organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,7-Di­meth­­oxy­naphthalen-1-yl)(naph­thalen-1-yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan, and bDivision of Liberal Arts, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 18 March 2013; accepted 1 April 2013; online 5 April 2013)

The asymmetric unit of the title compound, C23H18O3, contains two independent mol­ecules (A and B). Each mol­ecule has essentially the same conformation (r.m.s. deviation of fitted mol­ecules = 0.173 Å) with the aromatic rings twisted in a near perpendicular manner. The dihedral angles between the two naphthalene ring systems are 79.07 (4) and 88.19 (4)° in the two independent mol­ecules. In the crystal, the A mol­ecules are connected by C—H⋯O inter­actions, forming chains along the b-axis direction. Further C—H⋯O inter­actions between the H atoms of the meth­oxy group and the O atoms of the carbonyl units link the A and B mol­ecules, forming a three-dimensional network.

Related literature

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Tsumuki et al. (2012[Tsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595.], 2013[Tsumuki, T., Takeuchi, R., Kawano, H., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. E69, o495-o496.]); Sasagawa et al. (2013[Sasagawa, K., Sakamoto, R., Hijikata, D., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o363.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18O3

  • Mr = 342.37

  • Monoclinic, P 21 /n

  • a = 16.1451 (3) Å

  • b = 7.51303 (14) Å

  • c = 29.0107 (5) Å

  • β = 98.547 (1)°

  • V = 3479.88 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 193 K

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.725, Tmax = 0.934

  • 62016 measured reflections

  • 6349 independent reflections

  • 5490 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.07

  • 6349 reflections

  • 470 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O6 0.98 2.51 3.2862 (18) 136
C19—H19⋯O3i 0.95 2.40 3.2418 (17) 148
C15—H15⋯O3 0.95 2.19 2.8397 (16) 125
C38—H38⋯O6 0.95 2.25 2.8548 (17) 121
Symmetry code: (i) x, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), 2,7-diethoxy-1,8-bis(1-naphthoyl)naphthalene [{2,7-diethoxy-8-[(naphthalen-1-yl)carbonyl]naphthalen-1-yl}(naphthalen-1-yl)methanone; Tsumuki et al., 2013]. The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected almost perpendicularly and oriented in opposite directions. Moreover, we have reported crystal structures of 1-monoaroylnapthalene compounds such as 1-benzoyl-2,7-dimethoxynaphthalene [(2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone; Kato et al., 2010], 2,7-dimethoxy-1-(2-naphthoyl)naphthalene (Tsumuki et al., 2012), and 1-(4-methoxybenzoyl)-2,7-dimethoxynaphthalene [(2,7-dimethoxynaphthalen-1-yl)(4-methoxyphenyl)methanone; Sasagawa et al. 2013]. They have essentially the same non-coplanarly accumulated aromatic-rings structure as the homologous 1,8-diaroylnaphthalenes. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, the 2,7-dimethoxynaphthalene bearing an α-naphthoyl group at the 1-position, is discussed in this article.

There are two independent molecules in the crystal structure of the title compound. The independent molecules are labeled (A) and (B) and show intramolecular C—H···O interactions between the carbonyl oxygen atoms and hydrogen atoms of the naphthoyl groups (Fig. 1 and Table 1). Each independent molecule has essentially the same non-coplanar structure as indicated by a least-squares fit of both molecules (r.m.s. deviation 0.173 Å). The naphthalene ring of the naphthoyl group and 2,7-dimethoxynaphthalene ring in molecules (A) and (B) make similar dihedral angles with each other and torsion angles with the ketonic carbonyl moieties. The differences of the dihedral angles and the torsion angles between molecules (A) and (B) are smaller than 10°. The respective dihedral angles between the best plane of the two naphthalene rings in molecules (A) and (B) are 79.07 (4)° and 88.19 (4)°. The torsion angles between the bridging carbonyl moieties and the 2,7-dimethoxynaphthalene unit in molecules (A) and (B) are 73.42 (16)° (C7—C10—C13—O3) and -68.22 (18)° (C30—C33—C36—O6). On the other hand, the torsion angles between the bridging carbonyl moieties and the naphthalene rings of naphthoyl groups in molecules (A) and (B) are rather small [O3—C13—C14—C17 torsion angle = 3.46 (19)° for molecule (A)] and [O6—C36—C37—C40 torsion angle = -11.4 (2)° for molecule (B)].

In the molecular packing, the molecules (A) are linked into chains along the b axis direction by C—H···O interactions between the naphthoyl groups. Both molecules (A) and (B) are connected by C—H···O interactions between the hydrogen atoms of the methoxy group and the oxygen atoms of the carbonyl moieties, forming a three-dimensional network (Fig.2, Table 1).

Related literature top

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Kato et al. (2010); Tsumuki et al. (2012, 2013); Sasagawa et al. (2013).

Experimental top

To a solution of 1-naphthoyl chloride (419 mg, 2.2 mmol), AlCl3 (440 mg, 3.3 mmol) and CH2Cl2 (10 ml), 2,7-dimethoxynaphthalene (376 mg, 2.0 mmol) was added. The reaction mixture was stirred at 273 K for 6 h, then poured into ice-cold water. The aqueous layer was extracted with CHCl3 (20 ml × 3) and the combined extracts were washed with 2 M aqueous NaOH (20 ml × 3) followed by washing with brine (20 ml × 3). The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 96%). The crude product was purified by recrystallization from hexane (isolated yield 65%). Yellow platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from hexane. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

All the H atoms were located in a difference Fourier map and were subsequently refined as riding atoms: C—H = 0.95 (aromatic) and 0.98 (methyl) Å with Uiso(H) = 1.2 Ueq(C).

Structure description top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), 2,7-diethoxy-1,8-bis(1-naphthoyl)naphthalene [{2,7-diethoxy-8-[(naphthalen-1-yl)carbonyl]naphthalen-1-yl}(naphthalen-1-yl)methanone; Tsumuki et al., 2013]. The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected almost perpendicularly and oriented in opposite directions. Moreover, we have reported crystal structures of 1-monoaroylnapthalene compounds such as 1-benzoyl-2,7-dimethoxynaphthalene [(2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone; Kato et al., 2010], 2,7-dimethoxy-1-(2-naphthoyl)naphthalene (Tsumuki et al., 2012), and 1-(4-methoxybenzoyl)-2,7-dimethoxynaphthalene [(2,7-dimethoxynaphthalen-1-yl)(4-methoxyphenyl)methanone; Sasagawa et al. 2013]. They have essentially the same non-coplanarly accumulated aromatic-rings structure as the homologous 1,8-diaroylnaphthalenes. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, the 2,7-dimethoxynaphthalene bearing an α-naphthoyl group at the 1-position, is discussed in this article.

There are two independent molecules in the crystal structure of the title compound. The independent molecules are labeled (A) and (B) and show intramolecular C—H···O interactions between the carbonyl oxygen atoms and hydrogen atoms of the naphthoyl groups (Fig. 1 and Table 1). Each independent molecule has essentially the same non-coplanar structure as indicated by a least-squares fit of both molecules (r.m.s. deviation 0.173 Å). The naphthalene ring of the naphthoyl group and 2,7-dimethoxynaphthalene ring in molecules (A) and (B) make similar dihedral angles with each other and torsion angles with the ketonic carbonyl moieties. The differences of the dihedral angles and the torsion angles between molecules (A) and (B) are smaller than 10°. The respective dihedral angles between the best plane of the two naphthalene rings in molecules (A) and (B) are 79.07 (4)° and 88.19 (4)°. The torsion angles between the bridging carbonyl moieties and the 2,7-dimethoxynaphthalene unit in molecules (A) and (B) are 73.42 (16)° (C7—C10—C13—O3) and -68.22 (18)° (C30—C33—C36—O6). On the other hand, the torsion angles between the bridging carbonyl moieties and the naphthalene rings of naphthoyl groups in molecules (A) and (B) are rather small [O3—C13—C14—C17 torsion angle = 3.46 (19)° for molecule (A)] and [O6—C36—C37—C40 torsion angle = -11.4 (2)° for molecule (B)].

In the molecular packing, the molecules (A) are linked into chains along the b axis direction by C—H···O interactions between the naphthoyl groups. Both molecules (A) and (B) are connected by C—H···O interactions between the hydrogen atoms of the methoxy group and the oxygen atoms of the carbonyl moieties, forming a three-dimensional network (Fig.2, Table 1).

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Kato et al. (2010); Tsumuki et al. (2012, 2013); Sasagawa et al. (2013).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the two independent molecules (A) and (B), with atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C—H···O interaction is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the intermolecular C—H···O interactions (see Table 1 for details; symmetry code: (i) x, 1 + y, z).
(2,7-Dimethoxynaphthalen-1-yl)(naphthalen-1-yl)methanone top
Crystal data top
C23H18O3F(000) = 1440
Mr = 342.37Dx = 1.307 Mg m3
Monoclinic, P21/nMelting point = 391.4–392.7 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54187 Å
a = 16.1451 (3) ÅCell parameters from 51750 reflections
b = 7.51303 (14) Åθ = 3.0–68.2°
c = 29.0107 (5) ŵ = 0.69 mm1
β = 98.547 (1)°T = 193 K
V = 3479.88 (11) Å3Platelet, yellow
Z = 80.50 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6349 independent reflections
Radiation source: fine-focus sealed tube5490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.0°
ω scansh = 1919
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 88
Tmin = 0.725, Tmax = 0.934l = 3434
62016 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.6272P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6349 reflectionsΔρmax = 0.21 e Å3
470 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00173 (12)
Crystal data top
C23H18O3V = 3479.88 (11) Å3
Mr = 342.37Z = 8
Monoclinic, P21/nCu Kα radiation
a = 16.1451 (3) ŵ = 0.69 mm1
b = 7.51303 (14) ÅT = 193 K
c = 29.0107 (5) Å0.50 × 0.20 × 0.10 mm
β = 98.547 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6349 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
5490 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.934Rint = 0.032
62016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
6349 reflectionsΔρmin = 0.24 e Å3
470 parameters
Special details top

Experimental. Spectroscopic data for the title compound: 1H NMR δ (500 MHz, CDCl3): 3.67 (3H, s), 3.68 (3H, s), 7.02–7.05 (2H, m), 7.14 (1H, dd, J = 1.2, 8.6 Hz), 7.34 (1H, t, J = 8.6 Hz), 7.58–7.61 (2H, m), 7.69–7.74 (2H, m), 7.88 (1H, d, J = 8.6 Hz), 7.93 (1H, d, J = 8.6 Hz), 8.00 (1H, d, J = 8.6 Hz), 9.14 (1H, d, J = 8.6 Hz) p.p.m.; 13C NMR δ (125 MHz, CDCl3): 55.15, 56.41, 102.10, 110.57, 117.19, 123.94, 124.39,124.50, 126.17, 126.42, 128.28, 128.42, 129.61, 130.71, 131.20, 131.27, 132.14,133.39, 133.96, 136.20, 155.53, 159.08, 200.04 p.p.m.; IR (KBr): 1652, 1623,1510, 1250, 1227 cm-1; HRMS (m/z): [M+H]+ calcd. for C23H19O3, 343.1334, found, 343.1310.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.01615 (7)0.12392 (16)0.33256 (3)0.0616 (3)
O20.70559 (6)0.15461 (14)0.12536 (3)0.0508 (2)
O30.89345 (7)0.05216 (13)0.15993 (4)0.0622 (3)
O40.26783 (6)0.25199 (14)0.10328 (3)0.0554 (3)
O50.40252 (6)0.56893 (14)0.00664 (3)0.0569 (3)
O60.43705 (6)0.04372 (18)0.12626 (3)0.0639 (3)
C10.79575 (10)0.21648 (19)0.31798 (5)0.0494 (3)
H10.75530.24450.33750.059*
C20.68602 (9)0.21983 (18)0.24859 (5)0.0462 (3)
H20.64490.24500.26790.055*
C30.87670 (10)0.1930 (2)0.33734 (5)0.0529 (4)
H30.89250.20480.37010.063*
C40.76993 (8)0.20020 (17)0.26918 (4)0.0421 (3)
C50.66176 (8)0.20393 (18)0.20164 (5)0.0467 (3)
H50.60450.21540.18860.056*
C60.93771 (9)0.15083 (18)0.30871 (5)0.0471 (3)
C70.83205 (8)0.16239 (16)0.24039 (4)0.0382 (3)
C80.72308 (8)0.17014 (17)0.17282 (4)0.0411 (3)
C90.91635 (8)0.13863 (17)0.26125 (4)0.0417 (3)
H90.95820.11420.24230.050*
C100.80601 (8)0.14999 (16)0.19160 (4)0.0379 (3)
C111.08006 (10)0.0764 (3)0.30625 (6)0.0700 (5)
H11A1.08590.17010.28340.084*
H11B1.06530.03600.28990.084*
H11C1.13320.06240.32720.084*
C120.62104 (9)0.1748 (2)0.10372 (5)0.0599 (4)
H12A0.59940.28970.11260.072*
H12B0.58700.07860.11390.072*
H12C0.61850.16990.06980.072*
C130.86907 (8)0.10129 (17)0.16010 (4)0.0390 (3)
C140.90082 (7)0.24390 (16)0.13158 (4)0.0347 (3)
C150.99264 (7)0.04222 (18)0.09065 (4)0.0409 (3)
H150.97620.05930.10660.049*
C160.87278 (8)0.41462 (17)0.13703 (4)0.0409 (3)
H160.83430.43540.15830.049*
C170.95957 (7)0.21113 (17)0.09948 (4)0.0345 (3)
C181.04813 (8)0.0228 (2)0.05938 (5)0.0472 (3)
H181.06880.09240.05370.057*
C190.89927 (9)0.55883 (18)0.11217 (5)0.0468 (3)
H190.87870.67510.11660.056*
C200.98600 (7)0.35935 (17)0.07484 (4)0.0383 (3)
C211.07479 (8)0.1691 (2)0.03572 (4)0.0468 (3)
H211.11380.15390.01450.056*
C220.95445 (8)0.53152 (18)0.08181 (5)0.0454 (3)
H220.97210.62950.06500.055*
C231.04435 (8)0.33343 (19)0.04336 (4)0.0441 (3)
H231.06250.43300.02730.053*
C240.28062 (9)0.2044 (2)0.04715 (5)0.0553 (4)
H240.25350.17470.07750.066*
C250.23599 (8)0.0818 (2)0.01668 (5)0.0514 (4)
H250.21000.11400.04710.062*
C260.32023 (10)0.3634 (2)0.04014 (5)0.0563 (4)
H260.31900.44530.06520.068*
C270.27864 (8)0.0814 (2)0.01026 (4)0.0462 (3)
C280.23074 (8)0.1957 (2)0.01966 (5)0.0505 (3)
H280.20130.30520.01460.061*
C290.36339 (8)0.4072 (2)0.00453 (5)0.0485 (3)
C300.32048 (7)0.12731 (19)0.03493 (4)0.0421 (3)
C310.26984 (8)0.14760 (19)0.06465 (5)0.0453 (3)
C320.36395 (8)0.29237 (19)0.04120 (4)0.0443 (3)
H320.39340.32300.07100.053*
C330.31488 (8)0.00766 (19)0.07226 (4)0.0420 (3)
C340.44996 (10)0.6200 (2)0.05015 (5)0.0582 (4)
H34A0.49680.53730.05820.070*
H34B0.41390.61690.07450.070*
H34C0.47170.74090.04760.070*
C350.21515 (10)0.4043 (2)0.09906 (6)0.0609 (4)
H35A0.15740.36830.08760.073*
H35B0.21730.46130.12960.073*
H35C0.23430.48860.07710.073*
C360.36123 (8)0.04884 (19)0.12026 (4)0.0425 (3)
C370.31181 (8)0.10627 (17)0.15718 (4)0.0387 (3)
C380.43097 (8)0.0746 (2)0.22378 (5)0.0491 (3)
H380.46490.01670.20420.059*
C390.22936 (8)0.15209 (18)0.14364 (4)0.0438 (3)
H390.20470.13150.11230.053*
C400.34895 (8)0.12952 (18)0.20514 (4)0.0404 (3)
C410.46189 (10)0.1041 (3)0.26970 (5)0.0623 (4)
H410.51670.06450.28180.075*
C420.18033 (9)0.2282 (2)0.17458 (5)0.0503 (3)
H420.12330.25680.16430.060*
C430.29889 (9)0.21202 (19)0.23588 (5)0.0460 (3)
C440.41358 (11)0.1922 (3)0.29922 (5)0.0682 (5)
H440.43670.21590.33070.082*
C450.21523 (9)0.26059 (19)0.21939 (5)0.0503 (3)
H450.18280.31690.24000.060*
C460.33410 (11)0.2433 (2)0.28285 (5)0.0591 (4)
H460.30160.30090.30320.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0597 (6)0.0755 (8)0.0473 (6)0.0055 (5)0.0005 (5)0.0061 (5)
O20.0410 (5)0.0697 (7)0.0426 (5)0.0012 (4)0.0086 (4)0.0032 (4)
O30.0889 (8)0.0381 (6)0.0710 (7)0.0088 (5)0.0490 (6)0.0040 (5)
O40.0575 (6)0.0554 (6)0.0525 (6)0.0099 (5)0.0060 (4)0.0040 (5)
O50.0605 (6)0.0588 (7)0.0532 (6)0.0020 (5)0.0145 (5)0.0091 (5)
O60.0373 (5)0.1113 (10)0.0429 (5)0.0012 (5)0.0053 (4)0.0015 (6)
C10.0653 (9)0.0448 (8)0.0432 (7)0.0004 (7)0.0247 (6)0.0036 (6)
C20.0507 (7)0.0416 (7)0.0519 (8)0.0010 (6)0.0257 (6)0.0020 (6)
C30.0709 (9)0.0524 (9)0.0371 (7)0.0003 (7)0.0136 (6)0.0045 (6)
C40.0517 (7)0.0344 (7)0.0443 (7)0.0010 (5)0.0208 (6)0.0022 (5)
C50.0410 (7)0.0462 (8)0.0559 (8)0.0014 (6)0.0164 (6)0.0001 (6)
C60.0553 (8)0.0429 (8)0.0432 (7)0.0019 (6)0.0080 (6)0.0028 (6)
C70.0470 (7)0.0308 (6)0.0398 (6)0.0027 (5)0.0158 (5)0.0017 (5)
C80.0449 (7)0.0396 (7)0.0408 (7)0.0013 (5)0.0128 (5)0.0015 (5)
C90.0471 (7)0.0385 (7)0.0419 (7)0.0016 (5)0.0142 (5)0.0037 (5)
C100.0424 (6)0.0344 (7)0.0394 (6)0.0020 (5)0.0144 (5)0.0021 (5)
C110.0542 (9)0.0850 (13)0.0675 (10)0.0114 (8)0.0017 (8)0.0125 (9)
C120.0455 (8)0.0787 (11)0.0542 (8)0.0037 (7)0.0036 (6)0.0021 (8)
C130.0435 (6)0.0381 (7)0.0371 (6)0.0011 (5)0.0121 (5)0.0043 (5)
C140.0335 (6)0.0387 (7)0.0318 (6)0.0007 (5)0.0044 (4)0.0031 (5)
C150.0377 (6)0.0428 (7)0.0438 (7)0.0009 (5)0.0110 (5)0.0004 (5)
C160.0428 (6)0.0397 (7)0.0415 (6)0.0007 (5)0.0112 (5)0.0053 (5)
C170.0301 (5)0.0425 (7)0.0302 (5)0.0020 (5)0.0024 (4)0.0030 (5)
C180.0418 (7)0.0504 (8)0.0513 (7)0.0047 (6)0.0134 (6)0.0060 (6)
C190.0536 (8)0.0363 (7)0.0517 (7)0.0027 (6)0.0116 (6)0.0003 (6)
C200.0364 (6)0.0449 (7)0.0331 (6)0.0035 (5)0.0031 (5)0.0006 (5)
C210.0376 (6)0.0643 (9)0.0409 (7)0.0009 (6)0.0135 (5)0.0043 (6)
C220.0525 (7)0.0410 (7)0.0431 (7)0.0054 (6)0.0078 (6)0.0049 (6)
C230.0406 (6)0.0550 (8)0.0372 (6)0.0075 (6)0.0079 (5)0.0021 (6)
C240.0510 (8)0.0819 (11)0.0329 (7)0.0076 (8)0.0059 (6)0.0000 (7)
C250.0404 (7)0.0739 (10)0.0397 (7)0.0040 (7)0.0051 (5)0.0139 (7)
C260.0573 (8)0.0737 (11)0.0394 (7)0.0094 (8)0.0117 (6)0.0113 (7)
C270.0381 (6)0.0671 (9)0.0341 (6)0.0077 (6)0.0079 (5)0.0053 (6)
C280.0408 (7)0.0597 (9)0.0512 (8)0.0009 (6)0.0074 (6)0.0134 (7)
C290.0444 (7)0.0586 (9)0.0449 (7)0.0074 (6)0.0142 (6)0.0036 (6)
C300.0355 (6)0.0566 (8)0.0350 (6)0.0065 (6)0.0086 (5)0.0026 (6)
C310.0384 (6)0.0543 (8)0.0438 (7)0.0026 (6)0.0081 (5)0.0022 (6)
C320.0404 (6)0.0573 (8)0.0361 (6)0.0038 (6)0.0087 (5)0.0001 (6)
C330.0368 (6)0.0528 (8)0.0366 (6)0.0027 (6)0.0066 (5)0.0028 (6)
C340.0562 (8)0.0581 (9)0.0617 (9)0.0018 (7)0.0130 (7)0.0001 (7)
C350.0583 (9)0.0548 (9)0.0710 (10)0.0091 (7)0.0144 (7)0.0016 (8)
C360.0386 (6)0.0508 (8)0.0376 (6)0.0023 (6)0.0042 (5)0.0052 (6)
C370.0401 (6)0.0398 (7)0.0358 (6)0.0048 (5)0.0047 (5)0.0021 (5)
C380.0453 (7)0.0608 (9)0.0399 (7)0.0078 (6)0.0015 (5)0.0063 (6)
C390.0428 (7)0.0485 (8)0.0393 (7)0.0003 (6)0.0029 (5)0.0009 (6)
C400.0436 (7)0.0409 (7)0.0363 (6)0.0085 (5)0.0045 (5)0.0025 (5)
C410.0531 (8)0.0844 (12)0.0452 (8)0.0132 (8)0.0063 (6)0.0080 (8)
C420.0440 (7)0.0530 (9)0.0541 (8)0.0053 (6)0.0083 (6)0.0008 (6)
C430.0554 (8)0.0425 (8)0.0408 (7)0.0099 (6)0.0099 (6)0.0012 (6)
C440.0762 (11)0.0868 (13)0.0385 (8)0.0232 (9)0.0022 (7)0.0059 (8)
C450.0563 (8)0.0458 (8)0.0518 (8)0.0004 (6)0.0180 (6)0.0033 (6)
C460.0749 (10)0.0619 (10)0.0409 (7)0.0145 (8)0.0102 (7)0.0089 (7)
Geometric parameters (Å, º) top
O1—C61.3648 (17)C20—C231.4196 (17)
O1—C111.4173 (19)C21—C231.359 (2)
O2—C81.3690 (15)C21—H210.9500
O2—C121.4232 (17)C22—H220.9500
O3—C131.2185 (16)C23—H230.9500
O4—C311.3723 (16)C24—C261.356 (2)
O4—C351.4203 (18)C24—C271.418 (2)
O5—C291.3669 (18)C24—H240.9500
O5—C341.4283 (18)C25—C281.371 (2)
O6—C361.2111 (15)C25—C271.404 (2)
C1—C31.355 (2)C25—H250.9500
C1—C41.4206 (19)C26—C291.416 (2)
C1—H10.9500C26—H260.9500
C2—C51.365 (2)C27—C301.4250 (17)
C2—C41.405 (2)C28—C311.4099 (19)
C2—H20.9500C28—H280.9500
C3—C61.415 (2)C29—C321.3686 (19)
C3—H30.9500C30—C331.4208 (18)
C4—C71.4257 (17)C30—C321.423 (2)
C5—C81.4104 (17)C31—C331.3749 (19)
C5—H50.9500C32—H320.9500
C6—C91.3718 (18)C33—C361.5116 (17)
C7—C91.4163 (18)C34—H34A0.9800
C7—C101.4187 (17)C34—H34B0.9800
C8—C101.3767 (18)C34—H34C0.9800
C9—H90.9500C35—H35A0.9800
C10—C131.5106 (16)C35—H35B0.9800
C11—H11A0.9800C35—H35C0.9800
C11—H11B0.9800C36—C371.4913 (18)
C11—H11C0.9800C37—C391.3745 (18)
C12—H12A0.9800C37—C401.4417 (17)
C12—H12B0.9800C38—C411.3694 (19)
C12—H12C0.9800C38—C401.4154 (18)
C13—C141.4904 (17)C38—H380.9500
C14—C161.3772 (18)C39—C421.4036 (19)
C14—C171.4457 (16)C39—H390.9500
C15—C181.3742 (17)C40—C431.4307 (19)
C15—C171.4148 (18)C41—C441.406 (3)
C15—H150.9500C41—H410.9500
C16—C191.4031 (19)C42—C451.360 (2)
C16—H160.9500C42—H420.9500
C17—C201.4226 (17)C43—C451.412 (2)
C18—C211.397 (2)C43—C461.4160 (19)
C18—H180.9500C44—C461.356 (2)
C19—C221.3583 (19)C44—H440.9500
C19—H190.9500C45—H450.9500
C20—C221.4156 (19)C46—H460.9500
C6—O1—C11117.34 (11)C21—C23—H23119.3
C8—O2—C12118.39 (10)C20—C23—H23119.3
C31—O4—C35118.47 (12)C26—C24—C27121.61 (13)
C29—O5—C34117.53 (11)C26—C24—H24119.2
C3—C1—C4121.59 (12)C27—C24—H24119.2
C3—C1—H1119.2C28—C25—C27121.89 (13)
C4—C1—H1119.2C28—C25—H25119.1
C5—C2—C4122.04 (12)C27—C25—H25119.1
C5—C2—H2119.0C24—C26—C29119.94 (14)
C4—C2—H2119.0C24—C26—H26120.0
C1—C3—C6119.90 (12)C29—C26—H26120.0
C1—C3—H3120.1C25—C27—C24122.30 (13)
C6—C3—H3120.1C25—C27—C30119.30 (13)
C2—C4—C1122.43 (12)C24—C27—C30118.39 (14)
C2—C4—C7119.33 (12)C25—C28—C31118.77 (14)
C1—C4—C7118.24 (12)C25—C28—H28120.6
C2—C5—C8118.98 (12)C31—C28—H28120.6
C2—C5—H5120.5O5—C29—C32125.16 (13)
C8—C5—H5120.5O5—C29—C26114.14 (13)
O1—C6—C9125.09 (13)C32—C29—C26120.70 (14)
O1—C6—C3114.20 (12)C33—C30—C32122.67 (11)
C9—C6—C3120.71 (13)C33—C30—C27118.22 (13)
C9—C7—C10122.79 (11)C32—C30—C27119.08 (12)
C9—C7—C4119.34 (11)O4—C31—C33115.45 (12)
C10—C7—C4117.88 (12)O4—C31—C28123.21 (13)
O2—C8—C10115.57 (11)C33—C31—C28121.32 (13)
O2—C8—C5123.61 (12)C29—C32—C30120.23 (12)
C10—C8—C5120.82 (12)C29—C32—H32119.9
C6—C9—C7120.18 (12)C30—C32—H32119.9
C6—C9—H9119.9C31—C33—C30120.42 (12)
C7—C9—H9119.9C31—C33—C36119.95 (12)
C8—C10—C7120.93 (11)C30—C33—C36119.60 (12)
C8—C10—C13119.38 (11)O5—C34—H34A109.5
C7—C10—C13119.54 (11)O5—C34—H34B109.5
O1—C11—H11A109.5H34A—C34—H34B109.5
O1—C11—H11B109.5O5—C34—H34C109.5
H11A—C11—H11B109.5H34A—C34—H34C109.5
O1—C11—H11C109.5H34B—C34—H34C109.5
H11A—C11—H11C109.5O4—C35—H35A109.5
H11B—C11—H11C109.5O4—C35—H35B109.5
O2—C12—H12A109.5H35A—C35—H35B109.5
O2—C12—H12B109.5O4—C35—H35C109.5
H12A—C12—H12B109.5H35A—C35—H35C109.5
O2—C12—H12C109.5H35B—C35—H35C109.5
H12A—C12—H12C109.5O6—C36—C37122.90 (12)
H12B—C12—H12C109.5O6—C36—C33118.52 (11)
O3—C13—C14122.68 (11)C37—C36—C33118.44 (10)
O3—C13—C10118.61 (11)C39—C37—C40119.45 (12)
C14—C13—C10118.69 (11)C39—C37—C36117.78 (11)
C16—C14—C17119.40 (11)C40—C37—C36122.55 (11)
C16—C14—C13117.37 (10)C41—C38—C40120.63 (14)
C17—C14—C13123.22 (11)C41—C38—H38119.7
C18—C15—C17121.02 (12)C40—C38—H38119.7
C18—C15—H15119.5C37—C39—C42122.25 (12)
C17—C15—H15119.5C37—C39—H39118.9
C14—C16—C19121.98 (11)C42—C39—H39118.9
C14—C16—H16119.0C38—C40—C43118.12 (12)
C19—C16—H16119.0C38—C40—C37124.39 (12)
C15—C17—C20117.50 (10)C43—C40—C37117.49 (12)
C15—C17—C14124.80 (11)C38—C41—C44120.90 (15)
C20—C17—C14117.70 (11)C38—C41—H41119.6
C15—C18—C21121.29 (13)C44—C41—H41119.6
C15—C18—H18119.4C45—C42—C39119.43 (13)
C21—C18—H18119.4C45—C42—H42120.3
C22—C19—C16119.74 (12)C39—C42—H42120.3
C22—C19—H19120.1C45—C43—C46120.67 (13)
C16—C19—H19120.1C45—C43—C40120.09 (12)
C22—C20—C23120.30 (12)C46—C43—C40119.24 (13)
C22—C20—C17120.15 (11)C46—C44—C41120.11 (14)
C23—C20—C17119.55 (12)C46—C44—H44119.9
C23—C21—C18119.29 (11)C41—C44—H44119.9
C23—C21—H21120.4C42—C45—C43121.14 (13)
C18—C21—H21120.4C42—C45—H45119.4
C19—C22—C20121.01 (12)C43—C45—H45119.4
C19—C22—H22119.5C44—C46—C43120.91 (15)
C20—C22—H22119.5C44—C46—H46119.5
C21—C23—C20121.34 (12)C43—C46—H46119.5
C4—C1—C3—C60.1 (2)C27—C24—C26—C292.2 (2)
C5—C2—C4—C1179.99 (13)C28—C25—C27—C24176.55 (13)
C5—C2—C4—C70.0 (2)C28—C25—C27—C302.44 (19)
C3—C1—C4—C2178.43 (14)C26—C24—C27—C25178.25 (13)
C3—C1—C4—C71.5 (2)C26—C24—C27—C300.7 (2)
C4—C2—C5—C81.2 (2)C27—C25—C28—C310.4 (2)
C11—O1—C6—C91.3 (2)C34—O5—C29—C322.10 (19)
C11—O1—C6—C3178.34 (14)C34—O5—C29—C26177.82 (12)
C1—C3—C6—O1177.64 (13)C24—C26—C29—O5178.30 (13)
C1—C3—C6—C92.0 (2)C24—C26—C29—C321.6 (2)
C2—C4—C7—C9178.59 (12)C25—C27—C30—C332.09 (18)
C1—C4—C7—C91.37 (18)C24—C27—C30—C33176.95 (12)
C2—C4—C7—C101.32 (18)C25—C27—C30—C32179.70 (11)
C1—C4—C7—C10178.72 (12)C24—C27—C30—C321.26 (18)
C12—O2—C8—C10179.74 (13)C35—O4—C31—C33173.24 (12)
C12—O2—C8—C50.4 (2)C35—O4—C31—C288.38 (19)
C2—C5—C8—O2178.97 (12)C25—C28—C31—O4179.66 (12)
C2—C5—C8—C101.2 (2)C25—C28—C31—C332.0 (2)
O1—C6—C9—C7177.46 (13)O5—C29—C32—C30179.68 (12)
C3—C6—C9—C72.1 (2)C26—C29—C32—C300.41 (19)
C10—C7—C9—C6179.49 (12)C33—C30—C32—C29176.30 (12)
C4—C7—C9—C60.42 (19)C27—C30—C32—C291.83 (18)
O2—C8—C10—C7179.73 (11)O4—C31—C33—C30179.23 (11)
C5—C8—C10—C70.1 (2)C28—C31—C33—C302.35 (19)
O2—C8—C10—C134.04 (18)O4—C31—C33—C362.86 (17)
C5—C8—C10—C13175.77 (12)C28—C31—C33—C36175.56 (12)
C9—C7—C10—C8178.56 (12)C32—C30—C33—C31177.89 (12)
C4—C7—C10—C81.35 (18)C27—C30—C33—C310.25 (18)
C9—C7—C10—C132.88 (18)C32—C30—C33—C364.19 (18)
C4—C7—C10—C13177.03 (11)C27—C30—C33—C36177.66 (11)
C8—C10—C13—O3102.32 (16)C31—C33—C36—O6109.71 (15)
C7—C10—C13—O373.42 (17)C30—C33—C36—O668.22 (18)
C8—C10—C13—C1479.48 (15)C31—C33—C36—C3774.50 (17)
C7—C10—C13—C14104.78 (13)C30—C33—C36—C37107.57 (14)
O3—C13—C14—C16175.74 (13)O6—C36—C37—C39163.18 (14)
C10—C13—C14—C162.38 (16)C33—C36—C37—C3912.41 (18)
O3—C13—C14—C173.47 (19)O6—C36—C37—C4011.4 (2)
C10—C13—C14—C17178.41 (11)C33—C36—C37—C40172.99 (12)
C17—C14—C16—C190.23 (18)C40—C37—C39—C422.7 (2)
C13—C14—C16—C19179.47 (11)C36—C37—C39—C42172.09 (13)
C18—C15—C17—C200.06 (18)C41—C38—C40—C431.6 (2)
C18—C15—C17—C14179.79 (11)C41—C38—C40—C37179.08 (13)
C16—C14—C17—C15179.70 (11)C39—C37—C40—C38174.95 (13)
C13—C14—C17—C151.10 (18)C36—C37—C40—C3810.5 (2)
C16—C14—C17—C200.15 (16)C39—C37—C40—C434.35 (19)
C13—C14—C17—C20179.05 (10)C36—C37—C40—C43170.16 (12)
C17—C15—C18—C210.9 (2)C40—C38—C41—C441.1 (2)
C14—C16—C19—C220.2 (2)C37—C39—C42—C450.9 (2)
C15—C17—C20—C22179.35 (11)C38—C40—C43—C45176.72 (13)
C14—C17—C20—C220.51 (16)C37—C40—C43—C452.63 (19)
C15—C17—C20—C230.84 (16)C38—C40—C43—C462.97 (19)
C14—C17—C20—C23179.30 (10)C37—C40—C43—C46177.68 (12)
C15—C18—C21—C230.9 (2)C38—C41—C44—C462.5 (3)
C16—C19—C22—C200.1 (2)C39—C42—C45—C432.7 (2)
C23—C20—C22—C19179.29 (12)C46—C43—C45—C42178.78 (14)
C17—C20—C22—C190.52 (19)C40—C43—C45—C420.9 (2)
C18—C21—C23—C200.06 (19)C41—C44—C46—C431.1 (3)
C22—C20—C23—C21179.27 (12)C45—C43—C46—C44178.04 (15)
C17—C20—C23—C210.92 (18)C40—C43—C46—C441.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O60.982.513.2862 (18)136
C19—H19···O3i0.952.403.2418 (17)148
C15—H15···O30.952.192.8397 (16)125
C38—H38···O60.952.252.8548 (17)121
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H18O3
Mr342.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)16.1451 (3), 7.51303 (14), 29.0107 (5)
β (°) 98.547 (1)
V3)3479.88 (11)
Z8
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.725, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
62016, 6349, 5490
Rint0.032
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.07
No. of reflections6349
No. of parameters470
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: PROCESS-AUTO (Rigaku, 1998), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O60.982.513.2862 (18)136
C19—H19···O3i0.952.403.2418 (17)148
C15—H15···O30.952.192.8397 (16)125
C38—H38···O60.952.252.8548 (17)121
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by an Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Sakamoto, R., Hijikata, D., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o363.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595.  CSD CrossRef IUCr Journals Google Scholar
First citationTsumuki, T., Takeuchi, R., Kawano, H., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. E69, o495–o496.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds