0.058 (2)0.0007 (15)0.0082 (17)0.0078 (15)
C130.0412 (18)0.062 (2)0.0471 (18)0.0091 (15)0.0064 (14)0.0198 (16)
C140.0361 (16)0.0248 (14)0.0320 (14)0.0073 (12)0.0146 (12)0.0002 (11)
C150.0537 (18)0.0387 (16)0.0472 (17)0.0135 (15)0.0241 (15)0.0056 (14)
C160.0421 (17)0.0359 (16)0.0429 (17)0.0046 (13)0.0008 (14)0.0045 (14)
C170.0428 (17)0.0393 (17)0.0353 (15)0.0083 (13)0.0136 (13)0.0057 (13)
C180.0321 (14)0.0280 (13)0.0344 (14)0.0053 (13)0.0065 (12)0.0077 (13)
C190.0434 (16)0.0476 (15)0.0392 (16)0.0200 (16)0.0110 (13)0.0045 (15)
C200.0497 (18)0.0577 (19)0.0436 (18)0.0243 (17)0.0011 (15)0.0130 (16)
C210.059 (2)0.0201 (14)0.078 (2)0.0042 (14)0.0140 (19)0.0030 (15)
Geometric parameters (Å, º) top
Si1—O11.6464 (15)C9—H9B0.9800
Si1—C91.863 (2)C9—H9C0.9800
Si1—C81.864 (3)C10—C121.527 (3)
Si1—C101.874 (3)C10—C111.544 (3)
Si2—O51.6421 (16)C10—C131.549 (3)
Si2—C161.860 (2)C11—H11A0.9800
Si2—C171.864 (2)C11—H11B0.9800
Si2—C181.877 (3)C11—H11C0.9800
O1—C11.427 (2)C12—H12A0.9800
O2—C61.422 (2)C12—H12B0.9800
O2—C71.435 (3)C12—H12C0.9800
O3—C141.207 (3)C13—H13A0.9800
O4—C141.347 (3)C13—H13B0.9800
O4—C151.454 (3)C13—H13C0.9800
O5—C51.440 (2)C15—H15A0.9800
C1—C61.523 (3)C15—H15B0.9800
C1—C21.530 (3)C15—H15C0.9800
C1—H11.0000C16—H16A0.9800
C2—C31.513 (3)C16—H16B0.9800
C2—H2A0.9900C16—H16C0.9800
C2—H2B0.9900C17—H17A0.9800
C3—C41.324 (3)C17—H17B0.9800
C3—C141.475 (3)C17—H17C0.9800
C4—C51.492 (3)C18—C191.529 (3)
C4—H40.9500C18—C201.536 (3)
C5—C61.527 (3)C18—C211.537 (3)
C5—H51.0000C19—H19A0.9800
C6—H61.0000C19—H19B0.9800
C7—H7A0.9800C19—H19C0.9800
C7—H7B0.9800C20—H20A0.9800
C7—H7C0.9800C20—H20B0.9800
C8—H8A0.9800C20—H20C0.9800
C8—H8B0.9800C21—H21A0.9800
C8—H8C0.9800C21—H21B0.9800
C9—H9A0.9800C21—H21C0.9800
O1—Si1—C9110.29 (10)C12—C10—Si1110.67 (18)
O1—Si1—C8110.58 (10)C11—C10—Si1109.69 (17)
C9—Si1—C8108.63 (12)C13—C10—Si1110.70 (16)
O1—Si1—C10103.74 (10)C10—C11—H11A109.5
C9—Si1—C10111.85 (11)C10—C11—H11B109.5
C8—Si1—C10111.69 (12)H11A—C11—H11B109.5
O5—Si2—C16108.88 (10)C10—C11—H11C109.5
O5—Si2—C17109.77 (10)H11A—C11—H11C109.5
C16—Si2—C17109.45 (12)H11B—C11—H11C109.5
O5—Si2—C18104.99 (10)C10—C12—H12A109.5
C16—Si2—C18111.41 (12)C10—C12—H12B109.5
C17—Si2—C18112.21 (11)H12A—C12—H12B109.5
C1—O1—Si1126.87 (15)C10—C12—H12C109.5
C6—O2—C7114.49 (18)H12A—C12—H12C109.5
C14—O4—C15115.5 (2)H12B—C12—H12C109.5
C5—O5—Si2122.79 (13)C10—C13—H13A109.5
O1—C1—C6108.68 (18)C10—C13—H13B109.5
O1—C1—C2108.40 (18)H13A—C13—H13B109.5
C6—C1—C2110.27 (18)C10—C13—H13C109.5
O1—C1—H1109.8H13A—C13—H13C109.5
C6—C1—H1109.8H13B—C13—H13C109.5
C2—C1—H1109.8O3—C14—O4123.3 (2)
C3—C2—C1111.65 (19)O3—C14—C3124.1 (2)
C3—C2—H2A109.3O4—C14—C3112.5 (2)
C1—C2—H2A109.3O4—C15—H15A109.5
C3—C2—H2B109.3O4—C15—H15B109.5
C1—C2—H2B109.3H15A—C15—H15B109.5
H2A—C2—H2B108.0O4—C15—H15C109.5
C4—C3—C14122.0 (2)H15A—C15—H15C109.5
C4—C3—C2122.4 (2)H15B—C15—H15C109.5
C14—C3—C2115.5 (2)Si2—C16—H16A109.5
C3—C4—C5124.0 (2)Si2—C16—H16B109.5
C3—C4—H4118.0H16A—C16—H16B109.5
C5—C4—H4118.0Si2—C16—H16C109.5
O5—C5—C4110.08 (18)H16A—C16—H16C109.5
O5—C5—C6109.77 (18)H16B—C16—H16C109.5
C4—C5—C6111.52 (19)Si2—C17—H17A109.5
O5—C5—H5108.5Si2—C17—H17B109.5
C4—C5—H5108.5H17A—C17—H17B109.5
C6—C5—H5108.5Si2—C17—H17C109.5
O2—C6—C1105.72 (18)H17A—C17—H17C109.5
O2—C6—C5111.78 (18)H17B—C17—H17C109.5
C1—C6—C5108.40 (19)C19—C18—C20109.1 (2)
O2—C6—H6110.3C19—C18—C21109.3 (2)
C1—C6—H6110.3C20—C18—C21108.9 (2)
C5—C6—H6110.3C19—C18—Si2110.14 (17)
O2—C7—H7A109.5C20—C18—Si2108.56 (18)
O2—C7—H7B109.5C21—C18—Si2110.82 (16)
H7A—C7—H7B109.5C18—C19—H19A109.5
O2—C7—H7C109.5C18—C19—H19B109.5
H7A—C7—H7C109.5H19A—C19—H19B109.5
H7B—C7—H7C109.5C18—C19—H19C109.5
Si1—C8—H8A109.5H19A—C19—H19C109.5
Si1—C8—H8B109.5H19B—C19—H19C109.5
H8A—C8—H8B109.5C18—C20—H20A109.5
Si1—C8—H8C109.5C18—C20—H20B109.5
H8A—C8—H8C109.5H20A—C20—H20B109.5
H8B—C8—H8C109.5C18—C20—H20C109.5
Si1—C9—H9A109.5H20A—C20—H20C109.5
Si1—C9—H9B109.5H20B—C20—H20C109.5
H9A—C9—H9B109.5C18—C21—H21A109.5
Si1—C9—H9C109.5C18—C21—H21B109.5
H9A—C9—H9C109.5H21A—C21—H21B109.5
H9B—C9—H9C109.5C18—C21—H21C109.5
C12—C10—C11109.4 (2)H21A—C21—H21C109.5
C12—C10—C13108.7 (2)H21B—C21—H21C109.5
C11—C10—C13107.5 (2)
C9—Si1—O1—C165.82 (19)O5—C5—C6—C1171.87 (16)
C8—Si1—O1—C154.4 (2)C4—C5—C6—C149.6 (2)
C10—Si1—O1—C1174.24 (17)O1—Si1—C10—C1270.14 (19)
C16—Si2—O5—C563.48 (18)C9—Si1—C10—C1248.7 (2)
C17—Si2—O5—C556.31 (18)C8—Si1—C10—C12170.72 (18)
C18—Si2—O5—C5177.12 (16)O1—Si1—C10—C11169.01 (16)
Si1—O1—C1—C697.0 (2)C9—Si1—C10—C1172.1 (2)
Si1—O1—C1—C2143.19 (15)C8—Si1—C10—C1149.9 (2)
O1—C1—C2—C373.1 (2)O1—Si1—C10—C1350.48 (19)
C6—C1—C2—C345.8 (3)C9—Si1—C10—C13169.35 (17)
C1—C2—C3—C413.4 (3)C8—Si1—C10—C1368.6 (2)
C1—C2—C3—C14170.15 (18)C15—O4—C14—O32.6 (3)
C14—C3—C4—C5175.70 (19)C15—O4—C14—C3175.76 (18)
C2—C3—C4—C50.5 (3)C4—C3—C14—O3170.6 (2)
Si2—O5—C5—C4110.40 (18)C2—C3—C14—O35.9 (3)
Si2—O5—C5—C6126.48 (16)C4—C3—C14—O47.8 (3)
C3—C4—C5—O5140.3 (2)C2—C3—C14—O4175.7 (2)
C3—C4—C5—C618.3 (3)O5—Si2—C18—C1943.92 (18)
C7—O2—C6—C1151.68 (18)C16—Si2—C18—C1973.8 (2)
C7—O2—C6—C590.6 (2)C17—Si2—C18—C19163.11 (17)
O1—C1—C6—O2173.92 (17)O5—Si2—C18—C20163.30 (16)
C2—C1—C6—O255.2 (2)C16—Si2—C18—C2045.6 (2)
O1—C1—C6—C553.9 (2)C17—Si2—C18—C2077.52 (19)
C2—C1—C6—C564.8 (2)O5—Si2—C18—C2177.13 (18)
O5—C5—C6—O255.7 (2)C16—Si2—C18—C21165.17 (17)
C4—C5—C6—O266.5 (2)C17—Si2—C18—C2142.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O3i0.982.553.410 (3)147
C9—H9A···O3ii0.982.593.527 (3)161
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H42O5Si2
Mr430.72
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)10.760 (5), 8.321 (4), 14.601 (7)
β (°) 98.997 (9)
V3)1291.3 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.968, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
13589, 6015, 4456
Rint0.058
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.073, 0.98
No. of reflections6015
No. of parameters265
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.29
Absolute structureFlack (1983), 2745 Friedel pairs
Absolute structure parameter0.04 (9)

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O3i0.982.553.410 (3)147
C9—H9A···O3ii0.982.593.527 (3)161
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

The synthesis and evaluation of the title compound was undertaken as part of the National Science and Technology Major Project "The synthesis and anti­cancer activity screening of novel chalcone derivatives". The authors thank the State Key Laboratory of Elemento-organic Chemistry Nankai University, for the X-ray data collection.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeymach, J. V. (2005). Br. J. Cancer, 92(Suppl 1), 14–20.  Google Scholar
First citationMorabito, A., Piccirillo, M. C., Falasconi, F., De Feo, G., Del Giudice, A., Bryce, J., Di Maio, M., De Maio, E., Normanno, N. & Perrone, F. (2009). Oncologist, 14, 378–390.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNatale, R. B., Thongprasert, S., Greco, F. A., Thomas, M., Tsai, C. M., Sunpaweravong, P., Ferry, D., Langmuir, P., Rowbottom, J. A. & Goss, G. D. (2009). J. Clin. Oncol. 27(15S), abstr. 8009.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWells, S. A., Gosnell, J. E., Gagel, R. F., Moley, J., Pfister, D., Sosa, J. A., Skinner, M., Krebs, A., Vasselli, J. & Schlumberger, M. (2010). J. Clin. Oncol. 28, 767–772.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds