metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-4-formyl­benzoato-κ2O:O′)bis­­[(4-formyl­benzoato-κ2O,O′)bis­­(iso­nicotin­amide-κN1)copper(II)]

aDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 29 March 2013; accepted 22 April 2013; online 27 April 2013)

The asymmetric unit of the centrosymmetric dinuclear title compound, [Cu2(C8H5O3)4(C6H6N2O)4], contains one half of the complex mol­ecule. The CuII atoms are bridged by the carboxyl­ate groups of two 4-formyl­benzoate (FOB) anions. Besides the two bridging FOB anions, one additional chelating FOB anion and two isonicotinamide (INA) ligands complete the distorted CuN2O4 octa­hedral coordination of each Cu2+ cation. Within the asymmetric unit, the benzene and pyridine rings are oriented at dihedral angles of 25.1 (3) and 12.6 (3)°, respectively. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ contacts between the pyridine rings [shortest centroid–centroid distance = 3.821 (3) Å] may further stabilize the crystal structure. One of the formyl groups of the two FOB anions is disordered over two sets of sites with an occupancy ratio of 0.65:0.35.

Related literature

For general background, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For related structures, see: Hökelek (1996[Hökelek, T., Gündüz, H. & Necefouglu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955-m956.],b[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328-m1329.],c[Hökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1608-m1609.])); Greenaway et al. (1984[Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Necefoğlu et al. (2011[Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m887-m888.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H5O3)4(C6H6N2O)4]

  • Mr = 1212.09

  • Triclinic, [P \overline 1]

  • a = 8.6462 (2) Å

  • b = 11.6709 (3) Å

  • c = 13.4339 (4) Å

  • α = 87.876 (3)°

  • β = 83.483 (3)°

  • γ = 74.566 (2)°

  • V = 1298.24 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 100 K

  • 0.17 × 0.07 × 0.06 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.947

  • 19200 measured reflections

  • 6198 independent reflections

  • 4412 reflections with I > 2σ(I)

  • Rint = 0.189

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.204

  • S = 1.11

  • 6198 reflections

  • 389 parameters

  • 119 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.05 e Å−3

  • Δρmin = −1.51 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.994 (3)
Cu1—O2 2.736 (4)
Cu1—O3 1.949 (4)
Cu1—O4i 2.242 (3)
Cu1—N1 2.033 (4)
Cu1—N2 2.013 (4)
Symmetry code: (i) -x+1, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2ii 0.86 2.17 2.997 (6) 160
N3—H3B⋯O5Aiii 0.86 2.27 3.044 (9) 149
N4—H4A⋯O7iv 0.86 2.06 2.878 (6) 158
N4—H4B⋯O2v 0.86 2.10 2.890 (6) 152
C3—H3⋯O7vi 0.93 2.52 3.391 (7) 155
C6—H6⋯O8vii 0.93 2.44 3.336 (9) 162
C18—H18⋯O5Aiii 0.93 2.35 3.274 (9) 169
C23—H23⋯O2v 0.93 2.54 3.432 (7) 162
C24—H24⋯O6viii 0.93 2.50 3.217 (7) 134
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) x+1, y, z+1; (v) -x+2, -y+1, -z+2; (vi) x+1, y, z; (vii) -x+1, -y+2, -z+2; (viii) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound , [Cu2(C8H5O3)4(C6H6N2O)4], was synthesized and its crystal structure is reported herein.

The asymmetric unit of the centrosymmetric dinuclear title compound contains one half of the complex molecule. The structures of some DENA and/or NA complexes with ZnII, viz. [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a), [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b) and [Zn2(C7H4FO2)4(C6H6N2O)2].C7H5FO2 (Hökelek et al., 2009c) have also been determined.

In the title dinuclear compound the Cu2+ cations are bridged by two carboxylate groups of two 4-formylbenzoate (FOB) anions. The two bridging FOB anions, one chelating FOB anion and two isonicotinamide (INA) ligands coordinate to each Cu2+ cation in a distorted octahedral geometry. Each CuII atom is surrounded by three FOB anions and two INA ligands. The INA ligands are coordinated to the CuII ion through pyridine N atoms only. Two FOB anions act as bridging ligands, while the other FOB anion is coordinated to the CuII ion bidentately. The Cu1···Cu1a distance is 4.1554 (8) Å. The four O atoms around the Cu1 atom form a distorted square-planar arrangement with an average Cu1—O bond length of 2.23 Å (Table 1). The distorted octahedral coordination is completed by the pyridine atoms, N1 and N2 of the INA ligands at distances of 2.033 (4) and 2.013 (4) Å, respectively (Table 1, Fig. 1). The N1—Cu1···Cu1a and N2—Cu1···Cu1a angles (a = x, - y, - z) are 97.62 (12) and 77.27 (12) °, respectively. The dihedral angles between the planar carboxylate groups (O1/O2/C1), (O3/O4/C8) and the adjacent benzene rings A (C2—C7), B (C9—C14) are 11.3 (6)° and 2.1 (6)°, respectively, while that between rings A and B is A/B = 25.1 (3)°. The pyridine rings C (N1/C15—C19) and D (N2/C20—C24) are oriented at a dihedral angle of 12.6 (3)°. The O1—Cu1—O2 angle involving the chelating FOB anion is 53.50 (14)°.

The corresponding O—Cu—O angles are 57.75 (2)° in [Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2] (Necefoğlu et al., 2011), 58.3 (3)° in [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).

In the crystal structure, N—H···O and C–H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The shortest ππ contact between the pyridine rings, Cg3—Cg4i [symmetry code: (i) 1 - x, 1 - y, - z, where Cg3 and Cg4 are the centroids of the rings C (N1/C15—C19) and D (N2/C20—C24), respectively] may further stabilize the structure, with a centroid-centroid distance of 3.821 (3) Å.

Related literature top

For general background, see: Bigoli et al. (1972); Krishnamachari (1974). For related structures, see: Hökelek (1996, 2009a,b,c)); Greenaway et al. (1984); Necefoğlu et al. (2011).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.25 g, 5 mmol) in H2O (50 ml) and INA (1.22 g, 10 mmol) in H2O (100 ml) with sodium 4-formylbenzoate (1.72 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving blue single crystals.

Refinement top

The crystal quality of the obtained crystals was poor. Recrystallization studies in order to get a high quality crystal were not successful. Atom H26 (of one formyl group) was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically with N—H = 0.86%A for NH2 and C—H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C,N). The other formyl group was found to be disordered over two sets of sites with an occupancy ratio of 0.65:0.35 for O5A, H25A and O5B, H25B. The highest residual electron density was found 0.71 Å from H26 and the deepest hole 0.84 Å from Cu1.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound , [Cu2(C8H5O3)4(C6H6N2O)4], was synthesized and its crystal structure is reported herein.

The asymmetric unit of the centrosymmetric dinuclear title compound contains one half of the complex molecule. The structures of some DENA and/or NA complexes with ZnII, viz. [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a), [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b) and [Zn2(C7H4FO2)4(C6H6N2O)2].C7H5FO2 (Hökelek et al., 2009c) have also been determined.

In the title dinuclear compound the Cu2+ cations are bridged by two carboxylate groups of two 4-formylbenzoate (FOB) anions. The two bridging FOB anions, one chelating FOB anion and two isonicotinamide (INA) ligands coordinate to each Cu2+ cation in a distorted octahedral geometry. Each CuII atom is surrounded by three FOB anions and two INA ligands. The INA ligands are coordinated to the CuII ion through pyridine N atoms only. Two FOB anions act as bridging ligands, while the other FOB anion is coordinated to the CuII ion bidentately. The Cu1···Cu1a distance is 4.1554 (8) Å. The four O atoms around the Cu1 atom form a distorted square-planar arrangement with an average Cu1—O bond length of 2.23 Å (Table 1). The distorted octahedral coordination is completed by the pyridine atoms, N1 and N2 of the INA ligands at distances of 2.033 (4) and 2.013 (4) Å, respectively (Table 1, Fig. 1). The N1—Cu1···Cu1a and N2—Cu1···Cu1a angles (a = x, - y, - z) are 97.62 (12) and 77.27 (12) °, respectively. The dihedral angles between the planar carboxylate groups (O1/O2/C1), (O3/O4/C8) and the adjacent benzene rings A (C2—C7), B (C9—C14) are 11.3 (6)° and 2.1 (6)°, respectively, while that between rings A and B is A/B = 25.1 (3)°. The pyridine rings C (N1/C15—C19) and D (N2/C20—C24) are oriented at a dihedral angle of 12.6 (3)°. The O1—Cu1—O2 angle involving the chelating FOB anion is 53.50 (14)°.

The corresponding O—Cu—O angles are 57.75 (2)° in [Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2] (Necefoğlu et al., 2011), 58.3 (3)° in [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).

In the crystal structure, N—H···O and C–H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The shortest ππ contact between the pyridine rings, Cg3—Cg4i [symmetry code: (i) 1 - x, 1 - y, - z, where Cg3 and Cg4 are the centroids of the rings C (N1/C15—C19) and D (N2/C20—C24), respectively] may further stabilize the structure, with a centroid-centroid distance of 3.821 (3) Å.

For general background, see: Bigoli et al. (1972); Krishnamachari (1974). For related structures, see: Hökelek (1996, 2009a,b,c)); Greenaway et al. (1984); Necefoğlu et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity [symmetry operator: (a) - x, - y, - z].
Bis(µ-4-formylbenzoato-κ2O:O')bis[(4-formylbenzoato-κ2O,O')bis(isonicotinamide-κN1)copper(II)] top
Crystal data top
[Cu2(C8H5O3)4(C6H6N2O)4]Z = 1
Mr = 1212.09F(000) = 622
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6462 (2) ÅCell parameters from 6407 reflections
b = 11.6709 (3) Åθ = 2.4–27.8°
c = 13.4339 (4) ŵ = 0.90 mm1
α = 87.876 (3)°T = 100 K
β = 83.483 (3)°Rod, blue
γ = 74.566 (2)°0.17 × 0.07 × 0.06 mm
V = 1298.24 (6) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6198 independent reflections
Radiation source: fine-focus sealed tube4412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.189
φ and ω scansθmax = 28.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.927, Tmax = 0.947k = 1515
19200 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.076P)2 + 1.153P]
where P = (Fo2 + 2Fc2)/3
6198 reflections(Δ/σ)max < 0.001
389 parametersΔρmax = 1.05 e Å3
119 restraintsΔρmin = 1.51 e Å3
Crystal data top
[Cu2(C8H5O3)4(C6H6N2O)4]γ = 74.566 (2)°
Mr = 1212.09V = 1298.24 (6) Å3
Triclinic, P1Z = 1
a = 8.6462 (2) ÅMo Kα radiation
b = 11.6709 (3) ŵ = 0.90 mm1
c = 13.4339 (4) ÅT = 100 K
α = 87.876 (3)°0.17 × 0.07 × 0.06 mm
β = 83.483 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4412 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.947Rint = 0.189
19200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.078119 restraints
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 1.05 e Å3
6198 reflectionsΔρmin = 1.51 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.62806 (7)0.56954 (5)0.88371 (4)0.0185 (2)
O10.6218 (4)0.7313 (3)0.8280 (2)0.0219 (8)
O20.8235 (4)0.6237 (3)0.7243 (3)0.0242 (8)
O30.7284 (4)0.3990 (3)0.8858 (2)0.0236 (8)
O40.6139 (4)0.3497 (3)1.0325 (3)0.0234 (8)
O5A0.5585 (8)1.2043 (6)0.4824 (4)0.0358 (16)0.65
O5B0.7922 (16)1.1019 (11)0.3972 (9)0.036 (3)0.35
O60.9826 (6)0.2505 (4)0.9067 (4)0.0539 (13)
O70.1544 (5)0.6109 (4)0.4944 (3)0.0413 (11)
O80.7785 (6)0.7769 (5)1.3297 (4)0.075 (2)
N10.5025 (5)0.5434 (4)0.7713 (3)0.0192 (8)
N20.7236 (5)0.6046 (4)1.0053 (3)0.0205 (9)
N30.2635 (6)0.4147 (4)0.4793 (3)0.0273 (10)
H3A0.21470.41010.42780.033*
H3B0.32640.35180.50240.033*
N40.9885 (5)0.6171 (4)1.3195 (3)0.0250 (9)
H4A1.01850.63251.37530.030*
H4B1.04260.55531.28590.030*
C10.7234 (6)0.7203 (4)0.7504 (4)0.0206 (10)
C20.7188 (6)0.8266 (4)0.6842 (4)0.0222 (10)
C30.8351 (7)0.8206 (5)0.6028 (4)0.0259 (11)
H30.92120.75300.59340.031*
C40.8234 (7)0.9140 (5)0.5363 (4)0.0299 (12)
H40.90150.90940.48190.036*
C50.6953 (8)1.0154 (5)0.5500 (4)0.0325 (13)
C60.5786 (7)1.0235 (5)0.6324 (4)0.0339 (13)
H60.49301.09130.64210.041*
C70.5923 (7)0.9294 (5)0.6992 (4)0.0286 (12)
H70.51630.93460.75480.034*
C80.6975 (5)0.3243 (4)0.9504 (3)0.0172 (9)
C90.7701 (6)0.1950 (4)0.9257 (4)0.0217 (10)
C100.7451 (7)0.1082 (5)0.9932 (4)0.0269 (11)
H100.68210.12941.05390.032*
C110.8139 (7)0.0111 (5)0.9706 (5)0.0319 (12)
H110.79890.06951.01680.038*
C120.9055 (7)0.0432 (5)0.8787 (5)0.0330 (13)
C130.9269 (7)0.0436 (5)0.8116 (4)0.0322 (13)
H130.98740.02220.75020.039*
C140.8600 (7)0.1626 (5)0.8333 (4)0.0283 (12)
H140.87490.22070.78660.034*
C150.3770 (6)0.6306 (5)0.7469 (4)0.0233 (10)
H150.34600.69940.78500.028*
C160.2918 (6)0.6235 (4)0.6686 (4)0.0233 (10)
H160.20640.68690.65370.028*
C170.3337 (6)0.5212 (4)0.6115 (3)0.0211 (10)
C180.4627 (7)0.4294 (5)0.6364 (4)0.0259 (11)
H180.49360.35910.60020.031*
C190.5449 (6)0.4434 (4)0.7153 (4)0.0223 (10)
H190.63240.38200.73080.027*
C200.6678 (6)0.7138 (4)1.0458 (4)0.0202 (10)
H200.59800.77261.01170.024*
C210.7102 (6)0.7416 (5)1.1354 (4)0.0237 (11)
H210.66800.81751.16180.028*
C220.8170 (6)0.6553 (5)1.1866 (4)0.0215 (10)
C230.8753 (6)0.5437 (4)1.1446 (4)0.0206 (10)
H230.94760.48401.17630.025*
C240.8253 (6)0.5224 (4)1.0555 (4)0.0204 (10)
H240.86430.44661.02850.024*
C250.6803 (9)1.1107 (6)0.4732 (4)0.0406 (15)
H25A0.748 (11)1.094 (8)0.410 (4)0.035*0.65
H25B0.622 (17)1.188 (4)0.500 (10)0.035*0.35
C260.9852 (8)0.1697 (6)0.8536 (5)0.0397 (15)
H261.042 (5)0.189 (4)0.793 (2)0.016 (14)*
C270.2415 (6)0.5188 (5)0.5231 (4)0.0241 (11)
C280.8602 (7)0.6880 (5)1.2856 (4)0.0268 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0193 (4)0.0219 (3)0.0121 (3)0.0046 (2)0.0078 (2)0.0045 (2)
O10.029 (2)0.0195 (16)0.0144 (17)0.0054 (15)0.0067 (14)0.0028 (13)
O20.025 (2)0.0264 (17)0.0173 (18)0.0027 (15)0.0065 (15)0.0011 (14)
O30.033 (2)0.0251 (17)0.0121 (17)0.0100 (16)0.0039 (15)0.0005 (14)
O40.0201 (19)0.0293 (18)0.0181 (18)0.0055 (15)0.0093 (14)0.0068 (14)
O5A0.048 (4)0.034 (3)0.023 (3)0.011 (3)0.004 (3)0.000 (3)
O5B0.050 (9)0.027 (5)0.027 (6)0.009 (5)0.014 (5)0.008 (5)
O60.046 (3)0.037 (2)0.079 (4)0.008 (2)0.008 (3)0.009 (2)
O70.046 (3)0.038 (2)0.033 (2)0.006 (2)0.015 (2)0.0141 (19)
O80.062 (3)0.083 (4)0.053 (3)0.043 (3)0.034 (3)0.053 (3)
N10.015 (2)0.026 (2)0.015 (2)0.0069 (16)0.0081 (16)0.0036 (16)
N20.023 (2)0.024 (2)0.014 (2)0.0075 (17)0.0065 (16)0.0044 (15)
N30.038 (3)0.029 (2)0.015 (2)0.008 (2)0.0000 (19)0.0048 (17)
N40.025 (2)0.031 (2)0.015 (2)0.0040 (19)0.0050 (18)0.0084 (18)
C10.023 (3)0.025 (2)0.013 (2)0.006 (2)0.0030 (19)0.0040 (18)
C20.025 (3)0.024 (2)0.016 (2)0.007 (2)0.006 (2)0.0051 (19)
C30.028 (3)0.029 (2)0.019 (3)0.007 (2)0.006 (2)0.003 (2)
C40.039 (3)0.033 (3)0.018 (3)0.014 (2)0.010 (2)0.003 (2)
C50.050 (4)0.029 (3)0.019 (3)0.014 (2)0.006 (2)0.001 (2)
C60.039 (4)0.027 (3)0.031 (3)0.003 (2)0.002 (2)0.000 (2)
C70.032 (3)0.029 (2)0.021 (3)0.005 (2)0.011 (2)0.003 (2)
C80.005 (2)0.024 (2)0.019 (2)0.0007 (18)0.0043 (18)0.0035 (18)
C90.015 (3)0.024 (2)0.023 (3)0.0026 (19)0.006 (2)0.0065 (19)
C100.022 (3)0.029 (2)0.027 (3)0.006 (2)0.006 (2)0.003 (2)
C110.030 (3)0.026 (2)0.041 (3)0.010 (2)0.006 (2)0.004 (2)
C120.027 (3)0.030 (3)0.042 (3)0.005 (2)0.004 (3)0.011 (2)
C130.026 (3)0.034 (3)0.031 (3)0.000 (2)0.008 (2)0.016 (2)
C140.027 (3)0.028 (3)0.026 (3)0.005 (2)0.008 (2)0.006 (2)
C150.020 (3)0.027 (2)0.018 (3)0.002 (2)0.009 (2)0.007 (2)
C160.021 (3)0.025 (2)0.020 (3)0.002 (2)0.006 (2)0.005 (2)
C170.022 (3)0.029 (2)0.011 (2)0.008 (2)0.0121 (19)0.0041 (19)
C180.030 (3)0.029 (2)0.016 (2)0.007 (2)0.010 (2)0.010 (2)
C190.022 (3)0.024 (2)0.016 (2)0.001 (2)0.010 (2)0.0061 (19)
C200.017 (3)0.022 (2)0.016 (2)0.0008 (19)0.0081 (19)0.0033 (18)
C210.024 (3)0.025 (2)0.018 (2)0.002 (2)0.007 (2)0.0076 (19)
C220.019 (3)0.030 (2)0.013 (2)0.006 (2)0.0054 (19)0.0025 (19)
C230.021 (3)0.023 (2)0.014 (2)0.0026 (19)0.0085 (19)0.0035 (18)
C240.016 (3)0.026 (2)0.015 (2)0.0045 (19)0.0124 (19)0.0042 (19)
C250.063 (5)0.034 (3)0.024 (3)0.013 (3)0.002 (3)0.001 (2)
C260.035 (4)0.034 (3)0.052 (4)0.009 (3)0.016 (3)0.003 (3)
C270.025 (3)0.034 (3)0.012 (2)0.010 (2)0.011 (2)0.007 (2)
C280.024 (3)0.035 (3)0.018 (3)0.001 (2)0.005 (2)0.010 (2)
Geometric parameters (Å, º) top
Cu1—O11.994 (3)C7—C61.382 (8)
Cu1—O22.736 (4)C7—H70.9300
Cu1—O31.949 (4)C8—C91.506 (7)
Cu1—O4i2.242 (3)C9—C101.378 (7)
Cu1—N12.033 (4)C9—C141.395 (7)
Cu1—N22.013 (4)C10—H100.9300
O1—C11.271 (6)C11—C101.390 (7)
O2—C11.259 (6)C11—C121.395 (8)
O3—C81.264 (6)C11—H110.9300
O4—C81.248 (6)C12—C131.366 (9)
O4—Cu1i2.242 (3)C13—H130.9300
O5A—C251.299 (9)C14—C131.384 (7)
O5A—H25B0.61 (19)C14—H140.9300
O5B—C251.311 (11)C15—C161.367 (7)
O5B—H25A0.43 (10)C15—H150.9300
O6—C261.165 (8)C16—H160.9300
O7—C271.215 (7)C17—C161.385 (6)
N1—C151.338 (7)C17—C271.508 (7)
N1—C191.356 (6)C18—C171.388 (8)
N2—C201.349 (6)C18—H180.9300
N2—C241.336 (7)C19—C181.379 (7)
N3—C271.328 (6)C19—H190.9300
N3—H3A0.8600C20—C211.371 (7)
N3—H3B0.8600C20—H200.9300
N4—C281.312 (7)C21—C221.392 (7)
N4—H4A0.8600C21—H210.9300
N4—H4B0.8600C22—C281.511 (7)
C1—C21.494 (7)C23—C221.381 (7)
C3—C41.374 (7)C23—C241.370 (7)
C3—C21.389 (7)C23—H230.9300
C3—H30.9300C24—H240.9300
C4—H40.9300C25—H25A0.97 (2)
C5—C41.391 (8)C25—H25B0.97 (2)
C5—C251.479 (8)C26—C121.487 (8)
C6—C51.398 (8)C26—H260.90 (2)
C6—H60.9300C28—O81.220 (6)
C7—C21.395 (7)
O1—Cu1—O4i87.34 (13)C12—C11—H11120.0
O1—Cu1—N188.89 (15)C11—C12—C26121.4 (6)
O1—Cu1—N290.93 (15)C13—C12—C11119.4 (5)
O3—Cu1—O1150.35 (14)C13—C12—C26119.2 (5)
O3—Cu1—O4i121.93 (13)C12—C13—C14121.2 (5)
O3—Cu1—N188.74 (16)C12—C13—H13119.4
O3—Cu1—N295.15 (16)C14—C13—H13119.4
N1—Cu1—O4i85.80 (14)C9—C14—H14120.3
N2—Cu1—O4i86.58 (15)C13—C14—C9119.5 (5)
N2—Cu1—N1172.37 (16)C13—C14—H14120.3
C1—O1—Cu1108.3 (3)N1—C15—C16123.3 (4)
C8—O3—Cu1127.1 (3)N1—C15—H15118.4
C8—O4—Cu1i148.5 (3)C16—C15—H15118.4
C15—N1—Cu1119.3 (3)C15—C16—C17119.6 (5)
C15—N1—C19117.5 (4)C15—C16—H16120.2
C19—N1—Cu1123.1 (4)C17—C16—H16120.2
C20—N2—Cu1118.3 (4)C16—C17—C18117.9 (5)
C24—N2—Cu1123.9 (3)C16—C17—C27118.0 (5)
C24—N2—C20117.3 (4)C18—C17—C27124.1 (4)
C27—N3—H3A120.0C17—C18—H18120.3
C27—N3—H3B120.0C19—C18—C17119.4 (4)
H3A—N3—H3B120.0C19—C18—H18120.3
C28—N4—H4A120.0N1—C19—C18122.3 (5)
C28—N4—H4B120.0N1—C19—H19118.8
H4A—N4—H4B120.0C18—C19—H19118.8
O1—C1—C2118.2 (4)N2—C20—C21122.5 (5)
O2—C1—O1123.6 (5)N2—C20—H20118.7
O2—C1—C2118.2 (4)C21—C20—H20118.7
C3—C2—C7119.5 (5)C20—C21—C22119.4 (5)
C3—C2—C1119.9 (5)C20—C21—H21120.3
C7—C2—C1120.5 (4)C22—C21—H21120.3
C2—C3—H3119.9C21—C22—C28118.3 (5)
C4—C3—C2120.2 (5)C23—C22—C21118.0 (5)
C4—C3—H3119.9C23—C22—C28123.7 (5)
C4—C5—C6120.2 (5)C22—C23—H23120.5
C4—C5—C25118.8 (5)C24—C23—C22119.0 (5)
C6—C5—C25121.0 (6)C24—C23—H23120.5
C3—C4—C5120.3 (5)N2—C24—C23123.6 (5)
C3—C4—H4119.9N2—C24—H24118.2
C5—C4—H4119.9C23—C24—H24118.2
C5—C6—H6120.5O5A—C25—O5B120.1 (8)
C7—C6—C5119.0 (5)O5A—C25—C5119.9 (6)
C7—C6—H6120.5O5B—C25—C5119.9 (8)
C2—C7—H7119.6O5A—C25—H25A120 (5)
C6—C7—C2120.8 (5)C5—C25—H25A118 (5)
C6—C7—H7119.6O5B—C25—H25B120 (5)
O3—C8—C9116.7 (4)C5—C25—H25B113 (7)
O4—C8—O3125.1 (5)H25A—C25—H25B127 (8)
O4—C8—C9118.2 (4)O6—C26—C12125.3 (7)
C10—C9—C8120.2 (4)O6—C26—H26114 (3)
C10—C9—C14119.8 (5)C12—C26—H26120 (3)
C14—C9—C8120.0 (5)O7—C27—N3123.4 (5)
C9—C10—C11120.0 (5)O7—C27—C17119.3 (5)
C9—C10—H10120.0N3—C27—C17117.3 (5)
C11—C10—H10120.0O8—C28—N4123.1 (5)
C10—C11—C12120.1 (5)O8—C28—C22120.3 (5)
C10—C11—H11120.0N4—C28—C22116.6 (4)
O3—Cu1—O1—C19.8 (5)C6—C5—C25—O5A0.9 (9)
O4i—Cu1—O1—C1161.5 (3)C6—C5—C25—O5B179.1 (9)
N1—Cu1—O1—C175.7 (3)C7—C6—C5—C40.4 (9)
N2—Cu1—O1—C1111.9 (3)C7—C6—C5—C25176.2 (6)
O1—Cu1—O3—C8169.2 (4)C6—C7—C2—C1173.4 (5)
O4i—Cu1—O3—C821.0 (4)C6—C7—C2—C32.1 (8)
N1—Cu1—O3—C8105.2 (4)C2—C7—C6—C51.1 (9)
N2—Cu1—O3—C868.2 (4)O3—C8—C9—C10178.6 (5)
O1—Cu1—N1—C19132.7 (4)O3—C8—C9—C142.8 (7)
O3—Cu1—N1—C15165.9 (4)O4—C8—C9—C100.7 (7)
O3—Cu1—N1—C1917.7 (4)O4—C8—C9—C14177.9 (5)
O4i—Cu1—N1—C1543.8 (4)C8—C9—C10—C11179.2 (5)
O4i—Cu1—N1—C19139.9 (4)C14—C9—C10—C112.2 (8)
O1—Cu1—N2—C2039.5 (3)C8—C9—C14—C13179.6 (5)
O1—Cu1—N2—C24148.6 (4)C10—C9—C14—C131.7 (8)
O3—Cu1—N2—C20169.5 (3)C12—C11—C10—C91.4 (8)
O3—Cu1—N2—C242.4 (4)C10—C11—C12—C130.1 (9)
O4i—Cu1—N2—C2047.7 (3)C10—C11—C12—C26178.0 (5)
O4i—Cu1—N2—C24124.1 (4)C11—C12—C13—C140.3 (9)
Cu1—O1—C1—O28.7 (6)C26—C12—C13—C14177.6 (5)
Cu1—O1—C1—C2168.4 (3)C9—C14—C13—C120.5 (9)
Cu1—O3—C8—O411.3 (7)N1—C15—C16—C171.0 (8)
Cu1—O3—C8—C9169.5 (3)C18—C17—C16—C150.4 (7)
Cu1i—O4—C8—O365.4 (8)C27—C17—C16—C15177.4 (4)
Cu1i—O4—C8—C9115.4 (6)C16—C17—C27—O712.4 (7)
Cu1—N1—C15—C16176.0 (4)C16—C17—C27—N3169.0 (4)
C19—N1—C15—C160.6 (7)C18—C17—C27—O7164.4 (5)
Cu1—N1—C19—C18177.0 (4)C18—C17—C27—N314.2 (7)
C15—N1—C19—C180.5 (7)C19—C18—C17—C160.6 (7)
Cu1—N2—C20—C21171.6 (4)C19—C18—C17—C27176.2 (4)
C24—N2—C20—C210.8 (7)N1—C19—C18—C171.1 (7)
Cu1—N2—C24—C23172.2 (3)N2—C20—C21—C221.2 (7)
C20—N2—C24—C230.2 (7)C20—C21—C22—C230.5 (7)
O1—C1—C2—C3175.4 (5)C20—C21—C22—C28179.4 (4)
O1—C1—C2—C79.1 (7)C21—C22—C28—O815.8 (8)
O2—C1—C2—C37.3 (7)C21—C22—C28—N4163.5 (5)
O2—C1—C2—C7168.2 (5)C23—C22—C28—O8163.0 (6)
C4—C3—C2—C1174.0 (5)C23—C22—C28—N417.6 (7)
C4—C3—C2—C71.6 (8)C24—C23—C22—C210.5 (7)
C2—C3—C4—C50.1 (8)C24—C23—C22—C28178.3 (4)
C6—C5—C4—C30.9 (9)C22—C23—C24—N20.9 (7)
C25—C5—C4—C3175.8 (5)O6—C26—C12—C112.0 (10)
C4—C5—C25—O5A177.5 (6)O6—C26—C12—C13175.9 (6)
C4—C5—C25—O5B4.2 (11)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2ii0.862.172.997 (6)160
N3—H3B···O5Aiii0.862.273.044 (9)149
N4—H4A···O7iv0.862.062.878 (6)158
N4—H4B···O2v0.862.102.890 (6)152
C3—H3···O7vi0.932.523.391 (7)155
C6—H6···O8vii0.932.443.336 (9)162
C18—H18···O5Aiii0.932.353.274 (9)169
C23—H23···O2v0.932.543.432 (7)162
C24—H24···O6viii0.932.503.217 (7)134
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y, z+1; (v) x+2, y+1, z+2; (vi) x+1, y, z; (vii) x+1, y+2, z+2; (viii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Cu2(C8H5O3)4(C6H6N2O)4]
Mr1212.09
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6462 (2), 11.6709 (3), 13.4339 (4)
α, β, γ (°)87.876 (3), 83.483 (3), 74.566 (2)
V3)1298.24 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.17 × 0.07 × 0.06
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.927, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
19200, 6198, 4412
Rint0.189
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.204, 1.11
No. of reflections6198
No. of parameters389
No. of restraints119
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.05, 1.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—O11.994 (3)Cu1—O4i2.242 (3)
Cu1—O22.736 (4)Cu1—N12.033 (4)
Cu1—O31.949 (4)Cu1—N22.013 (4)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2ii0.862.172.997 (6)160
N3—H3B···O5Aiii0.862.273.044 (9)149
N4—H4A···O7iv0.862.062.878 (6)158
N4—H4B···O2v0.862.102.890 (6)152
C3—H3···O7vi0.932.523.391 (7)155
C6—H6···O8vii0.932.443.336 (9)162
C18—H18···O5Aiii0.932.353.274 (9)169
C23—H23···O2v0.932.543.432 (7)162
C24—H24···O6viii0.932.503.217 (7)134
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y, z+1; (v) x+2, y+1, z+2; (vi) x+1, y, z; (vii) x+1, y+2, z+2; (viii) x+2, y, z+2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2012-FEF-12).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Gündüz, H. & Necefouglu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328–m1329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1608–m1609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m887–m888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds