organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3R,8R,9S,11R)-10,10-Di­bromo-2,2-di­chloro-3,7,7,11-tetra­methyl­tetra­cyclo­[6.5.0.01,3.09,11]trideca­ne

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, Unité Associée au CNRST (URAC16)", Université Cadi Ayyad, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma

(Received 4 April 2013; accepted 11 April 2013; online 17 April 2013)

The title compound, C17H24Br2Cl2, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from the essential oil of the Atlas cedar (Cedrus Atlantica). The asymmetric unit contains two independent mol­ecules. Each mol­ecule is built up from fused six-, seven- and two three-membered rings. In both mol­ecules, the six-membered ring has a half-chair conformation, whereas the seven-membered ring displays a boat conformation. No specific inter­molecular inter­actions are noted in the crystal packing.

Related literature

For similar compounds, see: Ourhriss et al. (2013[Ourhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, o275.]); Oukhrib et al. (2013a[Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013a). Acta Cryst. E69, o521-o522.],b[Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013b). Acta Cryst. E69, o589-o590.]). For the biological proprieties of β-himachalene, see: El Haib et al. (2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24Br2Cl2

  • Mr = 459.08

  • Monoclinic, C 2

  • a = 18.377 (16) Å

  • b = 6.519 (6) Å

  • c = 30.82 (3) Å

  • β = 93.233 (16)°

  • V = 3687 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.68 mm−1

  • T = 296 K

  • 0.43 × 0.31 × 0.27 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.867

  • 40489 measured reflections

  • 9155 independent reflections

  • 6959 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.04

  • 9155 reflections

  • 379 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 3988 Friedel pairs

  • Flack parameter: 0.029 (8)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This work is a part of our ongoing program concerning the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (50%) of β-himachalene (Ourhriss et al., 2013; Oukhrib et al., 2013a,b). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (El Haib et al., 2011). We present here the crystal structure of the title compound, (1S,3R,8R,9S,11R)-2,2-dichloro-10,10-dibromo-3,7,7,11-tetramethyltetracyclo [6.5.0.01,3.09,11]tridecane noted (I).

As shown in Fig. 1, each molecule of the title compound is build up by fused six- and seven-membered rings, which are fused to two three-membered rings. In the first molecule, the total puckering amplitude QT = 0.462 (4) Å and spherical polar angle θ2 = 142.4 (5)° and φ2 = 136.2 (8)°, obtained for the six-membered ring are compatible with a half chair conformation, whereas those calculated for the seven-membered ring (QT = 1.146 (5) Å, θ2 = 87.1 (3)°, φ2 = -48.8 (3)° and φ3 = -122 (4)° (Cremer & Pople, 1975)) involve a boat conformation. Nearly the same values are observed in the second molecule, and consequently the same conformation is present, as shown in the fitting drawing (Fig. 2, r.m.s. deviation 0.057 Å). Owing to the presence of Br and Cl atoms, the absolute configuration could be fully confirmed from anomalous dispersion effects, by refining the Flack parameter as C1(S),C3(R),C8(R),C9(S), and C11(R). The crystal packing exhibits no short intermolecular contacts.

Related literature top

For similar compounds, see: Ourhriss et al. (2013); Oukhrib et al. (2013a,b). For the biological proprieties of β-himachalene, see: El Haib et al. (2011). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution containing 3 g (8 mmol) of (1S,3R,8S)-2,2-dichloro- 3,7,7,10- tetramethyltricyclo [6.4.0.01,3]dodec-9-ene and 1 ml (10 mmol) of CHBr3 in 40 ml of dichloromethane was added dropwise at 273 K over 30 min to 1 g of pulverized sodium hydroxide and 40 mg of N–benzyltriethylammonium chloride placed in a 100 ml three–necked flask. After stirring at room temperature for 2 h, the mixture was filtered on celite and concentrated in vacuum. The residue obtained was chromatographed on silicagel column impregnated with silver nitrate (10%) with a mixture of hexane - ethyl acetate (96–4) used as eluent. The two diastereoisomers (1S,3R,8R,9S,11R) -10,10-dichloro-2,2-dibromo-3,7,7,11- tetramethyltetracyclo [6.5.0.01,3.09,11]tridecane (X) and its isomer (1S,3R,8R, 9R, 11S)- 10,10- dichloro-2,2-dibromo-3,7,7,11-tetramethyltetracyclo[6.5.0.01,3.09,11] tridecane (Y), were obtained by this procedure in a 85/15 ratio and a combined yield of 70% (2.5 g; 5.6 mmol). The title compound (isomer X) was recrystallized from hexane.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2 Ueq(methylene, methine) and Uiso(H) = 1.5 Ueq(methyl). The space group is noncentrosymmetric and the polar axis restraint is generated automatically by SHELXL program. The 3988 Friedel pairs were not merged.

Structure description top

This work is a part of our ongoing program concerning the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (50%) of β-himachalene (Ourhriss et al., 2013; Oukhrib et al., 2013a,b). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (El Haib et al., 2011). We present here the crystal structure of the title compound, (1S,3R,8R,9S,11R)-2,2-dichloro-10,10-dibromo-3,7,7,11-tetramethyltetracyclo [6.5.0.01,3.09,11]tridecane noted (I).

As shown in Fig. 1, each molecule of the title compound is build up by fused six- and seven-membered rings, which are fused to two three-membered rings. In the first molecule, the total puckering amplitude QT = 0.462 (4) Å and spherical polar angle θ2 = 142.4 (5)° and φ2 = 136.2 (8)°, obtained for the six-membered ring are compatible with a half chair conformation, whereas those calculated for the seven-membered ring (QT = 1.146 (5) Å, θ2 = 87.1 (3)°, φ2 = -48.8 (3)° and φ3 = -122 (4)° (Cremer & Pople, 1975)) involve a boat conformation. Nearly the same values are observed in the second molecule, and consequently the same conformation is present, as shown in the fitting drawing (Fig. 2, r.m.s. deviation 0.057 Å). Owing to the presence of Br and Cl atoms, the absolute configuration could be fully confirmed from anomalous dispersion effects, by refining the Flack parameter as C1(S),C3(R),C8(R),C9(S), and C11(R). The crystal packing exhibits no short intermolecular contacts.

For similar compounds, see: Ourhriss et al. (2013); Oukhrib et al. (2013a,b). For the biological proprieties of β-himachalene, see: El Haib et al. (2011). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View showing the fitting of the two molecules building the asymmetric unit.
(1S,3R,8R,9S,11R)-10,10-Bibromo-2,2-dichloro-3,7,7,11-tetramethyltetracyclo[6.5.0.01,3.09,11]tridecane top
Crystal data top
C17H24Br2Cl2F(000) = 1840
Mr = 459.08Dx = 1.654 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: c 2yCell parameters from 9155 reflections
a = 18.377 (16) Åθ = 2.4–28.7°
b = 6.519 (6) ŵ = 4.68 mm1
c = 30.82 (3) ÅT = 296 K
β = 93.233 (16)°Block, colourless
V = 3687 (6) Å30.43 × 0.31 × 0.27 mm
Z = 8
Data collection top
Bruker X8 APEX
diffractometer
9155 independent reflections
Radiation source: fine-focus sealed tube6959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 28.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2424
Tmin = 0.739, Tmax = 0.867k = 88
40489 measured reflectionsl = 4141
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0444P)2 + 4.0898P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
9155 reflectionsΔρmax = 0.67 e Å3
379 parametersΔρmin = 0.44 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), 3988 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.029 (8)
Crystal data top
C17H24Br2Cl2V = 3687 (6) Å3
Mr = 459.08Z = 8
Monoclinic, C2Mo Kα radiation
a = 18.377 (16) ŵ = 4.68 mm1
b = 6.519 (6) ÅT = 296 K
c = 30.82 (3) Å0.43 × 0.31 × 0.27 mm
β = 93.233 (16)°
Data collection top
Bruker X8 APEX
diffractometer
9155 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6959 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.867Rint = 0.037
40489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.67 e Å3
S = 1.04Δρmin = 0.44 e Å3
9155 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 3988 Friedel pairs
379 parametersAbsolute structure parameter: 0.029 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69402 (2)0.22377 (9)0.666261 (16)0.05626 (15)
Br20.63800 (2)0.29919 (8)0.56956 (2)0.06228 (17)
Br30.81097 (3)0.09644 (10)0.840122 (16)0.06037 (16)
Br40.85782 (3)0.15293 (10)0.93871 (2)0.06974 (19)
Cl40.66339 (7)0.1805 (2)0.76362 (3)0.0535 (3)
Cl30.65444 (7)0.24769 (19)0.78504 (4)0.0510 (3)
Cl20.85390 (6)0.41099 (15)0.71165 (3)0.0384 (2)
Cl10.85215 (6)0.01541 (18)0.73567 (3)0.0441 (3)
C80.86557 (16)0.2398 (5)0.61173 (10)0.0204 (6)
H80.86410.37860.62390.024*
C70.92400 (19)0.2407 (6)0.57466 (11)0.0259 (7)
C10.88476 (18)0.0909 (5)0.64962 (10)0.0213 (7)
C20.8812 (2)0.1600 (6)0.69673 (11)0.0281 (8)
C90.79025 (18)0.1957 (5)0.58910 (11)0.0244 (7)
H90.78740.24750.55920.029*
C100.71591 (19)0.1842 (6)0.60708 (12)0.0315 (8)
C130.8639 (2)0.1306 (5)0.63885 (12)0.0279 (8)
H13A0.87830.21710.66350.034*
H13B0.89060.17590.61430.034*
C120.7817 (2)0.1575 (6)0.62784 (15)0.0391 (10)
H12A0.77260.29780.61860.047*
H12B0.75570.13450.65390.047*
C30.95537 (19)0.1338 (6)0.67808 (12)0.0289 (8)
C110.7515 (2)0.0120 (6)0.59218 (12)0.0315 (8)
C40.9979 (2)0.3277 (7)0.66790 (12)0.0362 (9)
H4A1.03030.36260.69270.043*
H4B0.96410.44060.66280.043*
C160.9041 (2)0.0880 (7)0.53687 (12)0.0400 (10)
H16A0.90270.04910.54820.060*
H16B0.94020.09610.51560.060*
H16C0.85720.12300.52360.060*
C150.9259 (2)0.4560 (7)0.55567 (14)0.0439 (10)
H15A0.87770.49530.54530.066*
H15B0.95780.45800.53200.066*
H15C0.94360.55040.57770.066*
C51.0427 (2)0.2985 (8)0.62777 (14)0.0465 (11)
H5A1.08770.22770.63640.056*
H5B1.05540.43210.61660.056*
C61.00158 (19)0.1757 (7)0.59140 (13)0.0376 (10)
H6A0.99860.03490.60130.045*
H6B1.03180.17510.56660.045*
C240.5723 (2)0.0880 (7)0.92056 (13)0.0387 (10)
C250.63553 (19)0.0851 (6)0.88610 (11)0.0276 (8)
H250.63890.22330.87380.033*
C280.7494 (2)0.1594 (7)0.90993 (13)0.0382 (9)
C141.0047 (2)0.0449 (8)0.69381 (14)0.0454 (11)
H14A1.04930.04060.67910.068*
H14B0.98030.17260.68760.068*
H14C1.01520.03320.72460.068*
C180.6206 (2)0.0658 (6)0.84803 (12)0.0319 (9)
C200.5526 (2)0.0342 (8)0.81676 (13)0.0433 (10)
C260.7074 (2)0.0406 (6)0.91218 (12)0.0330 (9)
H260.70570.08880.94220.040*
C340.7739 (3)0.2710 (10)0.95177 (16)0.0646 (15)
H34A0.74550.39340.95450.097*
H34B0.76720.18300.97620.097*
H34C0.82450.30670.95100.097*
C300.6433 (2)0.2858 (7)0.85972 (13)0.0369 (9)
H30A0.61560.33280.88370.044*
H30B0.63150.37440.83500.044*
C170.7213 (3)0.1179 (8)0.55062 (16)0.0562 (13)
H17A0.74940.23890.54560.084*
H17B0.72420.02590.52650.084*
H17C0.67140.15540.55380.084*
C210.5072 (3)0.1560 (10)0.82436 (19)0.0658 (16)
H21A0.53960.27270.82870.079*
H21B0.47590.18260.79860.079*
C330.5880 (3)0.0637 (10)0.95866 (17)0.0746 (18)
H33A0.58980.20110.94750.112*
H33B0.55000.05370.97870.112*
H33C0.63390.03030.97330.112*
C190.6278 (2)0.0030 (7)0.80028 (13)0.0379 (9)
C270.7848 (2)0.0368 (7)0.89782 (13)0.0385 (10)
C290.7244 (2)0.3040 (7)0.87242 (15)0.0448 (10)
H29A0.75190.27330.84730.054*
H29B0.73510.44440.88100.054*
C220.4606 (2)0.1369 (10)0.86313 (18)0.0636 (15)
H22A0.41550.06760.85400.076*
H22B0.44810.27330.87290.076*
C320.5706 (4)0.2969 (9)0.94119 (19)0.079 (2)
H32A0.61880.33330.95230.118*
H32B0.53830.29490.96460.118*
H32C0.55380.39600.91990.118*
C310.5073 (3)0.2163 (9)0.80026 (16)0.0604 (14)
H31A0.46120.21560.81350.091*
H31B0.53280.34130.80760.091*
H31C0.49940.20710.76930.091*
C230.4979 (3)0.0178 (10)0.90194 (17)0.0654 (16)
H23A0.46490.01960.92540.078*
H23B0.50260.12410.89300.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0364 (2)0.0805 (4)0.0533 (3)0.0029 (2)0.0148 (2)0.0100 (3)
Br20.0302 (2)0.0682 (4)0.0871 (4)0.0114 (2)0.0092 (2)0.0232 (3)
Br30.0448 (3)0.0867 (4)0.0511 (3)0.0068 (3)0.0154 (2)0.0094 (3)
Br40.0436 (3)0.0861 (5)0.0779 (4)0.0139 (3)0.0117 (2)0.0230 (3)
Cl40.0625 (7)0.0642 (8)0.0342 (6)0.0114 (6)0.0055 (5)0.0110 (5)
Cl30.0611 (7)0.0489 (7)0.0432 (6)0.0064 (5)0.0051 (5)0.0183 (5)
Cl20.0467 (6)0.0344 (5)0.0346 (5)0.0058 (4)0.0054 (4)0.0094 (4)
Cl10.0583 (6)0.0463 (6)0.0285 (5)0.0011 (5)0.0087 (4)0.0104 (4)
C80.0196 (15)0.0197 (16)0.0222 (16)0.0038 (12)0.0046 (12)0.0001 (14)
C70.0248 (17)0.0261 (19)0.0275 (17)0.0037 (14)0.0085 (13)0.0001 (15)
C10.0224 (16)0.0195 (16)0.0221 (16)0.0050 (13)0.0008 (13)0.0007 (14)
C20.0334 (19)0.0292 (19)0.0216 (17)0.0083 (15)0.0001 (14)0.0016 (15)
C90.0252 (16)0.0254 (18)0.0228 (16)0.0053 (14)0.0029 (13)0.0052 (14)
C100.0220 (17)0.034 (2)0.038 (2)0.0016 (15)0.0021 (15)0.0017 (17)
C130.036 (2)0.0145 (16)0.033 (2)0.0073 (14)0.0022 (15)0.0042 (14)
C120.038 (2)0.024 (2)0.055 (3)0.0049 (17)0.0053 (19)0.0035 (19)
C30.0243 (17)0.034 (2)0.0276 (18)0.0054 (15)0.0025 (14)0.0004 (16)
C110.0299 (19)0.0282 (19)0.036 (2)0.0007 (16)0.0033 (15)0.0016 (17)
C40.0292 (19)0.042 (2)0.037 (2)0.0100 (18)0.0069 (16)0.0043 (18)
C160.046 (2)0.045 (2)0.029 (2)0.008 (2)0.0080 (17)0.0047 (19)
C150.050 (3)0.040 (2)0.044 (2)0.000 (2)0.019 (2)0.009 (2)
C50.0259 (19)0.064 (3)0.049 (2)0.008 (2)0.0007 (17)0.006 (2)
C60.0231 (18)0.054 (3)0.036 (2)0.0111 (18)0.0109 (15)0.0012 (19)
C240.030 (2)0.048 (3)0.040 (2)0.0042 (18)0.0111 (16)0.005 (2)
C250.0291 (18)0.0270 (19)0.0267 (18)0.0070 (15)0.0024 (14)0.0031 (16)
C280.034 (2)0.045 (3)0.035 (2)0.0004 (19)0.0016 (17)0.0050 (19)
C140.039 (2)0.051 (3)0.044 (2)0.020 (2)0.0100 (19)0.005 (2)
C180.0308 (19)0.037 (2)0.0280 (19)0.0081 (16)0.0006 (15)0.0040 (17)
C200.038 (2)0.055 (3)0.036 (2)0.008 (2)0.0061 (18)0.007 (2)
C260.0283 (19)0.046 (2)0.0245 (18)0.0060 (17)0.0006 (15)0.0008 (17)
C340.066 (3)0.069 (4)0.057 (3)0.001 (3)0.012 (3)0.023 (3)
C300.044 (2)0.032 (2)0.035 (2)0.0077 (18)0.0008 (17)0.0036 (18)
C170.051 (3)0.055 (3)0.061 (3)0.012 (2)0.012 (2)0.011 (3)
C210.046 (3)0.076 (4)0.075 (4)0.005 (3)0.000 (3)0.026 (3)
C330.088 (4)0.075 (4)0.065 (3)0.007 (3)0.048 (3)0.020 (3)
C190.042 (2)0.042 (2)0.030 (2)0.0063 (19)0.0020 (16)0.0045 (18)
C270.033 (2)0.050 (3)0.032 (2)0.0042 (18)0.0054 (16)0.0078 (19)
C290.047 (2)0.027 (2)0.060 (3)0.0029 (19)0.005 (2)0.002 (2)
C220.028 (2)0.072 (4)0.091 (4)0.011 (2)0.007 (2)0.008 (3)
C320.108 (5)0.056 (3)0.079 (4)0.024 (3)0.060 (4)0.020 (3)
C310.045 (3)0.080 (4)0.055 (3)0.023 (3)0.015 (2)0.001 (3)
C230.044 (3)0.083 (4)0.071 (4)0.007 (3)0.021 (3)0.007 (3)
Geometric parameters (Å, º) top
Br1—C101.907 (4)C24—C331.550 (7)
Br2—C101.940 (4)C24—C251.618 (5)
Br3—C271.908 (4)C25—C261.535 (5)
Br4—C271.942 (4)C25—C181.544 (5)
Cl4—C191.768 (5)C25—H250.9800
Cl3—C191.777 (5)C28—C271.491 (6)
Cl2—C21.779 (4)C28—C261.518 (6)
Cl1—C21.762 (4)C28—C341.526 (6)
C8—C91.541 (5)C28—C291.542 (6)
C8—C11.544 (5)C14—H14A0.9600
C8—C71.612 (4)C14—H14B0.9600
C8—H80.9800C14—H14C0.9600
C7—C151.522 (6)C18—C301.531 (6)
C7—C61.548 (5)C18—C191.541 (5)
C7—C161.560 (5)C18—C201.549 (5)
C1—C21.525 (5)C20—C191.514 (6)
C1—C131.526 (5)C20—C311.520 (7)
C1—C31.550 (5)C20—C211.520 (8)
C2—C31.519 (5)C26—C271.513 (6)
C9—C101.505 (5)C26—H260.9800
C9—C111.535 (5)C34—H34A0.9600
C9—H90.9800C34—H34B0.9600
C10—C111.519 (6)C34—H34C0.9600
C13—C121.539 (5)C30—C291.523 (6)
C13—H13A0.9700C30—H30A0.9700
C13—H13B0.9700C30—H30B0.9700
C12—C111.532 (6)C17—H17A0.9600
C12—H12A0.9700C17—H17B0.9600
C12—H12B0.9700C17—H17C0.9600
C3—C41.528 (6)C21—C221.515 (7)
C3—C141.537 (5)C21—H21A0.9700
C11—C171.532 (6)C21—H21B0.9700
C4—C51.536 (6)C33—H33A0.9600
C4—H4A0.9700C33—H33B0.9600
C4—H4B0.9700C33—H33C0.9600
C16—H16A0.9600C29—H29A0.9700
C16—H16B0.9600C29—H29B0.9700
C16—H16C0.9600C22—C231.553 (8)
C15—H15A0.9600C22—H22A0.9700
C15—H15B0.9600C22—H22B0.9700
C15—H15C0.9600C32—H32A0.9600
C5—C61.541 (6)C32—H32B0.9600
C5—H5A0.9700C32—H32C0.9600
C5—H5B0.9700C31—H31A0.9600
C6—H6A0.9700C31—H31B0.9600
C6—H6B0.9700C31—H31C0.9600
C24—C321.504 (7)C23—H23A0.9700
C24—C231.524 (7)C23—H23B0.9700
C9—C8—C1112.7 (3)C27—C28—C2660.4 (3)
C9—C8—C7107.3 (3)C27—C28—C34120.5 (4)
C1—C8—C7113.9 (3)C26—C28—C34119.8 (4)
C9—C8—H8107.5C27—C28—C29116.9 (3)
C1—C8—H8107.5C26—C28—C29115.3 (3)
C7—C8—H8107.5C34—C28—C29113.8 (4)
C15—C7—C6109.9 (3)C3—C14—H14A109.5
C15—C7—C16108.1 (3)C3—C14—H14B109.5
C6—C7—C16104.3 (3)H14A—C14—H14B109.5
C15—C7—C8107.9 (3)C3—C14—H14C109.5
C6—C7—C8113.6 (3)H14A—C14—H14C109.5
C16—C7—C8112.9 (3)H14B—C14—H14C109.5
C2—C1—C13117.6 (3)C30—C18—C19115.9 (3)
C2—C1—C8121.0 (3)C30—C18—C25112.6 (3)
C13—C1—C8112.7 (3)C19—C18—C25122.4 (3)
C2—C1—C359.2 (2)C30—C18—C20118.1 (3)
C13—C1—C3119.0 (3)C19—C18—C2058.7 (3)
C8—C1—C3117.6 (3)C25—C18—C20119.4 (4)
C3—C2—C161.2 (2)C19—C20—C31119.0 (4)
C3—C2—Cl1119.8 (3)C19—C20—C21117.5 (4)
C1—C2—Cl1119.2 (3)C31—C20—C21113.2 (4)
C3—C2—Cl2118.2 (3)C19—C20—C1860.4 (3)
C1—C2—Cl2123.1 (3)C31—C20—C18120.8 (4)
Cl1—C2—Cl2108.67 (19)C21—C20—C18116.3 (4)
C10—C9—C1160.0 (2)C27—C26—C2858.9 (3)
C10—C9—C8130.8 (3)C27—C26—C25130.2 (3)
C11—C9—C8122.9 (3)C28—C26—C25124.3 (3)
C10—C9—H9111.2C27—C26—H26111.2
C11—C9—H9111.2C28—C26—H26111.2
C8—C9—H9111.2C25—C26—H26111.2
C9—C10—C1161.0 (2)C28—C34—H34A109.5
C9—C10—Br1126.2 (3)C28—C34—H34B109.5
C11—C10—Br1121.4 (3)H34A—C34—H34B109.5
C9—C10—Br2114.6 (3)C28—C34—H34C109.5
C11—C10—Br2117.5 (3)H34A—C34—H34C109.5
Br1—C10—Br2109.24 (18)H34B—C34—H34C109.5
C1—C13—C12112.8 (3)C29—C30—C18112.5 (3)
C1—C13—H13A109.0C29—C30—H30A109.1
C12—C13—H13A109.0C18—C30—H30A109.1
C1—C13—H13B109.0C29—C30—H30B109.1
C12—C13—H13B109.0C18—C30—H30B109.1
H13A—C13—H13B107.8H30A—C30—H30B107.8
C11—C12—C13113.5 (3)C11—C17—H17A109.5
C11—C12—H12A108.9C11—C17—H17B109.5
C13—C12—H12A108.9H17A—C17—H17B109.5
C11—C12—H12B108.9C11—C17—H17C109.5
C13—C12—H12B108.9H17A—C17—H17C109.5
H12A—C12—H12B107.7H17B—C17—H17C109.5
C2—C3—C4117.7 (3)C22—C21—C20113.2 (5)
C2—C3—C14119.4 (3)C22—C21—H21A108.9
C4—C3—C14113.1 (3)C20—C21—H21A108.9
C2—C3—C159.6 (2)C22—C21—H21B108.9
C4—C3—C1117.0 (3)C20—C21—H21B108.9
C14—C3—C1120.1 (3)H21A—C21—H21B107.7
C10—C11—C17119.4 (4)C24—C33—H33A109.5
C10—C11—C12116.7 (3)C24—C33—H33B109.5
C17—C11—C12114.9 (4)H33A—C33—H33B109.5
C10—C11—C959.0 (2)C24—C33—H33C109.5
C17—C11—C9119.6 (4)H33A—C33—H33C109.5
C12—C11—C9116.1 (3)H33B—C33—H33C109.5
C3—C4—C5111.5 (4)C20—C19—C1860.9 (3)
C3—C4—H4A109.3C20—C19—Cl4120.3 (3)
C5—C4—H4A109.3C18—C19—Cl4119.5 (3)
C3—C4—H4B109.3C20—C19—Cl3118.9 (3)
C5—C4—H4B109.3C18—C19—Cl3122.5 (3)
H4A—C4—H4B108.0Cl4—C19—Cl3108.4 (2)
C7—C16—H16A109.5C28—C27—C2660.7 (3)
C7—C16—H16B109.5C28—C27—Br3123.0 (3)
H16A—C16—H16B109.5C26—C27—Br3124.0 (3)
C7—C16—H16C109.5C28—C27—Br4117.8 (3)
H16A—C16—H16C109.5C26—C27—Br4115.5 (3)
H16B—C16—H16C109.5Br3—C27—Br4108.9 (2)
C7—C15—H15A109.5C30—C29—C28113.1 (4)
C7—C15—H15B109.5C30—C29—H29A109.0
H15A—C15—H15B109.5C28—C29—H29A109.0
C7—C15—H15C109.5C30—C29—H29B109.0
H15A—C15—H15C109.5C28—C29—H29B109.0
H15B—C15—H15C109.5H29A—C29—H29B107.8
C4—C5—C6112.8 (3)C21—C22—C23113.8 (4)
C4—C5—H5A109.0C21—C22—H22A108.8
C6—C5—H5A109.0C23—C22—H22A108.8
C4—C5—H5B109.0C21—C22—H22B108.8
C6—C5—H5B109.0C23—C22—H22B108.8
H5A—C5—H5B107.8H22A—C22—H22B107.7
C5—C6—C7120.3 (4)C24—C32—H32A109.5
C5—C6—H6A107.2C24—C32—H32B109.5
C7—C6—H6A107.2H32A—C32—H32B109.5
C5—C6—H6B107.2C24—C32—H32C109.5
C7—C6—H6B107.2H32A—C32—H32C109.5
H6A—C6—H6B106.9H32B—C32—H32C109.5
C32—C24—C23113.1 (5)C20—C31—H31A109.5
C32—C24—C33105.4 (4)C20—C31—H31B109.5
C23—C24—C33102.6 (4)H31A—C31—H31B109.5
C32—C24—C25108.7 (4)C20—C31—H31C109.5
C23—C24—C25114.3 (3)H31A—C31—H31C109.5
C33—C24—C25112.4 (4)H31B—C31—H31C109.5
C26—C25—C18112.8 (3)C24—C23—C22119.2 (5)
C26—C25—C24106.7 (3)C24—C23—H23A107.5
C18—C25—C24113.8 (3)C22—C23—H23A107.5
C26—C25—H25107.8C24—C23—H23B107.5
C18—C25—H25107.8C22—C23—H23B107.5
C24—C25—H25107.8H23A—C23—H23B107.0

Experimental details

Crystal data
Chemical formulaC17H24Br2Cl2
Mr459.08
Crystal system, space groupMonoclinic, C2
Temperature (K)296
a, b, c (Å)18.377 (16), 6.519 (6), 30.82 (3)
β (°) 93.233 (16)
V3)3687 (6)
Z8
Radiation typeMo Kα
µ (mm1)4.68
Crystal size (mm)0.43 × 0.31 × 0.27
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.739, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
40489, 9155, 6959
Rint0.037
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.04
No. of reflections9155
No. of parameters379
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.44
Absolute structureFlack & Bernardinelli (2000), 3988 Friedel pairs
Absolute structure parameter0.029 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013a). Acta Cryst. E69, o521–o522.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013b). Acta Cryst. E69, o589–o590.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOurhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, o275.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds